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Abstract

Through this thesis we introduce distance-regular graphs, and present some of their
characterizations which depend on information retrieved from their adjacency matrix,
principal idempotent matrices, predistance polynomials and spectrum. Let I be a finite
simple connected graph. In Chapter I we present some basic results from Algebraic graph
theory: we prove Perron-Frobenius theorem, we show how to compute the number of walks of
a given length between two vertices of I', how to compute the total number of (rooted) closed
walks of a given length of I', we introduce adjaceny matrix A of I', principal idempotent
matrices E; of I' and introduce adjacent (Bose-Mesner) algebra of I' and Hoffman polynomial
of I'. All of these results are needed in Chapters II and III. In Chapter II we define
distance-regular graphs, show some examples of these graph, introduce distance-i matrix A;,
i=0,1,...,D (where D is the diameter of graph I'), introduce predistance polynomials p;,
i=0,1,...,d (d is the number of distinct eigenvalues) of I" and prove the following sequence of
equivalences: ' is distance-regular <= I is distance-regular around each of its vertices and
with the same intersection array <= distance matrices of I' satisfy
AA; = ZkD:O pfjAk, (0 <i,j < D) for some constants pfj <= for some constants ay, by, ¢,
(0 < h<D), cy=bp =0, distance matrices of I" satisfy the three-term recurrence
AhA = bh—lAh—l + ahAh + Ch+1Ah+1, (O < h S D) < {[,A, ...,AD} is a basis of the
adjacency algebra A(I') <= A acts by right (or left) multiplication as a linear operator on
the vector space span{l, A, A,,...,Ap} <= for any integer h, 0 < h < D, the distance-h
matrix Ay, is a polynomial of degree h in A <= T is regular, has spectrally maximum
diameter (D = d) and the matrix Ap is polynomial in A <= the number a’, of walks of
length ¢ between two vertices u,v € V only depends on h = d(u,v) <= for any two
vertices u,v € V at distance h, we have ", = af and a"*! = a!*! for any 0 < h < D — 1, and
afv = (lg forh=D <— AIE] = pjiEj (pﬂ are some constants) -~ Az = Z?:O pjiEj =4
A = Z;.lzopi()\j)Ej s A €A (i,7=0,1,...,d(= D)) < forevery 0 <i<d and for
every pair of vertices u,v of I'; the (u, v)-entry of E; depends only on the distance between u
and v <= E,;o0A; = ¢;A; (g;; are some constants) < E,; = Zio q;jA; &

Ej = %Z?:O Qz()\])A'L (Where qz()\j) = m]]’:&g;) = Ej eD ’l,j = O, 1, ,d(: D) <~

Al oA = az(»j)Ai (agj) are some constants) < A’ = E?:o af;j)Ai = A= Z?:o Z?:o G A; =
A’ eDi j=0,1,..,d. Finally, in Chapter III, we introduce one interesting family of
orthogonal polynomials - the canonical orthogonal system, and prove three more
characterizations of distance-regularity which involve the spectrum: I' is distance-regular

<= the number of vertices at distance k from every vertex u € V is |I'y(u)| = pr(No) for

ZUEV sk%u)
0 <k <d (where gy = po+ ... + pg, sk(u) = |To(uw)| + |T'1(w)| + ... + [Tk (w)| and n is number of

0 < k < d (where {pi}o<r<a are predistance polynomials) <= ¢qx(\g) = for

i Louey /(0 — Ka(u) d T where 7, = - — ;) an
vertices) <= Zuevkd(u)/(n_kd<u)>_;m()\i>ﬂ'?( h h g()\h Ai) and

i%h
ka(u) = |T'y(u)|). Largest part of main results on which I would like to bring attention, can be

b}



found in [23], [38], [24] and [9].

Keywords: graph, adjacency matrix, principal idempotent matrices, adjacency algebra,
distance matrix, distance o-algebra, distance-regular graph, distance polynomials, predistance
polynomials, spectrum, orthogonal systems



Chapter 1

Basic results from Algebraic graph
theory

1 Basic definitions from graph theory

We first introduce some basic notation from Algebraic graph theory. Throughout the
thesis, I' = (V, E) stands for a (simple and finite) connected graph, with vertex set
V =A{u,v,w,...} and edge set £ = {{u,v},{w,z},...}. Two vertices u and v in a graph I" are
called adjacent (or neighbors) in I if {u, v} is an edge of T'. If e = {u, v} is an edge of T, then
e is called incident with the vertices v and v.

vil

VIII IX
FIGURE 1
Types of graphs (the simple graphs are I and VIII, all others are not simple).

