Efficient subset and superset queries

Iztok SAVNIK

Faculty of Mathematics, Natural Sciences and Informatiechihologies, University of
Primorska, Glagoljaska 8, 5000 Koper, Slovenia

Abstract. The paper presents a data structure for storing and quesgisgealled
SetT'rie. Besides the operatiofiga sert andsearch defined for ordinary tries, we
introduce the operations for retrieving subsets and sefed$ a given set from a
SetTrie tree. The performance of operations is analysed empirically $eries
of experiments. The analysis shows that sets can be acces$¥d i |set|) time
wherec is up to5 for subset case and approximatél0 in average case for the
superset case.

Keywords. Containment queries, Indexes, Access methods, Databases

1. Introduction

Let U be a set of ordered symbols. The subset& @fre denoted awords Given a set
of words S and a subset di namedX, we are interested in the following queries.

1. Is X a subset of any element frof%?

2. Is X a superset of any element fra$i?

3. Enumerate al’ in S such thatX is a subset of".
4. Enumerate alt” in S such thatX is a superset of .

Let us show a simple example. L&t = {1,2,3,...,10} and S = {{2,3,5,7},
{2,5,9,10},{5,7},{3,5,7,8},{5,6,7,9}}. Given the sefX = {3,5, 7}, the supersets
of X in S are{2,3,5,7} and{3,5,7,8}. The set{5, 7} is the single subset of in S.

The paper presents a data structfegT'riec that implements efficiently the above
stated queriesSetT'rie is a tree data structure similar toie [4]. The possibility to
extend the performance of usuate from membership operation to subset and superset
operations comes from the fact that we are stosi@igand not the sequences of symbols
as for ordinary tries.

Since we are dealing with sets for which the ordering of tleeneints is not impor-
tant, we can define a syntactical order of symbols by asgigaath symbol a unique
index. Words are ordered by sequences of indices. The agdefiwords is exploited for
therepresentatiorof sets of words as well as in theplementatiorof the above stated
operations.

SetT'rie is a tree storing a set of words which are represented by affmaththe
root of SetT'rie to a node corresponding to the indices of elements from wéslsvith
tries, prefixes that overlap are represented by a commorfreatithe root to an internal
vertex of SetTrie tree.

{}
e < \/\
e e
Figurel. Example ofSetTrie

The operations for searching subsets and supersets ofaise$ use the ordering
of U. The algorithms do not need to consider the tree branchegtfich we know they
do not lead to results on the basis of the ordering of word ®ysafihe search space for
a givenX and tree representing can be seen as a subtree determined primarily by the
search wordX but also with the search tree corresponding'to

We test the operations in two types of experiments. Firaty/examine the execu-
tion of the operations on real-world data where sets reptesgords from the English
dictionary. Secondly, we have tested the operations diicéatly generated data. In these
experiments we tried to see how three main parameters: zbeogiwords, the size of
SetTrie tree and the size of test-set, affect the behaviour of theatipes.

The paper is organized as follows. The following sectiorsprgs the data structure
SetTrie together with the operations for searching the subsets @persets in a tree.
The Section 3 describes the empirical studysefTrie. We present a series of experi-
ments that measure the behaviour of operations and thefddag¢eostructure. The related

work is presented in Section 4. Finally, the overview andesaanclusions are given in
Section 5.

2. Data structure SetT'rie

SetTrie is a tree composed of nodes labelled with indices filotm N where N is the
size of the alphabet. The root node is labelled wWithand its children can be the nodes
labelled from1 to N. A root node alone represents an empty set. A node labettad
have children labelled with numbers greater thaBach node can have a flag denoting
the last element in the set. Therefore, a set is represeptagath from the root node to
a node with flag set to true.

Let us give an example dfetTrie. Figure 2 presents 8etTrie containing the
sets{1,3},{1,3,5}, {1,4},{1,2,4}, {2,4},{2,3,5}. Note that flaged nodes are repre-
sented with circles.

2.1. Operations

Let us first present a data structure for stonwvgyds that is, the sets of symbols. Words
are stored in a data structuiiéord representing ordered sets of integer numbers.

