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Izvle£ek:

Particijaksa lastnost simplicialnih kompleksov je lastnost, ki se je prvi£ pojavila v

delih Stanley-ja v sedemsetih letih prej²njega stoletja. Motivirala ga je druga lastnost

simplicialnih kompleksov, imenovana lupinavost, £eprav je ²ibkej²a od slednje lastnosti.

Med najpomembnej²e domneve na tem podro£ju spada t.i. particijska domneva (ang.

Partitionability Conjecture), ki jo je leta 1979 postavil Stanley in Garsia. Ta domneva

je trdila, da je vsak Cohen-Macaulay kompleks particijski. Po skoraj 40 letih so

domnevo ovrgli Duval, Goeckner, Klivans in Martin v £lanku iz leta 2016. Njihov

protiprimer je simplicialni kompleks na samo 16 to£kah, ki je Cohen-Macaulayev,

vendar ni particijski.

�eprav se je izkazalo, da je domneva napa£na, se je na tem podro£ju postavilo veliko

²tevilo drugih vpra²anj. Ali particijska domneva velja v dimneziji 2? Kaj ²teje

h-vektor Cohen-Macaulayevega kompleksa?

Obstaja ²e veliko drugih neodgovorjenih vpra²anj o particijski lasnosti. V nalogi je

lastnost preu£evana na Poincaréjevi homolo²ki sferi. Na²e glavno vpra²anje je, ali

so vse njene triangulacije particijske. Po podatkovni bazi simplicialnih kompleksov

Masahira Hachimorija obstaja 16-to£kovna triangulacija, za katero je ºe znano, da

je particijska. V na²em delu obravnavamo eno od njegovih simetri£nih 24-to£kovnih

triangulacij.
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Abstract:

Partitionability of simplicial complexes is a property that �rst appeared in the study

of shellable and Cohen-Macaulay complexes in the 1970's. It was motivated by an-

other property of simplicial complexes, called shellability, although it is weaker than

the latter property. One of the most important conjectures in this �eld was the so-

called Partitionability Conjecture, set by Stanley and Garsia in 1979. This conjecture

stated that every Cohen-Macaulay complex is partitionable. It was an open problem

for almost 40 years, until until Duval, Goeckner, Klivans and Martin constructed a

counterexample in a 2016 paper. Their counterexample is a simplicial complex on only

16 vertices that is Cohen-Macaulay, but not partitionable.

Although the conjecture turned out to be false, it raised a lot of other questions in

this area: does the Partitionability Conjecture hold in dimension two? What does the

h-vector of a Cohen-Macaulay complex count?

There are many other unanswered questions about partitionability and we will consider

some about partitionability of the Poincaré homology sphere. Our main question is

whether all its triangulations are partitionable. According to Masahiro Hachimori's

database of simplicial complexes, there is a 16-point triangulation which is already

known to be partitionable. In this paper, we consider one of its symmetric 24-point

triangulations.
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1 Introduction

Partitionability of simplicial complexes is a property that �rst appeared in the study

of shellable and Cohen-Macaulay complexes in the 1970's. It was motivated by an-

other property of simplicial complexes, called shellability, although it is weaker than

the latter property. One of the most important conjectures in this �eld was the so-

called Partitionability Conjecture, set by Stanley in 1979. This conjecture stated that

every Cohen-Macaulay complex is partitionable. It was an open problem for almost 40

years, until until Duval, Goeckner, Klivans and Martin constructed a counterexample

in a 2016 paper. Their counterexample is a simplicial complex on only 16 vertices that

is Cohen-Macaulay, but not partitionable.

Although the conjecture turned out to be false, it raised a lot of other questions in

this area: does the Partitionability Conjecture hold in dimension two? What does the

h-vector of a Cohen-Macaulay complex count?

There are many other unanswered questions about partitionability and we will consider

some about partitionability of the Poincaré homology sphere. Our main question is

whether all its triangulations are partitionable. According to Masahiro Hachimori's

database of simplicial complexes, there is a 16-point triangulation which is already

known to be partitionable. In this paper, we consider one of its symmetric 24-point

triangulations.

This paper is organized as follows: In the second section we introduce some basic

de�nitions and theorems about simplicial complexes in general and also some basics

about homology theory. In the third section, we formally de�ne partitionability, while

in the following section we introduce the Poincaré homology sphere. Finally, in the

last chapter, we give some results about partitionability of Poincaré homology sphere.
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2 Background

In this section we will de�ne the main mathematical object that we will use in this pa-

per, that of simplicial complexes. There are a few ways to de�ne simplicial complexes,

but we will begin with a purely combinatorial approach, by de�ning abstract simplicial

complexes. We will then try to �nd their topological equivalent, i.e. the geometrical

realization of abstract simplicial complexes. Throughout the paper, we will see that

some of the results and theorems about simplicial complexes sometimes come from

combinatorial and algebraic arguments, while others are purely topological.

First, we de�ne an abstract simplicial complex, which is a collection of subsets of a

�xed �nite set that is closed under inclusion:

De�nition 2.1. An abstract simplicial complex ∆ on a vertex set V is a collection

of subsets such that whenever σ ∈ ∆ and τ ⊂ σ, then also τ ∈ ∆.

Elements of ∆ are called faces . More precisely:

� 1-element subsets are 0-dimensional faces

� 2-element subsets are 1-dimensional faces

� 3-element subsets are 2-dimensional faces

� etc.

In general, n-element subsets are called (n−1)-simplices , or (n−1)-dimensional faces.

