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Joint work with ...

Much of the work I will describe is joint with Denys Bulavka and
Francesca Gandini.

Denys Bulavka Francesca Gandini

Throughout, F will be a field
Convenient to assume characteristic ̸= 2
Little is lost by assuming F = C, the complex numbers
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Exterior algebras

The exterior algebra over F is an anti-commutative analogue of a
polynomial ring.∧
Fn is generated by e1, . . . , en.

If x , y are linear combinations of vars, then
x ∧ y = −y ∧ x
x ∧ x = 0

Write
∧k Fn for the subspace generated by k-forms. Thus,

Write

∧k Fn is an
(
n

k

)
-dimensional vector space, generated by

Write

eS = ei1 ∧ · · · ∧ eik for S = {i1 < i2 < · · · < ik} ⊆ [n].

Example: cross products
The cross product from high school physics v ⊗ w comprises

∧
R3

together with the “Hodge star” identification
∧2 R3 ←→

∧1 R3.

Here, eS is called an exterior monomial . 2/ 27



Exterior algebras: combinatorial set theory

Exterior algebra
∧

Fn is anti-commuting analog to polynom. ring
For x = α1e1 + · · ·αnen in

∧1 Fn, have x ∧ x = 0.
For set S = {i1 < i2 < · · · < ik} ⊆ [n], write eS = ei1 ∧ · · · ∧ eik

Exterior algebras are useful in areas from differential geometry to
algebraic geometry.

In combinatorics, they model set intersections.
Indeed, for S ,T ⊆ [n], we have:

eS ∧ eT = 0 ⇐⇒ S ∩ T ̸= ∅

Example
For S = {1, 3, 5} ,T = {3, 4, 5}, have
(e1 ∧ e3 ∧ e5) ∧ (e3 ∧ e4 ∧ e5) = −e1 ∧ e5 ∧ e3 ∧ e3 ∧ e4 ∧ e5

(e1 ∧ e3 ∧ e5) ∧ (e3 ∧ e4 ∧ e5)

= −e1 ∧ e5 ∧ 0 ∧ e4 ∧ e5 = 0.
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A beautiful proof

Exterior algebra
∧

Fn is anti-commuting analog to polynom. ring
eS ∧ eT = 0 ⇐⇒ S ∩ T intersect nontrivially

Two Families Theorem (Bollobás, Lovász, 1970s)
Let A1, . . . ,Am be r -element subsets of [n]

Let

B1, . . . ,Bm be s-element subsets of [n]
such that

Let

Ai ∩ Bi = ∅ for each i , but

Let

Ai ∩ Bj is nontrivial for each i < j .

Then m ≤
(
r + s

r

)
.

(Note: no n appears!)

Proof. Consider
∧

Fr+s .
Take n elements g1, . . . , gn in general position from Fr+s .
Write gS = gi1 ∧ · · · ∧ gik if S = {i1 < · · · < ik}.
Thus, gA ∧ gB = 0 ⇐⇒ A ∩ B ̸= ∅.
Upper triangular matrix + dual basis argument

=⇒ gA1 , . . . , gAm are linearly independent. □
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A beautiful proof: now what?

Proof idea: associate set with elements of
∧r Fr+s ,

∧s Fr+s ,

Proof idea:

use dual pairing to get linear independence

Proof idea:

and an upper bound by dimension

Question: What else can you use this idea for?

Theorem (Erdős, Ko, Rado, 1938–1961)
Let r ≤ n/2. If A1, . . . ,Am are r -element subsets of [n] such that
every pair Ai ,Aj intersects nontrivially, then m ≤

(n−1
r−1

)
.

EKR Theorem has a large number of known proofs.
Is there a slick one using exterior algebra and duality?

I don’t know.

Proofs with dual pairings are known. I like the “polynomial method”
proof of Füredi, Hwang, and Weichsel.
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Exterior extension of EKR

Although I don’t know a proof as pretty as the Lovász proof of the
Two Families Theorem, there is a nice extension of EKR.

Say that a subset L of
∧
Fn is self-annihilating if

L ∧ L = {w1 ∧ w2 : w1,w2 ∈ L} = 0.

Theorem (Scott and Wilmer, 2021)
Let r ≤ n/2. If L is a self-annihilating subspace of

∧r Fn,
then dim L ≤

(n−1
r−1

)
.

The EKR theorem follows by letting the monomials eA1 , . . . , eAm

form a basis of L.

