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Abstract. The paper presents a data structure for storing and queryingsets called
SetTrie. Besides the operationsinsert andsearch defined for ordinary tries, we
introduce the operations for retrieving subsets and supersets of a given set from a
SetTrie tree. The performance of operations is analysed empirically in a series
of experiments. The analysis shows that sets can be accessed in O(c ∗ |set|) time
wherec is up to5 for subset case and approximately150 in average case for the
superset case.
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1. Introduction

Let U be a set of ordered symbols. The subsets ofU are denoted aswords. Given a set
of wordsS and a subset ofU namedX, we are interested in the following queries.

1. IsX a subset of any element fromS?
2. IsX a superset of any element fromS?
3. Enumerate allY in S such thatX is a subset ofY .
4. Enumerate allY in S such thatX is a superset ofY .

Let us show a simple example. LetU = {1, 2, 3, ..., 10} andS = {{2, 3, 5, 7},
{2, 5, 9, 10}, {5, 7}, {3, 5, 7, 8}, {5, 6, 7, 9}}. Given the setX = {3, 5, 7}, the supersets
of X in S are{2, 3, 5, 7} and{3, 5, 7, 8}. The set{5, 7} is the single subset ofX in S.

The paper presents a data structureSetTrie that implements efficiently the above
stated queries.SetTrie is a tree data structure similar totrie [4]. The possibility to
extend the performance of usualtrie from membership operation to subset and superset
operations comes from the fact that we are storingsetsand not the sequences of symbols
as for ordinary tries.

Since we are dealing with sets for which the ordering of the elements is not impor-
tant, we can define a syntactical order of symbols by assigning each symbol a unique
index. Words are ordered by sequences of indices. The ordering of words is exploited for
the representationof sets of words as well as in theimplementationof the above stated
operations.

SetTrie is a tree storing a set of words which are represented by a pathfrom the
root ofSetTrie to a node corresponding to the indices of elements from words. As with
tries, prefixes that overlap are represented by a common pathfrom the root to an internal
vertex ofSetTrie tree.
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Figure 1. Example ofSetTrie

The operations for searching subsets and supersets of a setX in S use the ordering
of U . The algorithms do not need to consider the tree branches forwhich we know they
do not lead to results on the basis of the ordering of word symbols. The search space for
a givenX and tree representingS can be seen as a subtree determined primarily by the
search wordX but also with the search tree corresponding toS.

We test the operations in two types of experiments. Firstly,we examine the execu-
tion of the operations on real-world data where sets represents words from the English
dictionary. Secondly, we have tested the operations on artificially generated data. In these
experiments we tried to see how three main parameters: the size of words, the size of
SetTrie tree and the size of test-set, affect the behaviour of the operations.

The paper is organized as follows. The following section presents the data structure
SetTrie together with the operations for searching the subsets and supersets in a tree.
The Section 3 describes the empirical study ofSetTrie. We present a series of experi-
ments that measure the behaviour of operations and the size of data structure. The related
work is presented in Section 4. Finally, the overview and some conclusions are given in
Section 5.

2. Data structure SetTrie

SetTrie is a tree composed of nodes labelled with indices from1 to N whereN is the
size of the alphabet. The root node is labelled with{} and its children can be the nodes
labelled from1 to N . A root node alone represents an empty set. A node labelledi can
have children labelled with numbers greater thani. Each node can have a flag denoting
the last element in the set. Therefore, a set is represented by a path from the root node to
a node with flag set to true.

Let us give an example ofSetTrie. Figure 2 presents aSetTrie containing the
sets{1, 3}, {1, 3, 5}, {1, 4}, {1, 2, 4}, {2, 4}, {2, 3, 5}. Note that flaged nodes are repre-
sented with circles.

2.1. Operations

Let us first present a data structure for storingwords, that is, the sets of symbols. Words
are stored in a data structureWord representing ordered sets of integer numbers.

The users ofWord can scan sets using the following mechanism. The operation
word.gotoF irstElement sets the current element of word to the first element of ordered



set. Then, the operationword.existsCurrentElement checks if word has the current
element set. The operationword.currentElement returns the current element, and the
operationword.gotoNextElement goes to the next element in the set.

