
SUPPLEMENT ON THE SYMMETRIC GROUP

RUSS WOODROOFE

I presented a couple of aspects of the theory of the symmetric group Sn

differently than what is in Herstein. These notes will sketch this material.
You will still want to read your notes and Herstein Chapter 2.10.

1. Conjugacy

1.1. The big idea. We recall from Linear Algebra that conjugacy in the
matrix GLn(R) corresponds to changing basis in the underlying vector space
Rn. Since GLn(R) is exactly the automorphism group of Rn (check the
definitions!), it’s equivalent to say that conjugation in Aut Rn corresponds
to change of basis in Rn.

Similarly, Sn is Sym[n], the symmetries of the set [n] = {1, . . . , n}. We
could think of an element of Sym[n] as being a “set automorphism” – this just
says that sets have no interesting structure, unlike vector spaces with their
abelian group structure. You might expect conjugation in Sn to correspond
to some sort of change in basis of [n].

1.2. Mathematical details.

Lemma 1. Let g = (α1, . . . , αk) be a k-cycle in Sn, and h ∈ Sn be any
element. Then

gh = (α1 · h, α2 · h, . . . αk · h).

Proof. We show that gh has the same action as (α1 · h, α2 · h, . . . αk · h), and
since Sn acts faithfully (with trivial kernel) on [n], the lemma follows.

First: (αi · h) · gh = (αi · h) · h−1gh = αi · gh. If 1 ≤ i < m, then
αi · gh = αi+1 · h as desired; otherwise αm · h = α1 · h also as desired.

Second: if β is fixed by g, then β · h is fixed by gh, by a similar proof:
(β · h) · gh = β · gh = β · h.

Since gh cyclicly permutes αi · h and fixes all other β · h, our proof is
complete. �

Lemma 1 corresponds to change of basis, since instead of g acting on
{1, . . . , n}, we see it acting on {1 · h, 2 · h, . . . , n · h}. In GLn(R), we had a
similar situation: A−1BA acts on {e1 · A, . . . en · A} in the same way as B
acts on {e1, . . . , en}.

There is an “if and only if” relation.

Remark 2. I will use slightly different language in these notes than I used
in class, to try to bridge the difference to what Herstein does at the end of
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Chapter 2.11. If you’re not interested in bridging with Herstein, you can
skip reading the next two paragraphs without losing much.

A partition of a natural number n is a set of numbers i1, . . . , im, such that
i1 ≥ i2 ≥ · · · ≥ im and i1 + i2 + · · · + im = n. A partition of a set X, as
we have previously discussed, is a decomposition of X into X1, . . . , Xm such
that X =

⋃̇
Xj . Thus, the cardinalities of the parts of the partition of X

induce a partition of |X|, if taken in decreasing order.
An element g ∈ Sn induces a partition of [n], as follows. Let g =

∏k
i=1 gi

be the disjoint cycle decomposition. Each gi acts by cyclic permutation on
a set Xi. If an element is fixed by all cycles, add it as a singleton at the end.
The induced partition of [n] is

[n] = (
⋃̇

Xi)∪̇(
⋃̇

α a fixed point{α})

and this induces a partition of n as

|X1|+ · · ·+ |Xk|+ 1 + 1 + · · ·+ 1 = o(g1) + · · ·+ o(gk) + 1 + · · ·+ 1.

Returning to things as we discussed in class:

Theorem 3. Two elements of Sn are conjugate if and only if they have the
same cycle structure.
(Thus, the conjugacy classes are in bijective correspondence with partitions
of n!)

Proof. (=⇒): Let g ∈ Sn have disjoint cycle decomposition g =
∏k

i=1 gi, and
let h ∈ Sn be any other element. Then Lemma 1 tells us that gh

i is another
cycle, of the same order as gi. Furthermore, these cycles are disjoint. Thus,
the disjoint cycle decomposition of gh =

∏k
i=1 gh

i , which has the same cycle
structure as g.

(⇐=): We need to find an element h ∈ Sn which sends the cycles of
g1 ∈ Sn to the cycles of g2 ∈ Sn. We do this as follows: write out the cycle
decomposition of g1 above that of g2, with the cycles in order of decreasing
size; and with the fixed points at the end. Map “straight down”, as illustrated:

( α1, α2, . . . , αk ) ·( . . . ) ·( . . . ) fixed points
↓ ↓ ↓ ↓↓ ↓↓ ↓

( β1, β2, . . . , βk ) ·( . . . ) ·( . . . ) fixed points
.

So α1 7→ β1, etc. This map is invertible (since the corresponding “straight
up” map is its inverse), so is a bijection on [n], and so corresponds to an
element h ∈ Sn. We have that gh

1 = g2! �

For example, (1, 2, 3)(4, 5, 6, 7) and (3, 5, 7)(1, 4, 2, 6) are conjugate in S7.
An element (not unique) which conjugates the first to the second is the
7-cycle (1, 3, 7, 6, 2, 5, 4).
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2. Transpositions

Recall that a transposition in Sn is a 2-cycle, i.e., a cycle of the form (i, j).

Lemma 4. Any element g ∈ Sn can be written as the product of transposi-
tions.

Proof. Since g can be written as a disjoint product of cycles, it suffices to
write a cycle as a product of decompositions. We check that

(α1, α2, . . . , αk) = (α1, α2) · (α1, α3) · · · · · (α1, αk)

is such a decomposition. Clearly, the RHS fixes any element not in the orbit
of (α1, . . . , αm). If we apply the RHS to αi (2 ≤ i ≤ m − 1), then the first
i−2 transpositions fix it, while the (i−1)st sends it to α1, and the ith sends
α1 to αi+1. Similarly for α1 and αm. �

Corollary 5. Sn is generated by its transpositions.