The users ofWord can scan sets using the following mechanism. The operation
word.gotoFirst Element sets the current element of word to the first element of odtlere

set. Then, the operatianord.existsCurrent Element checks if word has the current
element set. The operatietvrd.current Element returns the current element, and the
operationword.gotoN ext Element goes to the next element in the set.

Let us now describe the operations of the data structigtd'rie. The first opera-
tion is insertion. The operatioinsert(rootword) enters a nevword into the SetT'rie
referenced by the roatode. The operation is presented by Algorithm 1.

Algorithm 1 insertqode, word)
1: if (word.existsCurrentElementhen
2. if (exists child ofnode labelledword.currentElement)hen

3 nextNode = child of node labelledword.currentElement;

4: dse

5: nextNode = create child ofiode labelledword.currentElement;
6: endif

7. insertquext N ode, word.gotoNextElement)

8: else

9: node's flag_last true;
10: end if

Each invocation of operatiomsert either traverses through the existing tree nodes
or creates new nodes to construct a path from the root to thgdthnode corresponding
to the last element of the ordered set.

The following operatiorsearch(nodeword) searches for a giveword in the tree
node. It returns true when it finds all symbols from the word, antddaas soon one
symbol is not found. The algorithm is shown in Algorithm 2triverses the treeode
by using the elements of ordered setrd to select the children.

Algorithm 2 searchgode, word)
1: if (word.existsCurrentElementhen
2. if (there exists child ofiode labelledword.currentElement)hen
matchNode = child vertex ofode labelledword.currentElement;
searchfnatch N ode, word.gotoNextElement);
else
return false
end if
else
9: return (node’s last_flag== true) ;
10: end if

© N akrw

Let us give a few comments to present the algorithm in moraild@te operation
have to be invoked with the calkarch(rootset.gotoFirstElemeitso thatroot is the
root of theSetT'rie tree and the current element of therd is the first element ofvord.
Each activation ofsearch tries to match the current element @brd with the child
of node. If the match is not successful it returrialse otherwise it proceeds with the
following element ofword.

The operatiorezistsSubset(nodeword) checks if there exists a subset©brd
in the given tree referenced mpde. The subset that we search in the tree has fewer

elements thamword. Therefore, besides that we search for the exact match walsan
skip one or more elementsinord and find a subset that matches the rest of the elements
of word. The operation is presented in Algorithm 3.

Algorithm 3 existsSubset(node,set)
. if (node.last_flag== true) then
2: return true

3 end if

4: if (notword.existsCurrentElementhen
5. return false
6
7
8
9

-

- end if
: found = false;
. if (node has child labelledvord.currentElement)hen
. nextNode = child of node labelledword.currentElement;
10: found = existsSubsetcxt N ode, word.gotoNextElement);
11: end if
12: if ({found)then
13: return existsSubset{ode,word.gotoNextElement);
14: else
15 return true;
16: end if

Algorithm 3 tries to match elements aford by descending simultaneously in tree
and inword. The first IF statement (line 1) checks if a subsetwsf-d is found in the
tree i.e. the current node of a tree is the last element ofesuibke second IF statement
(line 4) checks ifword has run of the elements. The third IF statement (line 8) eaxifi
if the parallel descend iword and tree is possible. In the positive case, the algorithm
callsexistsSubset with the next element abord and a child ofrode corresponding to
matched symbol. Finally, if match did not succeed, currésrnent ofword is skipped
andezistsSubset is activated again in line 13.

The operatiorexistsSubset can be easily extended to find all subsets of a given
word in atreenode. After finding the subset in line 15 the subset is stored aaddarch
continues in the same manner as before. The experimentdtsregth the operation
get AllSubsets(nodword) are presented in the following section.

The operatiorzistsSuperset(nodeword) checks if there exists a superseu@frd
in the tree referenced byode. While in operationexistsSubset we could skip some
elements fromword, here we can do the opposite: the algorithm can skip someeelsm
in supersets represented hyde. Therefore,word can be matched with the subset of
superset from &ree. The operation is presented in Algorithm 4

Let us present Algorithm 4 in more detail. The first IF statatrehecks if we are
already at the end aford. If so, then the parameterord is covered completely with a
superset fromree. Lines 5-6 set the lower and upper bounds of iteration. I gess
we either skip currenthild and callexistsSuperset on unchangedord (line 11), or,
descend in paralel on bothord and tree in the case that we reach the upper bound ie.
the next element imord (line 9).