Let us now describe the operations of the data structureSetTrie. The first opera-
tion is insertion. The operationinsert(root,word) enters a newword into theSetTrie

referenced by the rootnode. The operation is presented by Algorithm 1.

Algorithm 1 insert(node, word)
1: if (word.existsCurrentElement)then
2: if (exists child ofnode labelledword.currentElement)then
3: nextNode = child of node labelledword.currentElement;
4: else
5: nextNode = create child ofnode labelledword.currentElement;
6: end if
7: insert(nextNode, word.gotoNextElement)
8: else
9: node’s flag_last =true;

10: end if

Each invocation of operationinsert either traverses through the existing tree nodes
or creates new nodes to construct a path from the root to the flagged node corresponding
to the last element of the ordered set.

The following operationsearch(node,word) searches for a givenword in the tree
node. It returns true when it finds all symbols from the word, and false as soon one
symbol is not found. The algorithm is shown in Algorithm 2. Ittraverses the treenode

by using the elements of ordered setword to select the children.

Algorithm 2 search(node, word)
1: if (word.existsCurrentElement)then
2: if (there exists child ofnode labelledword.currentElement)then
3: matchNode = child vertex ofnode labelledword.currentElement;
4: search(matchNode, word.gotoNextElement);
5: else
6: return false;
7: end if
8: else
9: return (node’s last_flag== true) ;

10: end if

Let us give a few comments to present the algorithm in more detail. The operation
have to be invoked with the callsearch(root,set.gotoFirstElement) so thatroot is the
root of theSetTrie tree and the current element of theword is the first element ofword.
Each activation ofsearch tries to match the current element ofword with the child
of node. If the match is not successful it returnsfalse otherwise it proceeds with the
following element ofword.

The operationexistsSubset(node,word) checks if there exists a subset ofword

in the given tree referenced bynode. The subset that we search in the tree has fewer



elements thanword. Therefore, besides that we search for the exact match we canalso
skip one or more elements inword and find a subset that matches the rest of the elements
of word. The operation is presented in Algorithm 3.

Algorithm 3 existsSubset(node,set)
1: if (node.last_flag== true) then
2: return true;
3: end if
4: if (notword.existsCurrentElement)then
5: return false;
6: end if
7: found = false;
8: if (node has child labelledword.currentElement)then
9: nextNode = child of node labelledword.currentElement;

10: found = existsSubset(nextNode, word.gotoNextElement);
11: end if
12: if (!found) then
13: return existsSubset(node,word.gotoNextElement);
14: else
15: return true;
16: end if

Algorithm 3 tries to match elements ofword by descending simultaneously in tree
and inword. The first IF statement (line 1) checks if a subset ofword is found in the
tree i.e. the current node of a tree is the last element of subset. The second IF statement
(line 4) checks ifword has run of the elements. The third IF statement (line 8) verifies
if the parallel descend inword and tree is possible. In the positive case, the algorithm
callsexistsSubset with the next element ofword and a child ofnode corresponding to
matched symbol. Finally, if match did not succeed, current element ofword is skipped
andexistsSubset is activated again in line 13.

The operationexistsSubset can be easily extended to find all subsets of a given
word in a treenode. After finding the subset in line 15 the subset is stored and the search
continues in the same manner as before. The experimental results with the operation
getAllSubsets(nod,word) are presented in the following section.

The operationexistsSuperset(node,word) checks if there exists a superset ofword

in the tree referenced bynode. While in operationexistsSubset we could skip some
elements fromword, here we can do the opposite: the algorithm can skip some elements
in supersets represented bynode. Therefore,word can be matched with the subset of
superset from atree. The operation is presented in Algorithm 4

Let us present Algorithm 4 in more detail. The first IF statement checks if we are
already at the end ofword. If so, then the parameterword is covered completely with a
superset fromtree. Lines 5-6 set the lower and upper bounds of iteration. In each pass
we either skip currentchild and callexistsSuperset on unchangedword (line 11), or,
descend in paralel on bothword and tree in the case that we reach the upper bound ie.
the next element inword (line 9).

Again, the operationexistsSuperset can be quite easily extended to retrieve all
supersets of a givenword in a treenode. However, afterword (parameter) is matched



Algorithm 4 existsSuperset(node, word)
1: if (notword.existsCurrentElement)then
2: return true;
3: end if
4: found = false;
5: from = word.currentElement;
6: upto =word.nextElement if it exists and N otherwise;
7: for (eachchild of node labelledl: from < l ≤ upto) while !found do
8: if (child is labelledupto) then
9: found = existsSuperset(child,word.gotoNextElement);

10: else
11: found = existsSuperset(child,word);
12: end if
13: end for

completely (line 2 in Algorithm 4), there remains a subtree of trailers corresponding to a
set of supersets that subsumeword. This subtree is rooted in a tree node, let saynodek,
that corresponds to the last element ofword. Therefore, after thenodek is matched
against the last element of the set in line 2, the complete subtree has to be traversed to
find all supersets that go throughnode.

3. Experiments

The performance of the presented operations is analysed in four experiments. The main
parameters of experiments are: the number of words in the tree, the size of the alpha-
bet, and the maximum length of words. The parameters are named: numTreeWord,
alphabetSize, andmaxSizeWord, respectively. In every experiment we measure the
number of visited nodes necessary for an operation to terminate.

In the first experiment,SetTrie is used to store real-world data – it stores the words
from English Dictionary. In the following three experiments we use artificial data –
datasets and test data are randomly generated. In these experiments we analyse in de-
tail the interrelations between one of the stated tree parameters on the number of visited
nodes.

In all experiments we observe four operations presented in the previous sec-
tion: existsSubset (abbr. esb) and its extensiongetAllSubsets (abbr. gsb), and
existsSuperset (abbr.esr) and its extensiongetAllSupersets (abbr.gsr).

3.1. Experiment with real-world data

Let us now present the first experiment in more detail. The number of words in test set
is 224,712 which results in a tree with 570,462 nodes. The length of words are between
5 and 24 and the size of the alphabet (alphabetSize) is 25. The test set contains 10,000
words.

Results are presented in Table 1 and Figure 2. Since there are10,000 words and 23
different word lengths in the test set, approximately 435 input words are of the same
length. Table 1 and Figure 2 present the average number of visited nodes for each input
word length (except forgsr where values below word length 6 are intentionally cut off).



word length esr gsr esb gsb
2 523 169694 1 1
3 3355 103844 3 3
4 12444 64802 6 6
5 9390 34595 11 12
6 11500 22322 14 19
7 12148 17003 18 32
8 8791 10405 19 46
9 6985 7559 19 78
10 3817 3938 21 102
11 3179 3201 20 159
12 2808 2820 20 221
13 2246 2246 22 290
14 1651 1654 19 403
15 1488 1488 18 575
16 895 895 19 778
17 908 908 20 925
18 785 785 18 1137
19 489 489 22 1519
20 522 522 19 1758
21 474 474 19 2393
22 399 399 17 3044
23 362 362 17 3592
24 327 327 19 4167

Figure 2. Visited nodes for dictionary words

Let us give some comments on the results presented in Table 2.First of all, we can
see that the superset operations (esr andgsr) visit more nodes than subset operations
(esb andgsb).

The number of nodes visited byesr andgsr decreases as the length of words in-
creases. This can be explained by more constrained search inthe case of longer words,
while it is very easy to find supersets of shorter words and, furthermore, there are a lot
of supersets of shorter words in the tree.

Since operationgsr returns all supersets (of a given set), it always visits morenodes
than the operationesr. However, searching for the supersets of longer words almost
always results in failure and for this reason the number of visited nodes is the same for
both operations.

The number of visited nodes foresb in the case that words have more than 5 symbols
is very similar to the length of words. Below this length of words bothesb andgsb visit
the same number of nodes, because there were no subset words of this length in the tree
and both operations visit the same nodes.

The number of visited nodes forgsb linearly increases as the word length increases.
We have to visit all the nodes that are actually used for the representation of all subsets
of a given parameter set.