Scott and Wilmer were also interested in the Two Families
Theorem, but proved their self-annihilating theorem from EKR.

6/ 27



Exterior extension of EKR: another proof?

Scott-Wilmer Theorem:
When r ≤ n/2, self-annihilating subspace of

∧r Fn has dim≤
(n−1
r−1

)
Instead of proving the Scott-Wilmer theorem from EKR,
I want to prove Scott-Wilmer, and conclude EKR.

kill a fly with an elephant gun
To take excessive, overcomplicated, or extravagant means
or force to accomplish something relatively minor or simple.

Farlex Dictionary of Idioms

So I want to tell you how to use some big or little tools from easy*
algebraic geometry to prove Scott-Wilmer (and hence EKR).

7/ 27
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Algebraic geometry background: Zariski topology

The Zariski topology on affine Fn or projective PFn has as closed
sets the zero loci of sets of polynomials or homogenous polynomials.

The Zariski topology is T1, but not Hausdorff.
Few of the definitions from a first topology course are useful.

Most definitions from a first topology course have useful analogs.

“Standard” topology Zariski topology

Rn, Sn affine Fn, projective PFn

metric space quasi-projective space ?
limits of sequences limits of (polynomial) curves
closed subspace variety

compact complete
Hausdorff separated

8/ 27



Algebraic geometry background: Zariski topology dictionary

Zariski topology on Fn or PFn has as closed sets the zero loci of
sets of (homogenous) polynomials.

The translation from standard topological notions to Zariski is
often made by writing both in terms of products.

Example: Hausdorff and separable
A topological space X is Hausdorff iff the diagonal subspace in
X × X is closed.
A variety* X is separated if the diagonal subspace in X × X is
closed.
Topological product vs product of affine/projective spaces
Metric spaces are Hausdorff; quasi-projective varieties are separated

9/ 27



Setting up for algebraic geometry proof of Scott-Wilmer .

Zariski topology on Fn or PFn has as closed sets the zero loci of
sets of (homogenous) polynomials.

The Grassmannian GrkV is a projective variety (closed subset of
projective space) whose points correspond to k-dimensional
subspaces of vector space V .

Thus, the Grassmannian is a geometric object representing the
family of fixed-dimensional subspaces.

Algebraic geometry is useful for Scott-Wilmer and EKR because:

Lemma
The family of self-annihilating subspaces L of

∧r Fn is a Zariski
closed subset of Gr(

∧r Fn).

10/ 27



Setting up for algebraic geometry proof of Scott-Wilmer ..

Lemma: Self-annihilating subspaces L of
∧r Fn form a Zariski

closed subset of Gr(
∧r Fn).

Sketch of Lemma. Given two elements w and u in
∧k Fn, written

in the eS basis, their product is expressed coordinatewise with
homogenous polynomials.

Example

=

(α1e1 + α2e2 + α3e3) ∧ (β1e1 + β2e2 + β3e3)
= (α1β2 − α2β1) e12 + (α1β3 − α3β1) e13 + (α2β3 − α3β2) e23

Thus, the set {w × u : w ∧ u = 0} is Zariski closed in
(∧k Fn

)2
.

The desired now follows by yoga well-known to algebraic
geometers, and possibly partly written down somewhere.
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Borel fixed: EKR

Lemma: Self-annihilating subspaces L of
∧r Fn form a Zariski

closed subset of Gr(
∧r Fn).

We now get out the elephant gun:

Theorem (Borel Fixed-Point, 1956)
If X is a projective variety, and G is a connected, solvable, linear
algebraic group acting nicely on X , then X has a point that is fixed
by G .

Here we take :
X to be the variety of k-dimensional self-annihilating subspaces,
G to be the group of upper triangular matrices. (for F = C)

A fixed-point by the upper triangular matrices is generated by
monomials supported by a shifted family of sets.

Erdős-Ko-Rado for a shifted family is an easy induction!
12/ 27



Borel fixed: Gerstenhaber

Borel Fixed-Point Theorem: Borel group acting nicely on projective
variety has a fixed point.

I did not make this technique up.
Draisma, Kraft, and Kuttler earlier used BFPT for extensions of:

Theorem (Gerstenhaber, 1958; others)
Let L be a vector space consisting of n × n nilpotent matrices over
F. Then dim L ≤

(n
2

)
, with equality only if L is conjugate to the

space of strictly upper triangular matrices.