The degree (or valency) of a vertex # € V' in a graph, denoted by d,, is the number of
edges that are incident with that vertex x. A graph is regular of degree k (or k-regular) if
every vertex has degree k. Adjacency between vertices u and v ({u,v} € E) will be denoted
by u ~ v.
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FIGURE 2
The cube (V ={0,1,2,3,4,5,6,7},
E={{0,1},{0,2},{2,3},{1,3},{0,4},{1,5},{2,6}, {3, 7}, {4,5}, {4,6}, {6, 7}, {5, T} }).

Matrix A (or A(I")) stands for adjacency 01-matriz of a graph I' - with rows and columns
indexed by the vertices of I" and (A),, = 1 iff u ~ v and equal to 0 otherwise.

A sequence of edges that link up with each other is called a walk. The length of a walk is
the number of edges in the walk. Consecutive edges in a walk must have a vertex in common,
so a walk determines a sequence of vertices. In general, a walk of length n from the vertex u
to the vertex v is a sequence [x1, ey, T, €g, ..., €, Tni1] Of edges and vertices with property
e; =A{x;,xi41} for i =1,...,n and 1 = u, x,.1 = v. The vertices xs, x3, ..., ©, are called
internal vertices. If [x1, eq, o, €, ..., Tp, €, Tpy1] is @ walk from u to v then
[Tpi1, €n, Tny €n1, ..., T, €1, 1] is a walk from v to u. We may speak of either of these walks as
a walk between u and v. If u = v, then the walk is said to be closed.

a b a b ¢ d
al 0 1 1 1
b1 0 1 O
C 1 1 0 O
d|1 0 0 O
C d

FIGURE 3
Simple graph and its adjacency matrix.

For two vertices u,v € V, an uv-path (or path) is a walk from u to v with all of its edges
distinct. A path is called simple if all of its vertices are different. A path from u to u is called
a cycle, if all of its internal vertices are different, and the length of a shortest cycle of a graph
is called its girth. A simple graph is called connected if there is a path between every pair of
distinct vertices of the graph.

FIGURE 4
Simple connected graph (paths [u, g, w, k,y,i,x, h,w, f,v] and [u, w,y, z,w,v] go from u to v).
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h X
l |
y f Z
FIGURE 5

Simple graph drawn in two different ways (examples of walks are [g, a, f, h, ], [c, f, h, ¢, a, g]
and [g,b, ¢, f, f,a,g]. Walk [g,b,¢, f, f,a, g] has length 7. The vertex sequences for these
walks, respectively, are [y, w, z,y, x,w], [z, z,y,z, z,w,y] and [y, w, x, z,y, z, w, y]).

The distance O(x,y) (or distp(z,y)) in I' of two vertices x, y is the length of a shortest
xy-simple path in I'; if no such simple path exists, we set dist(z,y) = oo. The eccentricity of a
vertex u is ecc(u) := max,ey dist(u, v) and the diameter of the graph is D := max,ey ecc(u).
The set T'x(u) denotes the set of vertices at distance k from vertex u. Thus, the degree of
vertex u is 0, := |1 (u)]| = |T'(u)].

¢ V3

FIGURE 6

A Hamiltonian cycle of the cube (Hamiltonian cycle - cycle that visits every vertex of the
graph exactly once, except for the last vertex, which duplicates the first one) where is, for
example 0(2,7) = 2, ecc(b) =3, D = 3, 0, = 3.

With Mat,,«,(F) we will denote the set of all m x n matrices whose entries are numbers
from a field IF (in our case F is the set of real numbers R or the set of complex numbers C).
For every B € Mat,,«,(F) define the trace of B by trace(B) =Y i, by = bix + bao + ... + by
An eigenvector of a matrix A is a nonzero v € F" such that Av = Av for some scalar A € F.
An eigenvalue of A is a scalar A such that Av = Av for some nonzero v € F". Any such pair,
(A, v), is called an eigenpair for A. We will denote the set of all distinct eigenvalues by o(A).
Vector space E, = ker(A — AI) := {z | (A — M)z = 0} is called an eigenspace for A. For square
matrices A, the number p(A) = maxycq(a) |A| is called the spectral radius of A.