Maximal faces (with respect to inclusion) are called facets . Dimension of a simplicial

complex is the maximal dimension among its facets. Further, a complex is pure if all

its facets have the same dimension.

Example 2.2. An easy example of an abstract simplicial complex on vertex set V =

{1, 2, 3, 4} is

∆ = {{1, 2, 3}, {1, 2}, {2, 3}, {1, 3}, {1}, {2}, {3}, {3, 4}, {4}, ∅}.

This complex has one 2-dimensional face, four 1-dimensional faces and four 0-dimensional

faces. It has two facets, namely {1, 2, 3} and {3, 4}, and is therefore nonpure.



Sila�i E. Partitionability of simplicial complexes.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 3

Now let us see how we can build a topological space C that corresponds to an

abstract simplicial complex.

First, consider a simple abstract (n− 1)-simplex. Place n linearly independent points

into space Rn−1, namely v1, v2, ..., vn. Now we can identify this (n − 1)-simplex with

the geometrical (n− 1)-simplex, i.e. with the set

C =
{
γ1v1 + γ2v2 + ...+ γnvn :

n∑
i=1

γi = 1, γi ≥ 0 for i = 1, ..., n
}
.

It is not hard to generalize this construction to any simplicial complex ∆ over V :

1. Find the dimension d of ∆, i.e. the dimension of its largest facet

2. Place n points (corresponding to the vertex set V ) into space Rn−1,

3. Identify each face of ∆ with the geometric simplex spanned by the corresponding

vertices,

4. We obtain the topological space as the union of all such geometric simplices.

This de�nition is also equivalent to saying that a simplical complex on n vertices is

a subcomplex of a simplex generated by its n vertices (embedded in Rn−1).

Notice that this way we get the following correspondence between the abstract

simplicial complex and the topological space:

� 0-dimensional faces correspond to points

� 1-dimensional faces correspond to line segments

� 2-dimensional faces correspond to triangles

� 3-dimensional faces correspond to tetrahedra.

Example 2.3. Consider the same abstract simplical complex as in the previous exam-

ple: ∆ = {{1, 2, 3}, {1, 2}, {2, 3}, {1, 3}, {1}, {2}, {3}, {3, 4}, {4}}. We embed the four

points into R3. The 2-dimensional face (i.e. the largest facet) becomes a triangle in our

topological space, the four 1-dimensional faces become line segments, while the four

0-dimensional faces correspond to points in R3. Of course, we can also embed these

objects into space R2.

Basic counting information is encoded with the f -vector:
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Figure 1: Topological realization of ∆

De�nition 2.4. The f-vector of a simplicial complex ∆ of dimension d is a vector

(f−1, , f0, f1, f2, ..., fd), where fi denotes the number of its i-dimensional faces. Addi-

tionally, we de�ne f−1 = 0 if ∆ is empty and f−1 = 1 otherwise, as we consider the

empty set to be the (-1)-dimensional face. By using the components of the f -vector as

the coe�cients of a polynomial, we obtain the f-polynomial :

F∆(x) = fdx
d+1 + fd−1x

d + ...+ f0x
1 + f−1.

The f -polynomial gives rise to the famous topological invariant called the reduced

Euler characteristic:

χ̃ = F∆(−1) =
d∑
i=0

(−1)i−1fi−1

.

Sometimes it is more convenient to study another vector similar to the f -vector,

called the h-vector:

De�nition 2.5. We de�ne the h-vector, (h0, h1, ..., hd+1), to be the coe�cients of the

polynomial

H∆ = revd+1(revd+1F∆(x− 1)),

where rev is a function that sends F (x) to F ( 1
x
) · xd+1.

Now we introduce two operations on simplicial complexes, that may remind us of

subtraction and multiplication.

De�nition 2.6. A relative simplicial complex Φ = (∆,Γ) is a pair of simplicial

complexes ∆ and Γ, where the faces of Φ are the faces in ∆ that are not in Γ. Here,

∆ is the absolute part of Φ and Γ is the relative part of Φ.
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Note that a relative simplicial complex need not be a simplicial complex, as it might

not be closed under inclusion.

De�nition 2.7. The join of two simplicial complexes ∆1 and ∆2 with disjoint sets of

vertices is a simplicial complex ∆1 ∗∆2, whose faces are of the form σ1 ∪ σ2, where σ1

is a face of ∆1 and σ2 is a face of ∆2. In other words,

∆1 ∗∆2 := {σ1 ∪ σ2 : σ1 ∈ ∆1, σ2 ∈ ∆2}.

Here we show how to compute the f -vector of two simplicial complexes:

Lemma 2.8. Let ∆1 and ∆2 be two simplicial complexes with disjoint vertex sets,

and with corresponding f -vectors (f ′−1, f
′
0, f

′
1, f

′
2, ..., f

′
k−1) and (f ′′−1, f

′′
0 , f

′′
1 , f

′′
2 , ..., f

′′
l−1).

Then the generating function for the f -vector of the join ∆ = ∆1 ∗∆2 is given by the

product of the f-polynomials of ∆1 and ∆2.

Proof. Let F∆1(x) = f ′d−1x
d+f ′d−2x

d−1+...+f ′0x
1+f ′−1 be the generating function for the

f -vector of ∆1 (i.e. its f-polynomial) and F∆2(x) = f ′′k−1x
k +f ′′k−2x

k−1 + ...+f ′′0 x
1 +f ′′−1

be the generating function for the f -vector of ∆2.