Figure 3. Number of visited nodes

3.2. Experiments with artificial data

In experiment1 we observe the influence of changing the maximal length of word to
the performance of all four operations. We created four trees withalphabetSize 30 and
numTreeWord 50,000.maxSizeWord is different in each tree: 20, 40, 60 and 80,
for tree1, tree2, tree3 and tree4, respectively. The lengthof word in each tree is evenly
distributed between the minimal and maximal word size. The number of nodes in the
trees are: 332,182, 753,074, 1,180,922 and 1,604,698. The test set contains 10,000 words.

Figure 3 shows the performance of all four operations on all four trees. The perfor-
mance of superset operations is affected more by the change of the word length than the
subset operations.

With an even distribution of data in all four trees,esr visits most nodes for in-
put word lengths that are about half of the size ofmaxSizeWord (as opposed to dic-
tionary data where it visits most nodes for word lengths approximately one fifth of
maxSizeWord). For word lengths equal tomaxSizeWord the number of visited nodes
is roughly the same for all trees, but that number increases slightly as the word length
increases.

esb operation visits fewer than 10 nodes most of the time, but fortree3 it goes up
to 44 which is still a very low number. The experiment was repeated multiple (about
10) times, and in every run the operation "jumped up" in a different tree. As seen later
in experiment2, it seems thatnumTreeWord 50 is just on the edge of the value
whereesb stays constantly below 10 visited nodes. It is safe to say that the change in
maxSizeWord has no major effect onexistsSubSet operation.

In contrast togsr, gsb visits less nodes for the same input word length in trees with
greatermaxSizeWord, but the change is minimal. For example for word length 35 in
tree2 (maxSizeWord 40)gsb visits 7,606 nodes, intree3 (maxSizeWord 60) it visits
5,300 nodes and intree4 (maxSizeWord 80) it visits 4,126 nodes.

In experiment2 we are interested about how a change in the number of words
in the tree affects the operations. Ten trees are created allwith alphabetSize 30 and
maxSizeWord 30. numTreeWord is increased in each tree by 10,000 words:tree1
has 10,000 words, andtree10 has 100,000 words. The number of nodes in the trees (from



Figure 4. Experiment 1 - increasingmaxSizeWord

tree1 to tree10) are: 115,780, 225,820, 331,626, 437,966, 541,601, 644,585, 746,801,
846,388, 946,493 and 1,047,192. The test set contains 5,000words.

Figure 4 shows the number of visited nodes for each operationon four trees:tree1,
tree4, tree7 andtree10 (only every third tree is shown to reduce clutter). When increas-
ing numTreeWord the number of visited nodes increases foresr, gsr andgsb opera-
tions.esb is least affected by the increased number of words in the tree. In contrast to
the other three operations, the number of visited nodes decreases whennumTreeWord

increases.
For input word lengths around half the value ofmaxSizeWord (between 13 and 17)

the number of visited nodes foresr increases with the increase of the number of words
in the tree. For input word lengths up to 10, the difference between trees is minimal.
After word lengths about 20 the difference in the number of visited nodes between trees
starts to decline. Also, trees 7 to 10 have very similar results. It seems that after a certain
number of words in the tree the operation "calms down".

The increased number of words in the tree affects thegsr operation mostly in the first
quarter ofmaxSizeWord. The longer the input word, the lesser the difference between
trees. Still, this operation is the most affected by the change of numTreeWord. The
average number of visited nodes for all input word lengths intree1 is 8,907 and in tree10
it is 68,661. Due to the nature of the operation, this behaviour is expected. The more
words there are in the tree, the more supersets can be found for an input word.



Figure 5. Experiment 2 - increasingnumTreeWord

As already noted above, when the number of words in the tree increases the number
of visited nodes foresb decreases. After a certain number of words, in our case this was
around 50,000, the operation terminates at a minimum possible visits of nodes for any
word length. The increase ofnumTreeWord seems to "push down" the operation from
left to right. This can be seen in figure 4 by comparingtree1 andtree4. In tree1 the
operation visits more then 10 after word length 15, and intree4 it visits more than 10
nodes after word length 23. Overall the number of visited nodes is always very low.