This is the starting point for the theory of Coxeter groups, or crystallo-
graphic groups. We can look at Sn as acting on Rn by permuting the basis
elements {e1, . . . , en}. Each transposition (i, j) corresponds to reflecting Rn

across the hyperplane {xi = xj}, and we get a very geometric approach to
understanding Sn.

Unfortunately, Coxeter groups are beyond the scope of this course. If
you are interested in knowing more about them, then Humphreys’ book
“Reflection Groups and Coxeter Groups” may be a good place to start.

3. Even and odd permutations

Definition 6. We define a map

sign : Sn → {±1}

g 7→

{
+1 if g is a product of an even number of transpositions
−1 if g is a product of an odd number of transpositions.

We say that g is even if sign g = 1 (so that g is a product of an even number
of transpositions), and that g is odd if sign g = −1.

The problem with this definition, is that it’s not clear that sign is well-
defined!

Example 7. If we tried to define ♥(g) as ±1 depending on whether g is an
even or odd product of 3-cycles, we would get into trouble. For example

(1, 2, 3) · (3, 4, 5) = (1, 2, 4, 5, 3) = (1, 2, 3) · (2, 3, 4) · (2, 5, 3)

is both an even and odd product of 3-cycles! So ♥(g) is not well-defined.

Remark 8. Assuming that sign is well-defined, it is a homomorphism. For
the product of two odd permutations is an even permutation, and in this
case sign gh = +1 = sign g · signh. Similarly for even permutations, or an
even and an odd.
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Remark 9. This is the same sign that shows up in the definition of the
determinant. In fact, one way to prove Theorem 10 below is to map Sn

into GLn(R), mapping an element to the associated so-called “permutation
matrix”. The sign map is then the determinant of the permutation matrix.

This is somewhat circular, since the definition of determinant depends on
sign being well-defined! And in any case, the proof of Theorem 10 given
below is beautiful.

Theorem 10. The map sign g is a well-defined homomorphism Sn → {±1}.
Proof. It suffices to construct a homomorphism ϕ : Sn → {±1} such that
ϕ((i, j)) = −1 for any transposition (i, j). We will do this by actions on
directed graphs, in a clever proof due to Cartier:

Take a vertex for every number 1 . . . n, and put an arrow (directed edge)
between each pair of vertices, as in the following examples:

1 2

3 4

1 2

3 4

Figure 3.1. Two examples of orientations of [4].

Call such an assignment of arrows between each pair an orientation. There
are many orientations of [n]. If o and o′ are two orientations, then a pair i, j
is a difference if o and o′ differ on the edge between i and j, i.e., if one has
an edge i → j and the other j → i. To measure the difference between o
and o′, we define the following function:

d(o, o′) = (−1)#differences between o and o′
.

We make some elementary claims:

Claim 11. d(o, o) = 1

Claim 12. d(o, o′) = d(o′, o)

Claim 13. d(o, o′)d(o′, o′′) = d(o, o′′)

Proof. Let

e be the number of edges where o is different from both o′ and o′′

e′ be the number of edges where o′ is different from both o and o′′

e′′ be the number of edges where o′′ is different from both o and o′.

Then

d(o, o′)d(o′, o′′) = (−1)e+e′
(−1)e′+e′′

= (−1)e+e′′+2e′
= (−1)e+e′′

= d(o, o′′)

where (−1)2e′
= 1 since 2e′ is even. �
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Claim 14. The action of Sn on [n] induces an action on {orientations of [n]},
and d(o · g, o′ · g) = d(o, o′).

Proof. The action on [n] sends the edge i → j to the edge i · g → j · g, for all
pairs i, j. Clearly the number of differences remain the same (though they
are moved around). More specifically, i, j is a difference between o and o′ iff
i · g, j · g is a difference between o · g and o′ · g. �

Fix some orientation o, and let ϕ(g) = d(o, o · g). Intuitively, ϕ measures
the amount that g “moves” the orientation o.

We verify that ϕ is a homomorphism. First, using Claim 13, we have

ϕ(gh) = d(o, o · gh) = d(o, o · g)d(o · g, (o · g) · h) = d(o, o · g)d(o · g, o · gh).

Claim 14 then shows that d(o · g, o · gh) = d(o, o · h). Hence

ϕ(gh) = d(o, o · g)d(o, o · h) = ϕ(g)ϕ(h),

and ϕ is a homomorphism.
Next, we check that if (i, j) is a transposition, then ϕ((i, j)) = d(o, o ·

(i, j))− 1. Consider the following diagram:

k’k

j

i

k’

j

i

k

Figure 3.2. Transposing i and j.

We see that (i, j) reverses the edge i, j. If the edges k, i and k, j have the
same direction, then they do afterwards, and these edges add 0 differences;
if the edges k, i and k, j have different directions, then they are reversed
by (i, j), and these edges add 2 differences. The claim that ϕ((i, j)) = −1
follows since (−1)2 = 1.

We have constructed a concrete, well-defined homomorphism ϕ which
agrees with sign on a generating set, the set of transpositions. Hence ϕ
is equal to sign on any element of Sn. �

The main reason to prove Theorem 10 is its Corollary.

Definition 15. Let An = {even permutations in Sn}.

Corollary 16. An is a normal subgroup of index 2 in Sn.

Proof. An = ker sign, hence An / Sn. By the Isomorphism Theorem,

[Sn : An] = |Sn/An| = | Im sign | = 2,

as desired. �


