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1. setting

The purpose of this note is to give a simple sketch of the following theorem:

Theorem 1. Let X1, . . . , Xn be iid random variables with pdf f(x) and cdf F (X). If F (0) = 1
2 ,

and f is continuous at 0, then
√
nM

D→ N(0, 1
(2f(0))2

).

We’ll need two relatively heavy results:

Theorem 2. (Taylor approximation) If g(x) is differentiable at 0, then there is a function h(x)
with limx→0 h(x) = 0 so that

g(x) = g(0) + g′(0) · x+ h(x) · x.

Theorem 3. (Lebesgue dominated convergence) Suppose that fn(x) → f(x) as n → ∞ (for
every x), where fn and f are all integrable. If every fn(x) satisfies |fn(x)| ≤ g(x) for some
g(x) with

∫∞
−∞ g(x) dx <∞, then

lim
n→∞

∫ ∞
−∞

fn(x) dx =

∫ ∞
−∞

( lim
n→∞

fn(x)) dx =

∫ ∞
−∞

f(x) dx.

Please refer to Wikipedia (or some other reference) for more background on these facts.

Recall that f is asymptotically equivalent to g if lim f
g = 1. We write f ∼ g in this case.

We’ll also need:

Theorem 4. (Stirling’s formula) We have that n! ∼
√
2πn · (ne )

n as n→∞.

Lemma 5. (Easy calculus fact) limn→∞(1 + x
n)

n = ex.

2. Sketch of Proof

Proof. We now sketch the proof of Theorem 1. Some details are left as unassigned exercises.
We leave two gaps:
1) We’ll work with odd samples n = 2k + 1. Even samples are similar, and an easy detail to

fill in. This means that the pdf of the nth median is

fM (x) =
(2k + 1)!

(k!)2
· F (x)k · (1− F (x))k · f(x).

2) We assume that fM (x) is dominated for all n by some g(x) with finite integral, as in the
Lebesgue dominated convergence theorem. Under these circumstances, it suffices to show that
f√nM → fN(0, 1

(2f(0)2
).

Exercise 6. (Medium Hard) Find a dominating function for fM for odd samples.

Exercise 7. (Easy) Explain the details of why Lebesgue dominated convergence gives conver-
gence in distribution.
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We now apply our above result: first, take a Taylor approximation of F (x):

F (x) = F (0) + F ′(0) · x+H(x) · x

=
1

2
+ f(0) · x+H(x) · x,

where limx→0H(x) = 0. Then

fM (t) =
(2k + 1)!

(k!)2
·
(
1

2
+ f(0) · t+H(t) · t

)k

·
(
1

2
− f(0) · t−H(t) · t

)k

· f(t)

=
(2k + 1)!

(k!)2
·
(
1

4
− f(0)2 · t2 −H(t)2 · t2 − 2H(t) · t

)k

· f(t)

=
(2k + 1)!

(k!)2
· 2−2k ·

(
1− 4f(0)2 · t2 − 4H(t)2 · t2 − 8H(t) · f(0) · t

)k · f(t).
To simplify notation, write 4H(t)2 · t2 − 8H(t) · f(0) · t as t ·G(t).
We now examine f√nM (t), which we must show converges as n→∞ to a normal pdf:

f√nM (t) =
1√
n
fM (

t√
n
) =

1√
2k + 1

· fM (
t√

2k + 1
)

=
1√

2k + 1

(2k + 1)!

(k!)2
· 2−2k ·

(
1− 4f(0)2 · t2

2k + 1
−G( t√

2k + 1
) · t√

2k + 1

)k

· f( t√
2k + 1

).

Then (
1− 4f(0)2 · t2

2k + 1

)k

=

(
1−

4f(0)2 · t2 · k
2k+1

k

)k

→ e−2f(0)
2·t2 .

Exercise 8. (Easy but tedious) Show that(
1− 4f(0)2 · t2

2k + 1
−G( t√

2k + 1
) · t√

2k + 1

)k

∼

(
1−

4f(0)2 · t2 · k
2k+1

k

)k

.

(You’ll need to look up a bound on the error term in the Taylor approximation).

Thus, we have

f√nM (t) ∼ 1√
2k + 1

(2k + 1)!

(k!)2
· 2−2k · e−2f(0)2·t2 · f( t√

2k + 1
).

We further notice that f( t√
2k+1

)→ f(0), by continuity of f at 0, so

f√nM (t) ∼ 1√
2k + 1

(2k + 1)!

(k!)2
· 2−2k · e−2f(0)2·t2 · f(0).

We now apply Stirling’s formula:

f√nM (t) ∼ 1√
2k + 1

·
√
2π(2k + 1) ·

(
2k+1
e

)2k+1

2πk ·
(
k
e

)2k · 2−2k · e−2f(0)2·t2 · f(0).
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We cancel the
√
2k + 1 terms, and combine the 2kth powers, to get

f√nM (t) ∼
1
√
2π
·
(
2k + 1

2k

)2k

·
(
2k + 1

e · k

)
· e−2f(0)2·t2 · f(0)

∼
1
√
2π
·
(
1 +

1

2k

)2k

·
(
2k + 1

e · k

)
· e−2f(0)2·t2 · f(0).

We take limits of all remaining terms:

lim
n→∞

f√nM (t) =
1
√
2π
· e · 2

e
· e−2f(0)2·t2 · f(0)

=
2f(0)√

2π
e−2f(0)

2·t2 = fN(0, 1
(2f(0)2

)(t). �

Exercise 9. (Medium) Show that the
√
nM pdf from an even sample is asymptotically equiv-

alent with the odd sample pdf worked out above.