Now notice that we obtain the i-dimensional faces as the union of r-dimensional faces

of ∆1 (there are f ′r+1 of them) and s-dimensional faces of ∆2 (there are f ′′s+1 of them),

where r + s = i. Therefore, the number of i-dimensional faces of ∆ is

fi =
∑
r+s=i

fr+1 · fs+1.

But then notice that then by multiplying F∆1(x) and F∆2(x) we obtain exactly

fk+l−1x
k+l + fk+l−2x

k+l−1 + ...+ f0x
1 + f−1 = F∆(x),

which is the generating function for the f -vector of the join ∆ = ∆1 ∗∆2, as desired.



3 Shellability and Partitionability

of Simplicial Complexes

3.1 De�nitions and Basic Properties

A pure d-dimensional simplicial complex is said to be shellable if there is a linear

ordering of its facets σ1, σ2, ..., σn such that (∪j<iσj)∩ σi is a pure (d− 1)-dimensional

simplicial complex, for all i ≥ 2. In other words, we can obtain the simplicial complex

by gluing together facet by facet in a way that the glued part is of dimension one less

than our simplicial complex.

Now consider the face poset of a simplicial complex ∆: the partial order on

the faces of ∆ with respect to inclusion. We say that ∆ is partitionable if the

poset can be partitioned into intervals of the form [R(σ), σ] = {ρ ∈ ∆ |R(σ) ⊆ ρ ⊆
σ, σ is a facet of ∆}.

Here we give some examples of shellability and partitionability:

Example 3.1. Consider two simplicial complexes, ∆1 (left side of Figure 2) and ∆2

(right side of Figure 2). Simplicial complex ∆1 is clearly shellable, with shelling order

of its facets (A,B). The complex is also partitionable, with partitioning [∅, A], [4, B].

Complex ∆2 is not shellable: neither of the orderings of its facets (A,B) and (B,A) is

a shelling, as A ∩ B = B ∩ A = {3}, which is a 0-dimensional and not 1-dimensional

complex. Further, ∆2 is not even partitionable. Suppose it is, with the following

partitioning scheme: [σ1, A], [σ2, B]. Clearly, the empty face has to be in one of these

two intervals. Because of the symmetry, assume the empty set is in [σ1, A], i.e. that

σ1 = {∅}. But now the second interval [σ2, B] cannot contain both faces {3} and {4},
as σ2 is either {3} or {4} (see Figure 4).

Example 3.2. Now consider simplicial complex ∆3, i.e. the boundary of the tetrahe-

dron on vertices {1, 2, 3, 4}, with a triangle attached to one of its vertices (see Figure

5). It is not hard to see that ∆3 is not shellable. Namely, the additional triangle

τ = {3, 5, 6} intersects the tetrahedron in a point, i.e. a 0-dimensional face. Therefore,

regardless of the order of the facets, the facet τ will intersect its neighboring facets in

a 0-dimensional face, instead of 1-dimensional face.

6
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Figure 2: Simplicial complexes ∆1 and ∆2

Figure 3: Partitioning scheme for ∆1

However, ∆3 is partitionable, with partitioning scheme [∅, 356], [1, 123], [2, 234], [4, 134],

[124, 124].

Looking at the example of ∆1, one might notice that from every shelling we could

construct a partitioning scheme. In other words:

Theorem 3.3. Every shellable simplicial complex is also partitionable.

Proof. Let σ1, σ2, ..., σm be a shelling order of simplicial complex ∆ and denote by ∆i

the simplicial complex generated by σ1, ...σi, i.e. ∆i = 〈σ1, ...σi〉. Additionally we

de�ne ∆0 = ∅.We will prove that the following intervals form a partitioning scheme of

∆:

[τi, σi], where τi = {x ∈ σi : σi \ {x} ∈ ∆i−1}}.
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Figure 4: Partitioning fails for ∆2

In other words, we want to prove that any "new" face γ of σi that is not contained in

∆i−1, has to contain τi, i.e. γ contained in the interval [τi, σi].

(⇒) First, let γ a face of σi that does not contain τi, i.e. τi $ γ. That means that

there is some vertex x in τi that is not in γ. But then γ ⊆ σi \ {x}, so it is a face of

∆i−1.

(⇐) Now suppose that γ contains τi, i.e. τi ⊆ γ. By de�nition of shellability, 〈σi〉∩∆i−1

is of codimension 1, its each face γ is in σi \ {x}, for some vertex x. But then γ is not

contained in ∆i−1, as desired.

Example 3.4. Consider again the simplicial complex ∆1 with facets {1, 2, 3} and

{1, 3, 4} (see the left side of Figure 2). The �rst interval of the partitioning scheme is

[τ1, σ1] will be [∅, A]. For the second interval, notice that vertex 4 is the only vertex in

B for which B \ {4} ∈ ∆1(= A) holds. Therefore, τ2 = {4}, and the second interval in

the scheme is [{4}, B].

Example 3.5. Consider three tetrahedra glued together over the common simplex

{1, 2, 3}: σ1 = {1, 2, 3, 4}, σ2 = {1, 2, 3, 5} and σ3 = {1, 2, 3, 6}, shown on Figure 6.

This simplicial complex is clearly shellable with shelling order σ1, σ2, σ3 (all the facets

all intersect at a simplicial complex {1, 2, 3} of codimension 1).

Here, τ2 = {5} and τ3 = {6}. So, the partitioning scheme is [∅, σ1], [5, σ2] and [6, σ3].