Again, the operatiorxistsSuperset can be quite easily extended to retrieve all
supersets of a givemord in a treenode. However, aftervord (parameter) is matched

Algorithm 4 existsSupersetpde, word)
1: if (notword.existsCurrentElementhen
2. return true;
3: end if
4; found = false;
5. from = word.currentElement;
6
7
8
9

. upto =word.nextElement if it exists and N otherwise;
: for (eachchild of node labelledl: from < 1 < upto) while! found do
if (child is labelledupto) then
found = existsSuperset(ild,word.gotoNextElement);

10. €se

11: found = existsSupersef{ild,word);
12: endif

13: end for

completely (line 2 in Algorithm 4), there remains a subtrégailers corresponding to a
set of supersets that subsumerd. This subtree is rooted in a tree node, let saye;,
that corresponds to the last elementuadrd. Therefore, after thewode;, is matched
against the last element of the set in line 2, the completeesinas to be traversed to
find all supersets that go througlade.

3. Experiments

The performance of the presented operations is analysediirekperiments. The main
parameters of experiments are: the number of words in tlee tihe size of the alpha-
bet, and the maximum length of words. The parameters are diamenlreeW ord,
alphabetSize, andmaxSizeWord, respectively. In every experiment we measure the
number of visited nodes necessary for an operation to textain

In the first experimentSetTrie is used to store real-world data — it stores the words
from English Dictionary. In the following three experimenive use artificial data —
datasets and test data are randomly generated. In thesénsaps we analyse in de-
tail the interrelations between one of the stated tree patenson the number of visited
nodes.

In all experiments we observe four operations presentechén previous sec-
tion: existsSubset (abbr. esb) and its extensionget AllSubsets (abbr. gsb), and
existsSuperset (abbr.esr) and its extensioget AllSupersets (abbr.gsr).

3.1. Experiment with real-world data

Let us now present the first experiment in more detail. Thebamof words in test set
is 224,712 which results in a tree with 570,462 nodes. Thgtleaf words are between
5 and 24 and the size of the alphabéiphabetSize) is 25. The test set contains 10,000
words.

Results are presented in Table 1 and Figure 2. Since thed®d@0 words and 23
different word lengths in the test set, approximately 43autnwords are of the same
length. Table 1 and Figure 2 present the average numberitdd/isodes for each input
word length (except fogsr where values below word length 6 are intentionally cut off).

word length esr gsr| esb| gsb
2 523 | 169694 1 1
3 3355| 103844| 3 3
4 12444 | 64802 6 6
5 9390 | 34595| 11 12
6 11500| 22322 14 19
7 12148| 17003| 18 32
8 8791 | 10405| 19 46
9 6985 7559 | 19 78
10 3817 3938 | 21| 102
11 3179 3201 | 20| 159
12 2808 2820| 20| 221
13 2246 2246 | 22| 290
14 1651 1654 | 19| 403
15 1488 1488 | 18| 575
16 895 895| 19| 778
17 908 908 | 20| 925
18 785 785 | 18| 1137
19 489 489 | 22| 1519
20 522 522 | 19| 1758
21 474 474 | 19| 2393
22 399 399 | 17| 3044
23 362 362 | 17| 3592
24 327 327 | 19| 4167

Figure 2. Visited nodes for dictionary words

Let us give some comments on the results presented in TabBlesRof all, we can
see that the superset operatioas-(and gsr) visit more nodes than subset operations
(esb andgsb).

The number of nodes visited yr and gsr decreases as the length of words in-
creases. This can be explained by more constrained seatiol tase of longer words,
while it is very easy to find supersets of shorter words andhé&imore, there are a lot
of supersets of shorter words in the tree.

Since operatiogsr returns all supersets (of a given set), it always visits nmoies
than the operatiorsr. However, searching for the supersets of longer words dalmos
always results in failure and for this reason the number sifad nodes is the same for
both operations.