The spectrum of a graph I' is the set of numbers which are eigenvalues of A(T"), together
with their multiplicities as eigenvalues of A(T"). If the distinct eigenvalues of A(I") are
Ao > Ap > ... > A1 and their multiplicities are m(Xg), m(\1),...,m(As—1), then we shall write

spec(T') = {ArA0) \mO) - amAamny
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u Vs V3 U Uy Us U Us YV, Vs Yy ¥s_

! v, {01 00110000
n w{1010001000

w {01 01000100

Us A' Z 'h u,J]00 10100010
N 0 u, 1001000001
'.\ ’ Av11000000110
A v]01 00000011
A »w|10010010001

u, u, “ u, 10001011000
v 0000101100,

FIGURE 7

Petersen graph drawn in two ways and its adjacency matrix. It is not hard to compute that
trace(A) = 0, det((A — X)) = (A = 3)(x — 1)°(A+2)*, 0(A) = {3,1, -2},

dim(ker(A — 31)) = 1, dim(ker(A — I)) = 5, dim(ker(A + 2I)) =4, p(A) = 3,

spec(l') = {3!,15, —21}.

Let 0(A) be the set of all (different) eigenvalues for some matrix A, and let A € o(A). The
algebraic multiplicity of X\ is the number of times it is repeated as a root of the characteristic
polynomial (recall that polynomial p(\) = det(A — AI) is called the characteristic polynomial
for A). In other words, algmult 4(\;) = a; if and only if (x — A\j)*...(z — A\s)% = 0 is the
characteristic equation for A. When algmult 4(\) = 1, A is called a simple eigenvalue. The
geometric multiplicity of X is dimker(A — AI). In other words, geo mult 4(\) is the maximal
number of linearly independent eigenvectors associated with \.

Matrix A € Mat,,,,(F) is said to be a reducible matriz when there exists a permutation
matrix P (a permutation matrix is a square 0-1 matrix that has exactly one entry 1 in each

X Y] , where X and Z are both

0 Z
square. Otherwise A is said to be an irreducible matriz. PT AP is called a
symmetric permutation of A - the effect of PT AP is to interchange rows in the same way as
columns are interchanged.

In the rest of this chapter we recall some basic results from algebraic graph theory, that we
will need later:

row and each column and 0Os elsewhere) such that PTAP = [

(a.1) Since I is connected, A is an irreducible nonnegative matrix. Then, by the
Perron-Frobenius theorem, the maximum eigenvalue )\ is simple, positive (in fact, it coincides
with the spectral radius of A), and has a positive eigenvector v, say, which is useful to
normalize in such a way that min,cy v, = 1. Moreover, I' is regular if and only if v = 3, the
all-1 vector (then Ay = 4, the degree of I').

(a.2) The number of walks of length [ > 0 between vertices u and v is al, := (A"

(a.3) If T = (V, E) has spectrum spec(I') = {9 7O \™A1 then the total
number of (rooted) closed walks of length [ > 0 is trace(A') = Zf:o m(\)AL
(a.4) If T has d + 1 distinct eigenvalues, then {I, A, A%, ..., A} is a basis of the adjacency

or Bose-Mesner algebra A(I") of matrices which are polynomials in A. Moreover, if I' has
diameter D,

dimA(l") =d+1> D +1,
because {I, A, A% ..., AP} is a linearly independent set of A(T'). Hence, the diameter is always
less than the number of distinct eigenvalues: D < d.

(a.5) A graph I' = (V, E') with eigenvalues \g > \; > ... > A\, is a regular graph if and only
if there exists a polynomial H € Ry[z| such that H(A) = J, the all-1 matrix. This polynomial
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is unique and it is called the Hoffman polynomial. It has zeros at the eigenvalues \;, i # 0,
and H(\g) =n := |V|. Thus,
d

H: EH(ZL’—AJ,

M
05

where 7 := []2, (Mo — o).

2 Perron-Frobenius theorem

(2.01) Lemma
Let {-,-) be the standard inner product for R* ({(x,y) =x"y), and let A be a real
symmetric n X n matriz. If U is an A-invariant subspace of R™, then Ut is also A-invariant.

Proof: Recall that for a subspace U is said to be A-invariant if Au € U for all u € U. We
want to prove that Av € U+ for all v € U+,
Since A is real symmetric matrix, for any two vectors u and v, we have

(v, Au) = vT (Au) = (VT A)u = (Av)Tu = (Av,u). (1)

If u € U, then Au € U; hence if v € U~ then (v, Au) = 0. Consequently, by equation (1),
(Av,u) = 0 whenever u € U and v € U*+. This implies that Av € U+ whenever v € U+, and
therefore U+ is A-invariant. O

(2.02) Lemma
Consider arbitrary rectangular matriz P of order m x n in which columns are linearly
independent. The column space of P is A-invariant if and only if there is a matrix D such

that AP = PD.