The chart ofgsb operation looks like a mirrored chart ofgsr. The increased number
of words in the tree has more effect on input word lengths where the operation visits
more nodes (longer words). Below word length 15 the difference between trees is in the
range of 100 visited nodes. At word length 30gsb visits 1,729 nodes intree1 and 8,150
nodes intree10. The explanation in for the increased number of visited nodes is similar
as forgsr operation: the longer the word, the more subsets it can have,the more words
in the tree, the more words with possible subsets there are.

In experiment3 we are interested about how a change in the alphabet size af-
fects the operations. Five trees are created withmaxSizeWord 50 andnumTreeWord

50,000.alphabetSize is 20, 40, 60, 80 and 100, fortree1, tree2, tree3, tree4 and
tree5, respectively. The number of nodes in the trees are: 869,373, 1,011,369, 1,069,615,
1,102,827 and 1,118,492. The test set contains 5,000 words.



Figure 6. Experiment 3 - increasingalphabetSize

When increasingalphabetSize the tree becomes sparser–the number of child nodes
of a node is larger, but the number of nodes in all five trees is roughly the same. For
gsr and more notablygsb operation, visit less nodes for the same input word length:
the average number of visited nodes decreased whenalphabetSize increases. Theesr
operation on the other hand visits more nodes in trees with larger alphabetSize.

The number of visited nodes ofesr increases with the increase ofalphabetSize.
This is because it is harder to find supersets of given words, when the number of sym-
bols that make up words is larger. The effect is greater on word lengths below half
maxSizeWord. The number of visited nodes starts decreasing rapidly after a certain
word length. At this point the operation does not find any supersets and it returns false.

gsr is not affected much by the change ofalphabetSize. The greatest change hap-
pens when increasingalphabetSize over 20 (tree1). The number of visited nodes in
trees 2 to 5 is almost the same, but it does decrease with everyincrease ofalphabetSize.

In tree1 esb visits on average 3 nodes. When we increasealphabetSize the number
of visited nodes also increases, but as ingsr the difference between trees 2 to 5 is small.

The change ofalphabetSize has a greater effect on longer input words for thegsr

operation. The number of visited nodes decreased whenalphabetSize increased. Here
again the biggest change is when going overalphabetSize 20. With every next increase,
the difference in the number of visited nodes is smaller.



4. Related work

The initial implementation ofSetTrie was in the context of a datamining toolfdep

which is used for the induction of functional dependencies from relations.SetTrie

serves there for storing and retrieving hypotheses that basically correspond tosets.
The data structure we propose is similar to trie [5]. Since weare not storing se-

quences butsetswe can exploit the fact that the order in sets is not important. There-
fore, we can take advantage of this to use syntactical order of elements of sets and obtain
additional functionality of tries.

From the other perspective, our problem is similar to searching substrings in strings
(for which Suffix trees can be used). The set of symbols of a substring is a subset of
symbols of the string.

Baeza-Yates and Gonnet present an algorithm [1] for searching regular expressions
usingPatricia trees as the logical model for the index. They simulate a finite automata
over a binary Particia tree of words. The result of a regular expression query is a superset
or subset of the search parameter.

Charikar et. al. [2] present two algorithms to deal with a subset query problem. The
purpose of their algorithms is similar toexistsSuperSet operation. They extend their
results to a more general problem of orthogonal range searching, and other problems.
They propose a solution for “containment query problem” which is similar to our 2.
query problem introduced in section 1.

Rivest examines [4] the problem of partial matching with theuse of hash functions
andTrie trees. He presents an algorithm for partial match queries using Tries.

5. Conclusions

The paper presents a data structureSetTrie that can be used for efficient storage and
retrieval of subsets or supersets of a givenword. The performance ofSetTrie is shown
to be good enough for manipulating sets of sets in practical applications.

Enumeration of subsets of a given universal setU is very common inmachine learn-
ing [3] algorithms that search hypotheses space ordered in a lattice. Often we have to
see if a given set, a subset or a superset has already been considered by the algorithm.
Such problems include discovery of association rules, functional dependencies as well
as some forms of propositional logic.

Finally, the initial experiments have been done to investigate if SetTrie can be
employed for searching substrings and superstrings in texts. Fur this purpose the data
structureSetTrie has to be augmented with the references to the position of words in
text. While the data structure is relatively large “index tree”, it may still be useful because
of the efficient search.
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