A natural question to ask whether there are some necessary and su�cient conditions

for shellability. Indeed, it turns out in the one dimension case, we have the following

result.
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Figure 5: Simplicial complex ∆3

Lemma 3.6. A pure 1-dimensional simplicial complex is shellable if and only if it is

connected.

Proof. First, suppose that a disconnected pure 1-dimensional simplicial complex (i.e.

a graph) with shelling e1, e2, ..., en. Let C be the connected component containing e1

and let ei be the �rst facet, i.e. edge that is not in C. But then (∪j<iej) ∩ ei is the
empty set, which is clearly not 1-dimensional, contradiction.

On the other hand, suppose we have a connected 1-dimensional simplicial complex ∆,

i.e. a connected graph. Start with any edge e1. At each step add an edge ei such that

e1, e2, ..., ei−1 and ei are in the same connected component of ∆. So, (∪j<iej) ∩ {ej} is
either a single vertex {v} or two vertices {v, u}, both pure 0-dimensional complex, as

desired. Because ∆ is connected, we are guaranteed that we will eventually order all

edges (i.e. facets) of ∆, therefore ∆ is shellable.

We now give one result about pure 2-dimensional simplicial complexes:

Theorem 3.7. Every simplicial complex that is homeomorphic to a 2-ball is shellable.

Unfortunately, it turns out that in dimension 2 and higher dimensions there is no

easy characterization of shellability. Therefore, we will focus our attention on a weaker
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Figure 6: Three glued tetrahedra

property, namely partitionability. Here we give a result describing the partition in

terms of the h-vector.

Theorem 3.8. Let ∆ be a pure partitionable d-dimensional simplicial complex and let

(h0, h1, ..., hd+1) be its h-vector. Then the component hi counts the number of intervals

of height d+ 1− i in the partitioning scheme.

Proof. Consider the f -polynomial of ∆:

In the partitioning scheme, the interval of kind [∅, facet] contributes a total of 2d faces

of ∆. As the interval [∅, facet] is isomorphic to the Boolean lattice Bd, we see that

the interval contributes 1 face of dimension 0,
(
d+1

1

)
faces of dimension 1,

(
d+1

2

)
faces

of dimension 2, etc. In other words, this interval contributes r0(1 + x)d+1 to the f -

polynomial (where r0 = 1).

The interval of kind [vertex, facet] is isomorphic to the Boolean lattice Bd−1. It con-

tributes 1 face of dimension 1,
(
d
1

)
faces of dimension 2, etc. If r1 is the number

of such intervals in the partitioning scheme, the corresponding generating function is

r1x(1 + x)d.

In general, the interval of kind [(i − 1)-dimensional face, facet] (i.e. interval of height

d − i + 1) is isomorphic to Boolean lattice Bd−i. Each interval corresponds to the

generating function xi(1 + x)d−i+1. If there are ri+1 such intervals, the corresponding

generating function is rixi(1 + x)d−i+1.

Therefore, when we sum all these generating functions, we obtain the generating func-

tion for the total number of faces in ∆, i.e. the f -polynomial of ∆:

F∆(x) = r0(1 + x)d+1 + r1x(1 + x)d + ...+ ri · xi(1 + x)d+1−i + ...+ rd+1x
d+1.

Now,

H∆ = revd+1((revd+1F∆)(x− 1)).
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Notice that revd+1(ri · xi(1 + x)d+1−i) = ri(1 + x)d+1−i, so

(revd+1F∆)(x− 1) = r0x
d+1 + r1x

d + ...+ rix
d+1−i + ...+ rd+1.

Further,

H∆(x) = revd+1(r0x
d+1 + r1x

d + ...+ rix
d+1−i + ...+ rd+1),

i.e.

H∆(x) = r0 + r1x
1 + ...+ rix

i + ...+ rd+1x
d+1,

meaning that hi = ri, for all i = 0, 1, ..., d.

From this theorem, we get one trivial consequence:

Theorem 3.9. The h-vector of partitionable simplicial complexes is always non-negative.

For more details about partitionability and shellability see [2], [14] and [10].

3.2 Partitionability Conjecture

In algebraic topology, it is common to associate an algebraic structure to the topolog-

ical objects that we want to examine. Of course, we would like to do this in a such a

way that we can use our knowledge of algebra to conclude something about object of

interest.

In this case, we associate a ring to every simplicial complex as follows:

Given a simplicial complex ∆ on n vertices, we de�ne the quotient ring

A∆ = R[x1, ..., xn]/I, where I is the ideal generated by all monomials xa1xa2 ...xak
s.t. the set {a1, ..., ak} does not form a face of ∆.

It can be shown that the h-vector of ∆ is precisely the Hibert function of A∆, where

the Hilbert fuction is a de�nition frequently used in commutative algebra. A natural

question to ask is which simplicial complexes correspond to some special class of rings.

In our case, we will be looking at the simplicial complexes corresponding to Cohen-

Macaulay rings. There simplicial complexes are called Cohen-Macaulay and have a

number of interesting properties.

Theorem 3.10. The h-vector of a Cohen-Macaulay simplicial complexes is always

non-negative.

The theorem is proven by Macaulay and can be found in Section 2 of [11]. The

methods he used can be described as a multiset version of the Kruskal-Katona Theo-

rem, a result about su�cient and necessary for a vector to be an f -vector of a simplicial

complex. Macaulay also used the relation between h-vectors and Hilbert series. Finally,
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mathematicians including Stanley observed the connection with simplicial complexes,

producing a result about Cohen-Macaulay simplicial complexes.