The number of visited nodes fesb in the case that words have more than 5 symbols
is very similar to the length of words. Below this length ofnds bothesb andgsb visit
the same number of nodes, because there were no subset Wihidslength in the tree
and both operations visit the same nodes.

The number of visited nodes fgkb linearly increases as the word length increases.
We have to visit all the nodes that are actually used for theesentation of all subsets
of a given parameter set.

Dictonary words
25000 T T

20000

15000

Visited nodes

10000

5000

0 5 10 15 20 25
Word length

Figure 3. Number of visited nodes
3.2. Experiments with artificial data

In experimentl we observe the influence of changing the maximal length ofivtor
the performance of all four operations. We created fouistveiéh alphabetSize 30 and
numTreeWord 50,000.maxSizeWord is different in each tree: 20, 40, 60 and 80,
for treel, tree2, tree3 and tree4, respectively. The leafjthord in each tree is evenly
distributed between the minimal and maximal word size. Tamlper of nodes in the
trees are: 332,182, 753,074, 1,180,922 and 1,604,698e$hsdt contains 10,000 words.

Figure 3 shows the performance of all four operations oncait frees. The perfor-
mance of superset operations is affected more by the chdriige word length than the
subset operations.

With an even distribution of data in all four treessr visits most nodes for in-
put word lengths that are about half of the sizenafxSizeWord (as opposed to dic-
tionary data where it visits most nodes for word lengths apipnately one fifth of
maxSizeW ord). For word lengths equal taaxSizeW ord the number of visited nodes
is roughly the same for all trees, but that number increaégstly as the word length
increases.

esb operation visits fewer than 10 nodes most of the time, butife¢3 it goes up
to 44 which is still a very low number. The experiment was etpd multiple (about
10) times, and in every run the operation "jumped up" in aedéht tree. As seen later
in experiment2, it seems thahumTreeWord 50 is just on the edge of the value
whereesb stays constantly below 10 visited nodes. It is safe to salytiieachange in
maxSizeW ord has no major effect oaristsSubSet operation.

In contrast tagsr, gsb visits less nodes for the same input word length in trees with
greatermaxSizeW ord, but the change is minimal. For example for word length 35 in
tree2 (maxSizeW ord 40) gsb visits 7,606 nodes, itree3 (maxSizeW ord 60) it visits
5,300 nodes and itree4 (maxSizeW ord 80) it visits 4,126 nodes.

In experiment2 we are interested about how a change in the number of words
in the tree affects the operations. Ten trees are createdithllalphabetSize 30 and
maxSizeWord 30. numTreeW ord is increased in each tree by 10,000 wortdgel
has 10,000 words, aridee10 has 100,000 words. The number of nodes in the trees (from

esr gsr
35000 1.4e+06 .

— treel
— tree2 ||
— tree3 | |
— treed

30000 1.2¢+06

25000 Le+06

20000 800000 1

15000 600000 1

Visited nodes
Visited nodes

10000 400000 1

5000 200000 1

O 1 1 1 0 \A\
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Word length Word length
esb gsb
45 T T T T T T T 80000 T T T T
40 70000 || — treel
— tree2

35

60000 [| — tree3
30 — treed

)
S

[3
(=]
T
Visited nodes

2 B o
(=] (=] j=)
(=] (=] j=]
(=] (=] j=]
(=] (=] (=]

Visited nodes

20000

10000

| | |) \ \ . . . \ \ \ \
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Word length Word length

Figure4. Experiment 1 - increasingraxSizeW ord

treel to treel0) are: 115,780, 225,820, 331,626, 437,966, 541,601, 684.58,801,
846,388, 946,493 and 1,047,192. The test set contains %001.

Figure 4 shows the number of visited nodes for each operatidour treestreel,
treed, tree7 andtreel0 (only every third tree is shown to reduce clutter). When iasre
ing numTreeW ord the number of visited nodes increasesdsr, gsr andgsb opera-
tions. esb is least affected by the increased number of words in the neeontrast to
the other three operations, the number of visited nodesdsees whenumTreeW ord
increases.