Proof: Denote by M the column space of P, i.e. M = span{ P, P.s, ..., Pin} where P,; is ith
column of matrix P. Because columns of P are linearly independent we have dim(M) = n.

(=) Assume that M is A-invariant. That means AP,; € M, AP, € M, ..., AP,, € M.
Since M = span{ Py, Pia, ..., P.,} and vectors P,1, P.s, ..., P., are linearly independent they
form a basis for vector space M. Now, there are unique coefficients d;; € IF such that

AP, = di 1Py +dy P+ ... +dp1 Py,
AP,y = di12P + doPo + ... + dpo Py

AP*n = dlnp*l + d2nP*2 + ...+ dnnP*n

which gives

din dip ... dip
dyr dyp ... dyp

dnl dn2 dnn
or, simply, AP = PD.
(<) Assume that there is a matrix D such that AP = PD. Because

M = span{ Py, P.s, ..., P., } and vectors P,1, P.s, ..., P, are linearly independent they form
basis for vector space M. First note that AP,; is the ¢-th column of AP. Since AP = PD, this
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is equal to the i-th column of PD. But i-th column of PD is dy; P + doi P + ... + dp i Pen.
Therefore, AP,; is a linear combination of P,q, ..., Py,.

Now, pick arbitrary z € M. We know that there unique scalars ¢y, ¢y, ..., ¢, € F such that
r=c1Pq+ P+ ...+ ¢, Ps,. Now we have

Az = A(Clp*l + CQP*Q + ...+ CnP*n) = ClAP*l + CQAP*Q + ...+ CnAP*n

Every AP,; is linear combination of P,q, P,o, ..., Py,, therefore Ax € M. m

(2.03) Lemma
Let A be a real symmetric matriz. If u and v are eigenvectors of A with different
eigenvalues, then u and v are orthogonal.

Proof: Suppose that Au = pu and Av = nv. As A is symmetric, equation (1) implies that
plv,u) = (v, Au) = (Av,u) = n{v,u). As p # n, we must have (v, u) = 0. O

(2.04) Lemma
The eigenvalues of a real symmetric matriz A are real numbers.

Proof: Let u be an eigenvector of A with eigenvalue A. Then by taking the complex conjugate
of the equation Au = A\u we get AT = \a, which is equivalent with A7 = \@ and so @ is also
an eigenvector of A. Now since eigenvector are not zero we have (u,u) > 0. Vectors v and @
are eigenvectors of A, and if they have different corresponding eigenvalues A and A, than by
Lemma 2.03 (u,u) = 0, a contradiction. We can conclude A = A and the lemma is proved. [J

(2.05) Lemma
Let A be an n x n real symmetric matriz. If U is a nonzero A-invariant subspace of R™,
then U contains a real eigenvector of A.

Proof: We know from Lemma 2.04 that the eigenvalues of a real symmetric matrix A are
real numbers. Pick one real eigenvalue, 6 say. Notice that we can find at last one real
eigenvector for § (we know from definition of eigenvalue that there is some nonzero
eigenvector v, and if this vector have entry(s) which are complex we can consider equations
Av = 0v and AT = 0v (this is true) from which A(v 4+ v) = 6(v 4+ v)). Hence a real symmetric
matrix A has at least one real eigenvector (any vector in the kernel of (A — 1), to be precise).
Let R be a matrix whose columns form an orthonormal basis for /. Then, because U is
A-invariant, AR = RB for some square matrix B (Lemma 2.02). Since RT R = I we have

RTAR = RTRB = B,

which implies that B is symmetric, as well as real. Since every symmetric matrix has at least
one eigenvalue, we may choose a real eigenvector u of B with eigenvalue A. Then

ARu = RBu = ARu. Now, since u # 0 and the columns of R are linearly independent we
have Ru # 0. Notice that if v = [vy, ..., v,]T then Av = v, A,y + ... + v, A,, where A,; are ith
column of matrix A. Therefore, Ru is an eigenvector of A contained in U. [

(2.06) Lemma
Let A be a real symmetric n x n matriz. Then R™ has an orthonormal basis consisting of
eigenvectors of A.

