
ZORN’S LEMMA AND MAXIMAL IDEALS

RUSS WOODROOFE

We showed in class that a commutative ring with identity R is a field if
and only if 0 is the only proper ideal of R. Herstein discusses this in Chapter
3.5. The result led us to define a maximal ideal as a maximal proper ideal,
i.e., maximal ideal 6= R. With only a bit of work, we saw that:

Corollary 1. If R is a commutative ring with 1, and M is an ideal, then
R/M is a field if and only if M is a maximal ideal.

In this note, I will give a proof that rings always have maximal ideals.

1. Zorn’s Lemma

As a tool, we will need Zorn’s Lemma. Zorn’s Lemma is equivalent to the
Axiom of Choice, which mathematicians are occasionally skeptical about:
for an account see Eric Schecter’s page at:
http://www.math.vanderbilt.edu/~schectex/ccc/choice.html
We summarize this discussion briefly. A set can be made well-ordered if there
is a total ordering of the set where every subset contains a minimal element.
Zorn’s Lemma, the Axiom of Choice, and that any set can be well-ordered,
are all equivalent statements.

But well-ordering is usually thought of as being a property of the natural
numbers! We repeat a waggish quotation from the above web page:

The Axiom of Choice is obviously true; the Well Ordering
Principle is obviously false; and who can tell about Zorn’s
Lemma?

Jerry Bona

Zorn’s Lemma is nonetheless very useful in algebra, and finding maximal
ideals is an excellent example of how it is used.

We give a couple of definitions.

Definition 2. A partially ordered set is a set P with an order ≤ satisfying
some basic properties:

(1) a ≤ x (reflexivity)
(2) if a ≤ b and b ≤ a then a = b (antisymmetry)
(3) if a ≤ b and b ≤ c then a ≤ c (transitivity)

More helpful are examples. The set of all subsets of [n] is a partially
ordered set under the order of set inclusion; as is the subgroup lattice of any
group. The integers Z are a partially ordered set under the normal meaning
of ≤. Similarly with Q and R.
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Definition 3. A totally ordered set L is a partially ordered set, where if a
and b are in L, then either a ≤ b or b ≤ a.

The integers Z are an example of a totally ordered set, but the subgroup
lattice is (usually) not.

Example 4. Consider L(S3). This is not a totally ordered set, since S3 has
three subgroups of order 2: H1, H2, and H3. None of the three are contained
in any other, e.g., H1 6⊆ H2. Thus, L(S3) is not a totally ordered set.

A word on notation. I’ll usually use L for totally ordered sets, since in the
countable case, they are actually “linearly” ordered. That is, the elements
form a chain

· · · ≤ x−1 ≤ x0 ≤ x1 ≤ x2 ≤ . . .

by sorting them from greatest to least.

We now state Zorn’s Lemma:

Lemma 5. (Zorn’s Lemma) Let P be a nonempty partially ordered set, such
that for every totally ordered subset L, there exists some “upper bound” u for
L so that u ≥ x for every x ∈ L. Then P has a maximal element.

Note that some posets do not have any maximal element – Z (under the
usual ordering) does not, for example.

Exercise 6. (Easy) Why does Z not meet the criteria for Zorn’s Lemma?

2. Maximal Ideals

In the introduction, we said that we’d find maximal ideals of a commuta-
tive ring with 1. More specifically, we’ll prove the following theorem:

Theorem 7. Let R be a commutative ring with 1, and I ⊂ R be a proper
ideal. Then I is contained in a maximal ideal M .

So not only does R have a maximal ideal, but we have a “development”
theorem, that every ideal is contained in a maximal one!

Proof. (Of Theorem) We can see that Zorn’s Lemma may be useful, because
the Theorem calls for finding a maximal element. We need to define a poset
where the maximal element is a maximal ideal containing I. So we take

P = {proper ideals of R that contain I}.
A maximal element of P will finish the proof, so we need only show that P
satisfies the condition of Zorn’s Lemma.

Let L be a totally ordered subset of P. This means that L is a set of
proper ideals, where if A,B ∈ L, then either A ⊆ B or B ⊆ A. Let

ML =
⋃
J∈L

J.

Since ML is the union of every J ∈ L, we have that ML ⊇ J for every J ∈ L.
That is, ML is an upper bound for L. To satisfy Zorn’s Lemma, we need
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only show that ML is in P. There are three things that we need to check:
“proper”, “ideal of R”, and “contains I”.

(1) ML is proper, i.e., ML 6= R:
Since 1 /∈ J for each J ∈ L, we have that 1 /∈ ML, hence that

ML 6= R.
(2) ML is an ideal:

Suppose that r ∈ R, and a ∈ ML. If a ∈ ML, then it must be
contained in some J ∈ L. Thus, ra ∈ J , and so ra ∈ ML. Taking
r = −1, we get that −a ∈ ML.
Now suppose that a, b ∈ ML. Then there is some Ja, Jb ∈ L with
a ∈ Ja and b ∈ Jb. But since L is totally ordered, either Ja ⊆ Jb or
else Jb ⊆ Ja. Without loss of generality, suppose that Jb ⊆ Ja. Then
both a, b ∈ Ja, hence a + b ∈ Ja, and so a + b ∈ ML.

(3) ML contains I:
This is obvious, since I ⊆ J ⊆ ML for any J ∈ L.

Since P satisfies the condition for Zorn’s Lemma, it has a maximal element,
which is a maximal proper ideal of R containing I as desired. �

We pause to notice again how we found the upper bound for L: we simply
took the union of all the elements of L. This is a pretty good trick, and
frequently how applications of Zorn’s Lemma in algebra work. The only
‘hard’ step is checking that the union is in P.

We note one corollary of Theorem 7.

Corollary 8. If R is a nontrivial commutative ring with identity, then there
is a surjective homorphism of R onto some field.