When looking at the last two results, i.e. Consequence 3.9 and Theorem 3.10, one

may wonder if there is some connection between partitionable and Cohen-Macaulay

complexes. Does one condition imply the other?

Another reason for this belief is that we know that shellable complexes are partition-

able, and one can also show that shellable complexes are Cohen-Macaulay. Further,

Björner found an example of a partitionable complex that is not Cohen-Macaulay (this

is actually the simplicial complex from Example 3.2). Therefore one direction is not

possible. The other direction remained open for quite some time. Under such consid-

erations, Stanley made the following conjecture in 1979:

Conjecture 1. (Partitionability Conjecture) Every Cohen-Macaulay complex is parti-

tionable.

This was a strong conjecture. If it were true, it would connect the algebraic prop-

erty of Cohen-Macaulayness with the combinatorial property of partitionability.The

conjecture was open for nearly 40 years, until it was disproven by Duval, Goeckner,

Klivans and Martin in [3] (see also [4]). They constructed a relatively small counterex-

ample � they found a simplicial complex on only 16 vertices that is Cohen-Macaulay,

but not partitionable.

Proof sketch. We overview a slight improvement to the main argument from [3].

First, we start by �nding a non-partitionable relative simplicial complex that is Cohen-

Macaulay, denoted by Q = (X,A). The exact complex can be found in [3]; it is a rela-

tive simplicial complex on 10 vertices and with 14 facets, with f -vector (1, 7, 11, 5, 0).

Now we want to somehow obtain a non-relative simplicial complex out of Q, while pre-

serving Cohen-Macaulayness. One way to do this is by gluing some number of copies

of Q along their mutual subcomplex A. This way we obtain a non-relative simplicial

complex S. It can be proven that the complex S is indeed Cohen-Macaulay.

It remains to see if it is possible to obtain a non-partitionable complex S this way.

It turns out it is enough to glue 19 copies of Q. We know that the f -vector of S is

(1, 64, 391, 594, 266) and then we easily compute the h-vector as well: (1, 60, 205, 0, 0).

Suppose that S is partitionable. Now, by Theorem 3.8, every facet of S has to match

either to the empty set, a vertex or an edge. Then, every copy of Q must match at least

one facet to face of A. Otherwise, there would exist a copy of Q that matches all of

its facets to faces of that same copy, implying that Q is partitionable, a contradiction.

Additionally, one facet of S has to be matched to the empty set, i.e. there is an interval
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in the partitioning scheme that contains at least one vertex of A. Therefore, there are

at least 19+1=20 faces of A of dimension 0, 1 and 2 in our partitioning scheme, which

is a contradiction, as A contains 1 + 7 + 11 = 19 such faces.

The authors from [3], using a more complicated argument, showed that it su�ces

to glue only three copies of Q to obtain a non-partitionable Cohen-Macaulay simplicial

complex.

Some questions still remain open:

� Is every 2-dimensional Cohen�Macaulay simplicial complex partitionable?

� Is every Cohen�Macaulay manifold partitionable?

This thesis was motivated by a special case of the second question: we ask whether

some triangulations of a speci�c Cohen-Macaulay 3-manifold, called the Poincaré ho-

mology sphere, are partitionable.



4 The Poincaré conjecture and

Poincaré homology sphere

4.1 History of the Poincaré conjecture

One of the most important questions in topology is whether two spaces are the same,

i.e. whether we can obtain the second space by "stretching" the �rst one. We call

those "stretchings" homeomorphisms, and if they exist, we say that the two spaces are

homeomorphic.

In some cases, this is relatively easy to see: consider for example a line and a plane.

They are not the same, because if we take a point out of both spaces, the �rst one

becomes disconnected, while the other one is still connected. But what happens if we

consider for example the Klein bottle and the torus? You may try to stretch the Klein

bottle to get the torus, or use some other trick, but you will not be successful. But

how can we prove that no matter how much you stretch one space, you will never be

able to get the other one?

For this reason, mathematicians at the beginning of 20th century tried to �nd some

invariants of topological spaces, which could tell them if two spaces are homeomor-

phic or not. Namely, a topological invariant is a property of topological space that

is preserved under homeomorphism. That is, �nd such property, i.e. function, that

if two spaces have di�erent values of that function, they are not homeomorphic. One

direction would be to look at the combinatorial properties of the spaces. This branch

of topology is the so-called algebraic topology, and one of the founders of this �eld is

the French mathematician Henri Poincaré. Around 1900, Poincaré developed a tool

called homology, which associates an abelian groups to a space and in some way counts

the number of n-dimensional holes in that space. He conjectured that homology could

directly tell us whether a 3-manifold (a space that locally looks like space R3) is a

3-sphere.

However, 4 years later, he constructed a counterexample, the so-called Poincaré ho-

mology sphere . This space had the same homology as the 3-sphere, but is was not

homeomorphic to it. He then de�ned another property of a topological called simply

14
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connectedness : a topological space is said to be be simply connected if it is path-

connected and if any path p from A to B can be continuously transformed into any

other path q from A to B, while keeping both endpoints A and B �xed. In the same

paper as the counterexample, Poincaré formulated the famous Poincaré conjecture :

he asked whether any closed simply connected 3-manifold had to be a 3-sphere. This

is also the form of the conjecture that was best known until it was proved by Perelman

(see [7�9]):

Theorem 4.1 (Perelman's Theorem, conjectured by Poincaré). Every simply con-

nected, closed 3-manifold is homeomorphic to the 3-sphere.