Proof: Let {uy,...,u,} be an orthonormal (and hence linearly independent) set of m < n
eigenvectors of A, and let M be the subspace that they span. Since A has at least one
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eigenvector we have m > 1. The subspace M is A-invariant, and hence M= is A-invariant
(Lemma 2.01), and so M~ contains a (normalized) eigenvector u,,,; (Lemma 2.05). Then
{u1, .oy U, Uppr 1 } 18 an orthonormal set of m + 1 eigenvectors of A. Therefore, a simple
induction argument shows that a set consisting of one normalized eigenvector can be extended
to an orthonormal basis consisting of eigenvectors of A. O]

(2.07) Proposition

Suppose that A is an n X n matriz, with entries in R. Suppose further that A has
eigenvalues A\, Aa, ..., \n € R, not necessarily distinct, with corresponding eigenvectors
vy, ., Uy € R™ and that vy, ..., v, are linearly independent. Then

P'AP=D
A0 ... 0
0 X ... 0
where P = [vl vy ... vn} and D = diag(A, Ag, ..., \p) = | .. )
0 0 .. A\,
Proof: Since vy, ... v, are linearly independent, they form a basis for R", so that every
u € R" can be written uniquely in the form
u = vy + ... + apv,, where aq,...,a, € R, (2)
and
Au = Aloqvy + ... + apuy) = arAvy + ..o+ @ Av, = Miaqug + ..o+ Ao, (3)

Writing ¢ = (ay, ag, ..., ;)" we see that Equation (2) and (3) can be rewritten as

)\1041
u=Pc and Au=P : = PDc
An Qi
respectively, so that
APc= PDec.

Note that ¢ € R" is arbitrary. This implies that (AP — PD)c = 0 for every ¢ € R". Hence we
must have AP = PD. Since the columns of P are linearly independent, it follows that P is
invertible. Hence P~'AP = D as required. O

Suppose that A is an n X n matrix, with entries in R. We say that A is diagonalizable if
there exists an invertible matrix P, with entries in R, such that P~'AP is a diagonal matrix,
with entries in R.

(2.08) Proposition
Suppose that A is an n X n matriz, with entries in R. Suppose further that A is
diagonalizable. Then A has n linearly independent eigenvectors in R™.

Proof: Suppose that A is diagonalizable. Then there exists an invertible matrix P, with
entries in R, such that D = P~'AP is a diagonal matrix, with entries in R. Denote by vy, ... v,
the columns of P. From AP = PD (where D = diag(Aq, Ag, ..., \,,)) it is not hard to show that

A’Ul = )\17.)1, ceey An'Un = )\n’Un.
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It follows that A has eigenvalues Ay, ..., A\, € R, with corresponding eigenvectors
vy, ..., v, € R". Since P is invertible and vy, ..., v,, are the columns of P, it follows that the
eigenvectors vy, ..., v, are linearly independent. O

(2.09) Proposition
Let M be a n xn real symmetric matriz. Then there exist an orthogonal matriz
P = [vl Vg ... vn] such that
M = PDP'

where D is diagonal matriz whose diagonal entries are the eigenvalues of M, namely
D = diag(\1, Ag, ..., \y), not necessarily distinct, with corresponding eigenvectors
V1, Vg, .eny Up € R.

Proof: Since M is a real symmetric n X n matrix then R™ has an orthonormal basis
consisting of eigenvectors of M (Lemma 2.06). Denote these eigenvectors by vy, vy, .., v, and
set them like columns of matrix P (P = [Ul vy ... vn} ). Notice that

| |
v
PTP= ‘2 v Uy ... Up| = Iuxn

n

That is
Pt=p" (4)

Next, since {vy,vs, .., v, } is linearly independent set of eigenvectors, we have P"'M P = D
(Proposition 2.07), where D is diagonal matrix whose diagonal entries are the eigenvalues of
M, namely D = diag(Ay, Ae, ..., A,), not necessarily distinct, which correspond to eigenvectors
V1, ..., v, € R™. With another words M = PDP~!. By Equation (4) the result follows. O

(2.10) Theorem (Rayleigh’s quotient)
Let (-,-) be the standard inner product for R* ({x,y) =x"y), and let M be a real
symmetric matriz with largest eigenvalue Ag. Then

WMy) vy e R0}

(v, )

with equality if and only if y is an eigenvector of M with eigenvalue \.