For input word lengths around half the valuewézSizeW ord (between 13 and 17)
the number of visited nodes fegr increases with the increase of the number of words
in the tree. For input word lengths up to 10, the differenctwvben trees is minimal.
After word lengths about 20 the difference in the number sitgd nodes between trees
starts to decline. Also, trees 7 to 10 have very similar teslilseems that after a certain
number of words in the tree the operation "calms down".

The increased number of words in the tree affectgthreperation mostly in the first
quarter ofmaxSizeW ord. The longer the input word, the lesser the difference betwee
trees. Still, this operation is the most affected by the geaof numTreeWord. The
average number of visited nodes for all input word lengthsdal is 8,907 and in tree10
it is 68,661. Due to the nature of the operation, this behavie expected. The more
words there are in the tree, the more supersets can be fouad foput word.

esr gsr
.

16000 T T T T T 600000
14000 - — treel
500000 — treed
12000 — tree?
P ¢ 400000 - — treel0 |
8 10000 3
=] c
= S
= 8000 = 300000 -
L 2
26000 S
> 2200000
4000
100000
2000
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Word length Word length
esb asb
40 T T T 9000 T T T
35 8000 || — treel
— treed
30 T000 P —— tree7
2 15 % 6000 || —— treel0
g % 9
g € 5000 |
= 20 o
B 2 4000
L5 b L
> > 3000
10| 2000 |
St 1000
0 0 . — . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Word length Word length

Figure5. Experiment 2 - increasingumTreeW ord

As already noted above, when the number of words in the tareases the number
of visited nodes foesb decreases. After a certain number of words, in our case #iés w
around 50,000, the operation terminates at a minimum plesgisits of nodes for any
word length. The increase afumTreeW ord seems to "push down" the operation from
left to right. This can be seen in figure 4 by comparingel andtreed. In treel the
operation visits more then 10 after word length 15, andrie4 it visits more than 10
nodes after word length 23. Overall the number of visitedasad always very low.

The chart ofysb operation looks like a mirrored chart gér. The increased number
of words in the tree has more effect on input word lengths wlibe operation visits
more nodes (longer words). Below word length 15 the diffeecbetween trees is in the
range of 100 visited nodes. At word length @ visits 1,729 nodes itreel and 8,150
nodes intreel0. The explanation in for the increased number of visited saslsimilar
as forgsr operation: the longer the word, the more subsets it can llagenore words
in the tree, the more words with possible subsets there are.

In experiment3 we are interested about how a change in the alphabet size af-
fects the operations. Five trees are created with SizeW ord 50 andnumTreeW ord
50,000.alphabetSize is 20, 40, 60, 80 and 100, fdreel, tree2, tree3, tree4 and
treeb, respectively. The number of nodes in the trees are: 86913081,369, 1,069,615,
1,102,827 and 1,118,492. The test set contains 5,000 words.

70000 T T T T T T T T T 700000 T T T T T T T T T
— treel — treel
60000 tree2 | 600000 | tree2 |
50000 | tree3 | | 500000 | tree3 | |
1 treed F — treed
2 40000 2 400000 tree5 |
9 9
QL Q
= 30000 = 300000 E
> >
20000 200000 1
10000 100000 E
0 0 —
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Word length Word length
esb gsb
250 T T T T T T T T T 60000 T T T T T T T T T
— treel — treel
200 || — tree2 50000 | — tree2 1
— tree3 — tree3
—— tree4 % 40000 || — tree4
150 treeS treeS

30000

Visited nodes
Visited nodes

20000

g
:
BN
<=
5

A

50 ﬁ[\j\/ U 1 10000 | ’»ﬁzﬁvr/’/r_//_-;i\:
e
0 /;,_/; PN oL e
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Word length Word length

Figure 6. Experiment 3 - increasinglphabetSize

When increasingl/phabet Size the tree becomes sparser—the number of child nodes
of a node is larger, but the number of nodes in all five treesugly the same. For
gsr and more notably;sb operation, visit less nodes for the same input word length:
the average number of visited nodes decreased whembet Size increases. Thesr
operation on the other hand visits more nodes in trees wigeiaalphabetSize.