This problem turned to be a very important question in topology, as many other

important results were obtained along the way of solving the conjecture. Moreover, it

motivated the creation of entirely new �elds of mathematics, like di�erential geometry

among others.The conjecture even became one of the seven Millennium Prize Problems

in 2000. It remained open for almost 100 years, until the Russian mathematician

Grigori Perelman showed the conjecture to be correct in 2003. To this day, it remains

the only one of the seven Millennium Prize Problems which have been solved.

4.2 Homology

As previously said, homology theory is a branch of algebraic topology that allows us

to distinguish topological spaces (in our case simplicial complexes) by counting the

number of their holes. In this section we will describe the main idea of this concept.

As a �rst example, consider a 2-sphere and a 3-ball. Both of them are path-

connected (i.e. they have a single connected component) and none of them have 1-

dimensional holes. However, a 2-sphere has a 2-dimensional hole in the middle, while

the 3-ball does not. Therefore, we can conclude that a 2-sphere is di�erent (i.e. not

homeomorphic) to a 3-ball.

However, it is not always easy to tell what a "hole" in a space actually means,

especially in higher dimensions. For this reason, mathematicians formalized the notion

of holes by associating a sequence of abelian groups to each topological space in the

following way:

The i-th component of that sequence, denoted by Hi(X), is a abelian group that will

describe the number of i-dimensional holes in space X. It is computed by a com-

plicated algebraic procedure. The element Hi(X) is the i-th homology group. The
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rank of this group tells us about the number of essentially di�erent holes (or loops) inX.

Here are some examples:

Example 4.2. As mentioned, the 3-sphere S3 has one connected component, no 1

and 2-dimensional holes and one 3-dimensional hole. This corresponds to the following

homology groups:

H̃i(S
3) =

{
Z, for i = 0, 3

{0}, otherwise.

Here Z is an abelian group generated by one element, while {0} is the trivial group.

Example 4.3. Now consider a torus T . As the sphere S2, it has one connected com-

ponent and one 2-dimensional hole. But, it has two essentially di�erent 1-dimensional

holes, i.e. circles, colored with red and blue on the Figure 7. Therefore, the �rst

homology group has to be generated by two generators:

H̃i(T ) =


Z, for i = 0, 2

Z× Z, for k = 1,

{0}, otherwise.

Figure 7: Torus T

As mentioned in the section 4.1, we should emphasize that two spaces with same

homology groups do not need to be homeomorphic. This is exactly what Poincaré

showed by constructing the Poincaré homology sphere: he found an object with same

homology groups as S3 (see Example 4.2), but he showed that it is not homeomorphic to

S3. In the next section we will talk more about the construction of Poincaré homology

sphere, as well as some of its properties.
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4.3 Poincaré homology sphere

There are multiple constructions of the Poincaré homology sphere (denoted P ), with

di�erent approaches. Several of those constructions can be found in [6]. Here we will

consider the one using a dodecahedron:

Construction: Start with a solid dodecahedron. Then identify (glue) the opposite

faces of the dodecahedron by twisting one of the faces in a pair by clockwise rotation

of π
5
.

Figure 8: Poincaré homology sphere (due to Hachimori from [5])

It is not hard to see that P is a manifold. Firstly, a dodecahedron is clearly a

3-manifold, as it is homeomorphic to a 3-ball. Then, by gluing its faces, we in fact glue

two half-spaces, therefore locally we "see" the whole space R3.

The Poincaré homology sphere has a number of interesting properties. First of all,

it is a counterexample to the Poincaré 1900 conjecture. Secondly, there are several

known relatively small triangulations of the Poincaré homology sphere, one with 16,

and the other with 24 vertices, among others. The 16-point triangulation is the smallest

one known. We will concentrate on the 24-point triangulation, which is simmetrical.

According to Masahiro Hachimori's database of simplicial complexes (see [5]), the �rst

is known to be partitionable. We are interested in whether the 24-point triangulation

is partitionable or not.



5 Results

5.1 24-vertex triangulation of P

In this section we will consider the 24-point triangulation of P . We follow the pre-

sentation of this triangulation from the paper [1] of Björner and Lutz . The idea is

that we start with a dodecahedron with faces identi�ed as explained in the previous

chapter. However, such dodecahedron is not simplicial for two reasons: �rst, it does

not consist of tetrahedra (i.e. 3-simplicies). The second problem are the "face identi�-

cations". Therefore, if we subdivide this body enough, this �xes our problem. Here is

the subdivision used in Björner's and Lutz's paper:

First, we inscribe the dual icosahedron in the dodecahedron. The vertices of the dodec-

ahedron are numbered 1, 2, 3, 4 and 5, the vertices of the icosahedron by 6, 7, 8, 9, 10

and 11, while the corresponding top vertices of the cones over pentagons are numbered

61, 62, 71, 72,..., 111, 112. The middle point of the dodecahedron is 24.

Figure 9: 24-point triangulation of Poincaré homology sphere (diagram due to Björner

and Lutz from [1])

We determined the facets this triangulation as follows:

Firstly, we know that the Poincaré sphere is invariant under the alternating group A5,

a group of 60 elements. Therefore, we only had to �nd the orbits of the facets under A5.

To obtain all these orbits of Poincaré homology sphere, we used the computer algebra

system GAP (see [12]). We found a representative of each orbit, and then applied the

18
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elements of the group A5 to obtain the rest of the elements of that speci�c orbit. For

the complete list of facets of this triangulation see Appendix A.

5.2 Smaller triangulations of P

The 24-point triangulation is not the smallest known triangulation of Poincaré homol-

ogy sphere. The smallest one known has 16 vertices and was �rst described by Björner

and Lutz in [1].