Proof: Since M is a symmetric matrix it can be written as M = PDP" where P is some
orthogonal matrix having the eigenvectors of M as columns and D is diagonal matrix whose
diagonal entries are the eigenvalues of M, not necessarily distinct, that correspond to columns
of P (Lemma 2.09). Then for arbitrary y € R"\{0}

(y My) =y "My=y"PDPTy = (y'P) D_(P'y) < (y"P)MNI(Py) = Aoy y = Xo(y,y).
~—— S~——

nxn

1xn nx1

The result for first part (inequality) follows.
For second part we want to show that equality hold if and only if y is an eigenvector of M
with eigenvalue \g. We have

y, My
wMy) 0 o (y, PDP'y) = (y, \oy) & (P'y,DP"y) = (P y, MoI(P y))

(y, )
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& (PTy,(D—=XDPTy)=0 < (PTy);=0 Vi: X\ # X\

so y is orthogonal to all columns of P that are eigenvectors of the eigenvalues A; (A\; # Ao).
But then y must be in the eigenspace of the eigenvalue \y. The result for second part
(equality) follows. O

(2.11) Proposition (independent eigenvectors)

Let {1, Ao, ..., A} be a set of distinct eigenvalues for A.

(i) If {( A1, 21), (Ao, x2), ooy (Ak, i)} 1S a set of eigenpairs for A, then S = {x1, xa, ..., Tk} s
a linearly independent set.

(i) If B; is a basis for ker(A — \I), then B =By U By U ...U By is a linearly independent
set.

Proof: (i) Suppose S is a dependent set. If the vectors in S are arranged so that
M = {z1,x9,...,x,} is a maximal linearly independent subset, then

T
Tr41 = E OG5,
i=1

and multiplication on the left by A — A\, 1/ produces

(A= N1z = ZCYZA A1)y,

=1

O_E az z_ r—i—l

Because M is linearly independent, ai()\i — Ar11) = 0 for each i. Consequently, o; = 0 for each
i (because the eigenvalues are distinct), and hence x,,; = 0. But this is impossible because

eigenvectors are nonzero. Therefore, the supposition that S is a dependent set must be false.
(77) Assume that basis B; for ker(A — A1) is of the form

{vi, v2y oy vy, }, 1<t <k

Because ker(A — M\ 1) is a vector space that mean
Tt
Z civy € ker(A — \JI) for arbitrary ¢; € F.
i=1

Now, consider equation
k r
Z Z a;;v;; = 0 for unknown ay; € F.
i=1 j=1
We can rewrite this equation in the following form:

T1 T2 Tk
E aljvlj + E Oégj'UQj +...+ E Oékj'Ukj = 0,
j=1 j=1 =

]_
—_—— V—— ——
cker(A—M\I)  €ker(A—X21) cker(A—A, 1)

and this is possible if and only if
Zaijvij = O, 1= ]_7 2, ceey k.

By assumption the v,;’s from {v;1, via, ..., vir, }, 1 <4 <k, are linearly independent, and hence
a;; = 0 Vi, j. Therefore, B is linearly independent. O
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Recall: Let o(A) be a set of all (distinct) eigenvalues for some matrix A, and let A € o(A).
The algebraic multiplicity of A is the number of times it is repeated as a root of the
characteristic polynomial. In other words, algmult ,()\;) = a; if and only if
(x — Ap)™...(z — As)® = 0 is the characteristic equation for A. The geometric multiplicity of A
is dim ker(A — AI). In other words, geomult 4 () is the maximal number of linearly
independent eigenvectors associated with A.

(2.12) Theorem (diagonalizability and multiplicities)
A matriz A € Mat,«,(C), is diagonalizable if and only if

geomult 4(\) = algmult 4(\)

for each A € o(A).

Proof: (<) Suppose geomult 4(\;) = algmult 4(\;) = a; for each eigenvalue ;. If there are k
distinct eigenvalues, and if B; is a basis for ker(A — \;I), then B = B; U By U ... U By, contains
S | a; = n vectors. We just proved in Proposition 2.11(ii) that B is a linearly independent
set, so B represents a complete set of linearly independent eigenvectors of A, and we know
this insures that A must be diagonalizable.