The number of visited nodes ekr increases with the increase @fphabetSize.
This is because it is harder to find supersets of given wortenwhe number of sym-
bols that make up words is larger. The effect is greater ordvengths below half
maxSizeWord. The number of visited nodes starts decreasing rapidly aftertain
word length. At this point the operation does not find any ssgis and it returns false.

gsr is not affected much by the changeadphabet Size. The greatest change hap-
pens when increasingphabetSize over 20 {reel). The number of visited nodes in
trees 2 to 5 is almost the same, but it does decrease with iemgease ofilphabet Size.

In treel esb visits on average 3 nodes. When we incredpéabetSize the number
of visited nodes also increases, but agdn the difference between trees 2 to 5 is small.

The change ofilphabetSize has a greater effect on longer input words for ghe
operation. The number of visited nodes decreased wh@mbetSize increased. Here
again the biggest change is when going aMe@habetSize 20. With every next increase,
the difference in the number of visited nodes is smaller.

4. Related work

The initial implementation ofSetTrie was in the context of a datamining togliep
which is used for the induction of functional dependenciesnf relations.SetTrie
serves there for storing and retrieving hypotheses thatddascorrespond teets

The data structure we propose is similar to trie [5]. Sinceane not storing se-
quences busetswe can exploit the fact that the order in sets is not importahere-
fore, we can take advantage of this to use syntactical ofddements of sets and obtain
additional functionality of tries.

From the other perspective, our problem is similar to seéagcbubstrings in strings
(for which Suf fix trees can be used). The set of symbols of a substring is atsnfbse
symbols of the string.

Baeza-Yates and Gonnet present an algorithm [1] for seayaligular expressions
using Patricia trees as the logical model for the index. They simulate afimittomata
over a binary Particia tree of words. The result of a reguipression query is a superset
or subset of the search parameter.

Charikar et. al. [2] present two algorithms to deal with asgilguery problem. The
purpose of their algorithms is similar ta:istsSuperSet operation. They extend their
results to a more general problem of orthogonal range sieaycand other problems.
They propose a solution for “containment query problem”ahhis similar to our 2.
query problem introduced in section 1.

Rivest examines [4] the problem of partial matching with tise of hash functions
andT'rie trees. He presents an algorithm for partial match querieg usies.

5. Conclusions

The paper presents a data structSeg7'rie that can be used for efficient storage and
retrieval of subsets or supersets of a giuend. The performance ofetT'rie is shown
to be good enough for manipulating sets of sets in practjpalieations.

Enumeration of subsets of a given universallsét very common iimachine learn-
ing [3] algorithms that search hypotheses space ordered irieelaDften we have to
see if a given set, a subset or a superset has already beederedshy the algorithm.
Such problems include discovery of association rules,tfanal dependencies as well
as some forms of propositional logic.

Finally, the initial experiments have been done to invedégf SetTrie can be
employed for searching substrings and superstrings is.t€ir this purpose the data
structureSetT'rie has to be augmented with the references to the position alsnior
text. While the data structure is relatively large “indeetrét may still be useful because
of the efficient search.

References

[1] Baeza-Yates, R., Gonnet, G.: Fast text searching farlee@xpressions or automation searching on tries.
Journal of ACM 1996; 43(6): 915-936.

[2] Charikar, M., Indyk, P., Panigrahy, R.: New Algorithmsr fSubset Query, Partial Match, Orthogonal
Range Searching and Related Problems. LNCS 2002; Vol 2386,1p462.

(3]

(4]
(5]

(6]

Mannila, H., Toivonen, H.: Levelwise search and bordefgheories in knowl- edge discovery, Data
Mining and Knowledge Discovery Journal, 1(3), 1997, pp.-288.

Rivest, R.: Partial-Match Retrieval Algorithms. SIAMumal on Computing 1976; 5(1).

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, @trdduction to Algorithms, Second Edition, MIT
Press, 2001.

Savnik, ., Flach, P.A.:, Bottom-up Induction of Functed Dependencies from Relations. Proc. of
KDD’'93 Workshop: Knowledge Discovery from Databases, AAXEss, 1993, Washington, p. 174-185.