The triangulation is obtained using a computer program BISTELLAR, which, given a

known triangulation of a manifold, returns a smaller triangulation, by randomly ap-

plying a sequence of moves, called the bistellar moves .

It is still not known whether this is the smallest triangulation possible, although it is

shown in [13] that the minimal triangulation contains at least 11 vertices.

5.3 Ideas for partitioning scheme of Poincaré ho-

mology sphere

In this section we present some techniques that we tried for partitioning the 24-point

triangulation of the Poincaré homology sphere.

First, we notice that a typical small triangulation of a 3-ball should be shellable.

Then our main goal is to �nd subcomplexes that are homeomorphic to the 3-ball that

will cover as many facets of the Poincaré sphere as possible. Then we could add the

remaining faces to this structure. We found a few such complexes:

� Consider the triangulated icosahedron in the middle. This is a simplicial complex

generated by all the facets that contain the middle vertex 24. This complex has

20 facets.

� Consider the cone over the face of the dodecahedron, i.e. the cone over the

pentagon. This is also clearly a 3-ball. As there are six such pentagons, each of

them covering 10 facets of the Poincaré sphere, in total they cover 10 · 6 = 60

facets.

Once we have a subcomplex of the Poincaré sphere that is surely partitionable, we

have to deal with the partitioning scheme for the rest of the faces. That is, we partition

the relative simplicial complex that is left.
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6 Conclusion

In this paper we give an overview about partitionability of simplicial complexes. We

gave some some results and tools about partitionability. Later in paper, we were par-

ticularly interested in partitioning the Poincaré homology sphere, more speci�cally a

24-point triangulation of this homology sphere. We give some ideas about this par-

titioning. However, some question still remain open: is every triangulation of the

Poincaré sphere partitionable? Moreover, is every Cohen-Macaulay manifold parti-

tionable?
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7 Povzetek naloge v slovenskem

jeziku

Particijaksa lastnost simplicialnih kompleksov je lastnost, ki se je prvi£ pojavila v delih

Stanley-ja v sedemsetih letih prej²njega stoletja. Motivirala ga je druga lastnost sim-

plicialnih kompleksov, imenovana lupinavost, £eprav je ²ibkej²a od slednje lastnosti.

Med najpomembnej²e domneve na tem podro£ju spada t.i. particijska domneva (ang.

Partitionability Conjecture), ki jo je leta 1979 postavil Stanley. Ta domneva je trdila,

da je vsak Cohen-Macaulay kompleks particijski. Po skoraj 40 letih so domnevo ovrgli

Duval, Goeckner, Klivans in Martin v £lanku iz leta 2016. Njihov protiprimer je sim-

plicialni kompleks na samo 16 to£kah, ki je Cohen-Macaulayev, vendar ni particijski.

�eprav se je izkazalo, da je domneva napa£na, se je na tem podro£ju postavilo veliko

²tevilo drugih vpra²anj. Ali particijska domneva velja v dimneziji 2? Kaj ²teje h-vektor

Cohen-Macaulayevega kompleksa?

Obstaja ²e veliko drugih neodgovorjenih vpra²anj o particijski lasnosti. V nalogi je last-

nost preu£evana na Poincaréjevi homolo²ki sferi. Na²e glavno vpra²anje je, ali so vse

njene triangulacije particijske. Po podatkovni bazi simplicialnih kompleksov Masahira

Hachimorija obstaja 16-to£kovna triangulacija, za katero je ºe znano, da je particijska.

V na²em delu obravnavamo eno od njegovih simetri£nih 24-to£kovnih triangulacij.

V drugem poglavju predstavimo nekaj osnovnih de�nicij simplicialnih kompleksov.

Za£eli bomo z abstraktnimi simplicialnimi kompleksi, ki so povsem kombinatori£ni ob-

jekti. Nato predstavimo, kako lahko iz abstraktnih kompleksov sestavimo simplicialni

kompleks kot topolo²ki prostor. Potem de�niramo spoj dveh simplicialnih kompleksov

in tudi f in h -vektorjev. De�niramo tudi relativen simplicialni kompleks, operacijo ki

izgleda kot od²tevanje.

V tretjem poglavju govorimo o lupinavosti in particijski lastnosti simplicialnih kom-

pleksov, ki sta tesno povezani. Pokazali smo, da lupinavost implicira particijsko last-

nost. Predstavimo nekaj primerov. Nato predstavimo nekaj zadostnih in potrebnih

pogojev za lupinavost. Nadalje podamo nekaj rezultatov in trditev, ki jih uporabimo

pozneje v nalogi. Med njimi je en o pomenu h -vektorja za £iste particijske simpli-
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cialne komplekse. Nato predstavimo particijsko domnevo in protiprimer, ki jo je ovrgel.

Poglavje zaklju£imo z navedbo nekaj odprtih vpra²anj s tega podro£ja topologije.

�etrto poglavje je posve£eno znameniti Poincaréjevi domnevi, idejah za njen dokaz

in njeni prej²nji formulaciji. Podamo kratek uvod o veji topologije, ki jo je Poincaré

razvil v svojem ºivljenju, o homologiji. Homologija je topolo²ka invarianta, ki nam

pomaga razlikovati razli£ne topolo²ke prostore (v na²em primeru simplicialne kom-

plekse). Ohlapno re£eno, to stori tako, da ²teje ²tevilo lukenj vsake dimenzije znotraj

danega topolo²kega prostora. Potem predstavimo Poincaréjevo homolo²ko sfero, enega

zanimivih topolo²kih objektov. Poincarejeva homolo²ka sfera je objekt, ki ima isto

homologijo (ali natan£neje, ima iste homolo²ke grupe) kot 3-sfera. Kljub temu ni

homeomorfna 3-sferi. Predstavimo konstrukcijo in nekatere njene lastnosti.