The algebraic groups perspective gives a connection between
Erdős-Ko-Rado problems and
Gerstenhaber problems.

13/ 27



Borel fixed versus shifted

Let’s see the connection between Borel fixed and shifted.

A family of sets A is shifted if for every i < j , whenever A ∈ A
contains j but not i , then also A \ j ∪ i is in A.

Example: triangular matrix vs shifted
Consider linear map f sending e1 7→ e1 and e3 7→ e1 + e3.
If e23 = e2 ∧ e3 is in Borel fixed subspace L, then also

If

f (e23) = −e1 ∧ e2 + e2 ∧ e3 is in L, and hence

If

e12 is in L.

Shifted families have long been a tool in extremal combinatorics.

14/ 27



Algebraic geometry versus extremal combinatorics

Shifted family of sets: for every i < j ,
A ∈ A contains j but not i =⇒ A \ j ∪ i ∈ A

The proof of Erdős, Ko, and Rado of EKR goes as follows:
Given an initial intersecting family of sets A,
iteratively transform it into a shifted family of the same size.
Again, EKR for shifted is an easy induction.

A proof of the Borel Fixed Point Theorem goes as follows:
Given an initial point on projective variety X ,
iteratively move it along closed curves to a fixed point.

Is there a deeper relation?

15/ 27



Proof of Scott-Wilmer, mark II .

The shifting operation shifti←j replaces a family A with
shifti←j A = {A ∈ A : j /∈ A or i ∈ A or A \ j ∪ i ∈ A}

shifti←j A

∪{A \ j ∪ i : j ∈ A and i /∈ A}.

An algebraic geometry analog comes from the map Ni←j(t) sending
ej 7→ tej + ei , and fixing all other ek .

If L is a space of k-forms generated by monomials supported by A,
then lim

t→0
Ni←j(t)L is gen’ed by monomials supported by shifti←j A.

(Observed by Knutson, Murai, probably others.)

Example: shifting with limits
Consider again e23 = e2 ∧ e3 and N1←3(t).
Then N1←3(t)e23 = −e1 ∧ e3 + t · e2 ∧ e3

Then N1←3(t)e23

→ −e1 ∧ e3 as t → 0.
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Proof of Scott-Wilmer, mark II ..

Map Ni←j(t) sends ej 7→ tej + ei , and fixes all other ek .
Limit of Ni←j(t) realizes shifting of Erdős, Ko, Rado.

A second algebraic geometry-based proof of Scott-Wilmer is as
follows:

iteratively apply lim
t→0

Ni←j(t) to L,

reducing to Borel fixed,
and apply EKR for shifted families of sets.

Thus, this proof unpacks the Borel fixed point theorem and applies
its proof technique directly. (See Lie-Kolchin!)

Message: extremal set theorists sometimes are really doing
algebraic geometry.
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Limits on the Grassmannian

Map Ni←j(t) sends ej 7→ tej + ei , and fixes all other ek .
Limit of Ni←j(t) realizes shifting of Erdős, Ko, Rado.

Limits here work similar to limits in calculus: if you have an
indeterminate form, then “cancel zeros”.

Example: limits
Let L = span {e13, e23}, and consider N1←3(t).
Then N1←3(t)L = span {e13,−e13 + te23} = span {e13, te23} = L.
Thus, lim

t→0
N1←3(t)L = L.

Details are surprisingly hard to find in an accessible form:
see Newstead, Introduction to moduli problems and orbit spaces.
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Now on to the good part
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Strict and stability results .

Recall again the theorem of Gerstenhaber:

Theorem (Gerstenhaber, 1958; others)
Let L be a vector space consisting of n × n nilpotent matrices over
F. Then dim L ≤

(n
2

)
, with equality only if L is conjugate to the

space of strictly upper triangular matrices.

Indeed, Erdős, Ko, and Rado showed that a family of r -element

pairwise intersecting sets attains the bound of
(
n − 1
r − 1

)
only if all

sets in the family contain a fixed element or if r = n/2.

(The so-called strict EKR Theorem.)
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Strict and stability results ..

Strict EKR:
(n−1
r−1

)
attainable only if

all sets have common intersection, or r = n/2.

More is true:

Theorem (Hilton and Milner, 1967)
Let r ≤ n/2. If A1, . . . ,Am are r -element subsets of [n] such that
every pair Ai ,Aj intersects nontrivially, but

⋂
Ai = ∅, then

m ≤
(n−1
r−1

)
−
(n−r−1

r−1

)
+ 1.