(=) Conversely, if A is diagonalizable, and if A is an eigenvalue for A with
algmult 4 (\) = a, then there is a nonsingular matrix P such that

A 0
—1 _ _ axa
PAP =D = ( 0 B)

where A ¢ o(B). Consequently,

B s Maxa =M 0 o) L
rank(A — M) = rankP(D — A\I)P™" = rank (P [ 0 B\ P =

=rank(B—A)=n—a = a=n—rank(4— \),
and thus geomult 4 (A) = dimker(A — A\/) = n —rank(A — A\I) = a = algmult 4 (). O

Recall: Matrix A € Mat,,»,(IF) is said to be a reducible matrix when there exists a
permutation matrix P (a permutation matrix is a square 0-1 matrix that has exactly one
‘B( }Z/} , where X
and Z are both square. Otherwise A is said to be an irreducible matrix. PT AP is called a
symmetric permutation of A - the effect of PT AP is to interchange rows in the same way as
columns are interchanged.

entry 1 in each row and each column and Os elsewhere) such that PT AP = [

(2.13) Theorem (Perron-Frobenius)

Let M be a nonnegative irreducible symmetric matrix. Then the largest eigenvalue \g has
algebraic multiplicity 1 and has an eigenvector whose entries are all positive. For all other
eigenvalues we have |\;| < Ao.

Proof: Suppose x is an eigenvector of M for the eigenvalue \g, i.e. Mz = A\gx. Let y = |z
(entry-wise i.e. y = (|x1],...,|xs])). Since M is nonnegative matrix we have (y, My) > (x, Mx)
and this imply

(y My) _y"™My _y"™My _ a"Mz _ (x, M) tnm.210

v,y)  y'y a7

)\07

r — 2Ty (x,1)
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(z, Mz)

that is % > Ag. By Theorem 2.10 o < Ao, Vz € R"\{0}. We may conclude
(y, My) _
S = Ao
(v, 9)

so y must be a non-negative eigenvector for the eigenvalue )\ (see Teorem 2.10).

Now we want to show that all entries in y are strictly positive, and this we will show by
contradiction: we will assume that there exist ¢ such that y; = 0 and we will see that this
assumption imply that y; =0 for all j =1,2,...,n.

Assume that y; = 0 for some i € {1,2,...,n}. Then

n

0= Xoyi = (Aoy)i = (My); = Z (M)ij ;-
P ot
>0 >0
Since all elements in sum are nonnegative, then for each j =1,2,...,n, (M);; or y; must be
equal to 0. If (M);; =0 for all j =1,2,...,n, then, since M is symmetric, we would have that
M is reducible matrix, a contradiction. So there must bi some j such that (M);; # 0. Now
consider different case. If there exist one and just one j such that (M);; = 0, and that j is ¢
ie. if (M); =0, and (M);; > 0 for all j # 4, j =1,2,...,n then we would obtain that all
entries in y are equal to 0, a contradiction. So, there must be some j € {1,2,...,n} such that
j # 1 and (M);; # 0. For this j we must have that y; = 0. Repeating this process over and
over for every such y; (and on similar way using irreducibility and fact that y is eigenvalue)
we get that y = 0, which is a contradiction.

Assumption that there exist some i € {1,2,...,n} such that y; = 0 lead us in contradiction,
so it is not true. Therefore, entries of eigenvector y are all strictly positive, which also implies
that

any eigenvector = for the eigenvalue \g cannot have entries that are 0. (5)

Next we want to show that algmult ,(A\g) = 1. First consider geometric multiplicity.
Suppose there are two linearly independent eigenvectors xq, zy € ker(A — \gI) for the
eigenvalue \g. Then vector z = ax; + [ is also eigenvector for the eigenvalue A\, for every
a, f € R. This means that for some choice of @ and 3 we can find one entry z; =0, a
contradiction with (5). So, eigenvalue A\g must have geometric multiplicity 1. Since for
diagonalizable matrices algebraic multiplicity is equal to geometric multiplicity for every
eigenvalue A (Theorem 2.12), and every symmetric matrix is diagonalizable (by Lemma 2.06
and Proposition 2.07) we may conclude that algmult 4(A\g) = 1.

It is only left to shown that for all other eigenvalues \; of M we must have |\;| < Ao.
Assume that there exist some eigenvalue A; such that |\;| > Ag. Let y be eigenvector that
correspond to ;. Notice that

y, My
My=XNy <= y My=XM\y'y < ﬁ:)\i.