V zadnjem poglavju predstavimo nekatere triangulacije Poincaréjeve homolo²ke

sfere. Na² poudarek je predvsem na 24-to£kovni triangulaciji. Podamo celoten sez-

nam glavnih simpleksov te triangulacije in na kratko pojasnimo postopek, ki smo ga

uporabili za pridobitev liste. Nadalje podamo nekaj idej za dokaz particijske lastnosti

te triangulacije.
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Appendices



A Facets of the 24-point

triangulation of the Poincaré

homology sphere

List of all 130 facets of the triangulation:

(1, 2, 6, 61 ) (1, 2, 6, 62 ) (1, 2, 8, 81 )

(1, 2, 8, 82 ) (1, 2, 10, 101 ) (1, 2, 10, 102 )

(1, 2, 61, 101 ) (1, 2, 62, 81 ) (1, 2, 82, 102 )

(1, 3, 7, 71 ) (1, 3, 7, 72 ) (1, 3, 8, 81 )

(1, 3, 8, 82 ) (1, 3, 11, 111 ) (1, 3, 11, 112 )

(1, 3, 71, 81 ) (1, 3, 72, 111 ) (1, 3, 82, 112 )

(1, 4, 9, 91 ) (1, 4, 9, 92 ) (1, 4, 10, 101 )

(1, 4, 10, 102 ) (1, 4, 11, 111 ) (1, 4, 11, 112 )

(1, 4, 91, 101 ) (1, 4, 92, 111 ) (1, 4, 102, 112 )

(1, 5, 6, 61 ) (1, 5, 6, 62 ) (1, 5, 7, 71 )

(1, 5, 7, 72 ) (1, 5, 9, 91 ) (1, 5, 9, 92 )

(1, 5, 61, 91 ) (1, 5, 62, 71 ) (1, 5, 72, 92 )

(1, 61, 91, 101 ) (1, 62, 71, 81 ) (1, 72, 92, 111 )

(1, 82, 102, 112 ) (2, 3, 6, 61 ) (2, 3, 6, 62 )

(2, 3, 9, 91 ) (2, 3, 9, 92 ) (2, 3, 11, 111 )

(2, 3, 11, 112 ) (2, 3, 61, 111 ) (2, 3, 62, 92 )

(2, 3, 91, 112 ) (2, 4, 7, 71 ) (2, 4, 7, 72 )

(2, 4, 8, 81 ) (2, 4, 8, 82 ) (2, 4, 9, 91 )

(2, 4, 9, 92 ) (2, 4, 71, 91 ) (2, 4, 72, 82 )

(2, 4, 81, 92 ) (2, 5, 7, 71 ) (2, 5, 7, 72 )

(2, 5, 10, 101 ) (2, 5, 10, 102 ) (2, 5, 11, 111 )

(2, 5, 11, 112 ) (2, 5, 71, 112 ) (2, 5, 72, 102 )
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(2, 5, 101, 111 ) (2, 61, 101, 111 ) (2, 62, 81, 92 )

(2, 71, 91, 112 ) (2, 72, 82, 102 ) (3, 4, 6, 61 )

(3, 4, 6, 62 ) (3, 4, 7, 71 ) (3, 4, 7, 72 )

(3, 4, 10, 101 ) (3, 4, 10, 102 ) (3, 4, 61, 72 )

(3, 4, 62, 102 ) (3, 4, 71, 101 ) (3, 5, 8, 81 )

(3, 5, 8, 82 ) (3, 5, 9, 91 ) (3, 5, 9, 92 )

(3, 5, 10, 101 ) (3, 5, 10, 102 ) (3, 5, 81, 101 )

(3, 5, 82, 91 ) (3, 5, 92, 102 ) (3, 61, 72, 111 )

(3, 62, 92, 102 ) (3, 71, 81, 101 ) (3, 82, 91, 112 )

(4, 5, 6, 61 ) (4, 5, 6, 62 ) (4, 5, 8, 81 )

(4, 5, 8, 82 ) (4, 5, 11, 111 ) (4, 5, 11, 112 )

(4, 5, 61, 82 ) (4, 5, 62, 112 ) (4, 5, 81, 111 )

(4, 61, 72, 82 ) (4, 62, 102, 112 ) (4, 71, 91, 101 )

(4, 81, 92, 111 ) (5, 61, 82, 91 ) (5, 62, 71, 112 )

(5, 72, 92, 102 ) (5, 81, 101, 111 ) (17, 61, 72, 82 )

(17, 61, 72, 111 ) (17, 61, 82, 91 ) (17, 61, 91, 101 )

(17, 61, 101, 111 ) (17, 62, 71, 81 ) (17, 62, 71, 112 )

(17, 62, 81, 92 ) (17, 62, 92, 102 ) (17, 62, 102, 112 )

(17, 71, 81, 101 ) (17, 71, 91, 101 ) (17, 71, 91, 112 )

(17, 72, 82, 102 ) (17, 72, 92, 102 ) (17, 72, 92, 111 )

(17, 81, 92, 111 ) (17, 81, 101, 111 ) (17, 82, 91, 112 )

(17, 82, 102, 112 )