Thus, if r < n/2 and
⋂
Ai = ∅, then the number of sets is a lot

smaller than the best possible.
That is, if you are close to best numerically, then you are close to

the standard construction structurally.

Hilton-Milner is a stability result.
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Strict and stability results ...

Strict EKR:
(n−1
r−1

)
attainable only if the obvious construction

Stability: if not the obvious construction, then small

Scott and Wilmer conjectured a strict version of their theorem.
I asked whether a stability form of their theorem holds.

Setting:
If L is a self-annihilating subspace of

∧r Fn (r < n/2) and
L is not annihilated by any 1-form in

∧1 Fn,
then does a strict/stable version of Scott-Wilmer hold?

Cautionary example
Consider n = 6 and r = 3. Then
e123 + e456 e124 + e356 e125 + e346 e126 + e345 e134 + e235
e135 + e246 e136 + e245 e145 + e236 e146 + e235 e156 + e234

generate a self-annihilating subspace of dimension 10 =
(6−1
3−1

)
,

but fail to be annihilated by any 1-form α1e1 + α2e2 + α3e3. 22/ 27



A Hilton-Milner type theorem for exterior algebras

Hilton-Milner: if A1, . . . ,Am pairwise intersect but
⋂
Ai = ∅,

Hilton-Milner:

then m ≤
(n−1
r−1

)
−
(n−r−1

r−1

)
+ 1.

In the work with Bulavka and Gandini, we solve this problem:

Theorem (Bulavka, Gandini, and me, 2025+)
Let r ≤ n/2. If L is a self-annihilating subspace of

∧r Fn, and L is
not annihilated by any 1-form, then dim L ≤

(n−1
r−1

)
−
(n−r−1

r−1

)
+ 1.

The proof is more involved than either the proof(s) of Scott-Wilmer
or of Hilton-Milner.

The difficulty is “not annihilated by any 1-form” is not Zariski closed
so moving along curves can destroy the condition,
while elements like e123 + e456 cause trouble for HM techniques.

In the last few minutes, I want to illustrate some of the ideas.
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HM theorem proof ideas

Hilton-Milner: if A1, . . . ,Am pairwise intersect but
⋂
Ai = ∅,

Hilton-Milner:

then m ≤
(n−1
r−1

)
−
(n−r−1

r−1

)
+ 1.

The main idea of the proof of the Hilton-Milner theorem
is to reduce to a shifted system with the same properties.

Sketch: Shift, shift, shift.
If shifti←j would give a common intersection, then:

don’t do that, and instead
relabel i , j as 1, 2, and shift everything else, then
fix up with 1, 2 at the end.

Difficulty in exterior algebra setting:
limNi←j(t)L may be divisible by a 1-form ℓ other than ei .
Instead, change basis to f1 = ℓ, f2 = ei − ej , and continue.
Controlling failure to be generated by monomials is important.
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Shifting terminates

In the combinatorial set theory setting, it is obvious and
straightforward to prove that shifting operations eventually
terminate.

In the exterior algebra setting, especially where we want to avoid
certain i , j , it is still obvious, but not as straightforward to prove.

Indeed:
Performing shifti←j over i , j ∈ I ⊆ [n], we can get to a stable
system in at most

(|I |
2

)
operations.

Performing limNi←j over i , j ∈ I ⊆ [n], we can get to a stable
system in at most |I | − 1 +

(|I |
2

)
operations.

The extra operations make the subspace L “monomial enough” that
subsequent operations are easy to control.
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Questions

Question: What other theorems and/or conjectures from extremal
set theory have exterior algebra analogs?

Question: Can limits of curves in varieties help solve problems in
extremal combinatorics?
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An unexpected benefit: a new proof of HM

As an unexpected benefit of this project, and another with Bulavka,
we found a new short proof of the Hilton-Milner theorem.

The standard proof of Füredi and Frankl is short and elementary,
but involves a difficult (to me!) step.

We found a new proof that follows the same sketch as EKR, and
which uses only standard ideas. One can get a common proof of
EKR, HM, and strict HM.

(Wu, Li, Feng, Liu, and Yu arXived a paper with a similar idea a
few days after ours.)
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Let ∆ be a simplicial
complex...

Thank you! Hvala!
Teşekkürler!
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