If we denote by z vector z = |y, since |{y, My)| = |y" My| = |y|" M|y| = 2" Mz (matrix M is
nonnegative) we have

[{y, My)] (z, Mz)
= |\l = Al (> o).
(v, y)] (z,2)
So we have find vector z € R"\{0} such that % > \o, a contradiction (with Rayleigh’s

quotient (Theorem 2.10)). The result follows. O
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(2.14) Example

a) Consider matrix A = . Characteristic polynomial of A4 is

_ o O O
O O O
o O O
N e

1 10

char(\) = A2(A — v/3)(\ + V/3). Tt follow that maximal eigenvalue Ay = v/3 is simple, positive
and coincides with spectral radius of A. Eigenvector for eigenvalue \g is v = (1,1, 1, \/§)T, SO
it is positive.

3 2
1234
f 1T00 01
200 01
A= 3100 01
1710
/
r

FIGURE 8
Simple graph I'y and its adjacency matrix.

000010
000100
b) Consider matrix A = 8 (1) (1) é ? 8 . Characteristic polynomial of A is
1 00101
000010

char(\) = A2(A — 1)(A — 2)(A 4+ 1)(A + 2). It follow that maximal eigenvalue Ao = 2 is simple,
positive and coincides with spectral radius of A. Eigenvector for eigenvalue \g is
v=(1,1,1,2,2,1)7, so it is positive.

6 3 123456

1100 0010

> . 2 o0 0100

A= 3100 0100

T 40101 1010

1 2 slioo0101

I, 6 LOO 00 10|

FIGURE 9

Simple graph I's and its adjacency matrix. O

(2.15) Proposition
Let T" be a reqular graph of degree k. Then:
(i) k is an eigenvalue of T.
(ii) If I' is connected, then the multiplicity of k is one.
(iii) For any eigenvalue X of I'; we have || < k.

Proof: Recall that, degree of v is the number of edges of which v is an endpoint, and that
graph is regular of degree k (or k-valent) if each of its vertices has degree k.
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(i) Let 5 =[1 1 ... 1]7; then if A is the adjacency matrix of I' we have

a a ... Qip 1 a1 +ai+ ... +a,
.11 .12 ) 1 ) " 2 . 1V vertex has degree k | . .
Au=| : R : = : E— o = k7,

Gnl Ap2 ... QApp| |1 nl + Gpa + ... + app, k

so that k is an eigenvalue of I'.

(ii) Let & = [z1 @3 ..., 23] denote any non-zero vector for which Az = kx (that is let  be
arbitrary eigenvector that correspond to eigenvalue k) and suppose that x; is an entry of
having the largest absolute value. Since Ax = kx we have

111 + A12T9 + ... + A1, Ty kl’l

Ap1T1 + oo + ... + ApnTy kx,,
171 + ajoTs + ... + ajnx, = kx;
(Ai[)>j = kfﬂj

where (Az); denote jth entry of vector Az. So > x; = kx; where the summation is over those
k vertices x; which are adjacent to x;. By the maximal property of z;, it follows that z; = x;
for all these vertices. If I' is connected we may proceed successively in this way, eventually
showing that all entries of z are equal. Thus z is a multiple of j, and the space of eigenvectors
associated with the eigenvalue k£ has dimension one.

(¢43) Suppose that Ay = Ay, y # 0, and let y; denote an entry of y which is largest in
absolute value. By the same argument as in (ii), we have Y_'y; = \y;, where the summation
is over those k vertices y; which are adjacent to y;, and so

Al =132 wil < 32" il < Klyl.
Thus |\ < k, as required. O

We conclude: Since I' is connected, A is an irreducible nonnegative matrix. Then, by the
Perron-Frobenius theorem, the maximum eigenvalue )\ is simple, positive (in fact, it coincides
with the spectral radius of A), and has a positive eigenvector v, say, which is useful to
normalize in such a way that min,cy v, = 1. Moreover, I' is regular if and only if v = j, the
all-1 vector (then \g = 4§, the degree of T).

3 The number of walks of a given length between two
vertices

(3.01) Lemma
Let T' = (V, E) denote a simple graph and let A be the adjacency matriz of I'. The number
of walks of length 1 > 0 in T, joining u to v is the (u,v)-entry of the matriz A'.

Proof: We will prove this lemma by mathematical induction.

BASIS OF INDUCTION

If I = 0 we have A° = I (1 in position (u,u) for all u € V), and the claim is true because
walks of length 0 are of form [u] for all u € V. If | = 1 we have A" = A, and so (u, v)-entry of
A'is 1 (resp. 0) if and only if u and v are (resp. are not) adjacent. The claim is true because
walks of length 1 are [u,v] iff u and v are adjacent.
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INDUCTION STEP
Denote the (u,v)-entry of A by a,, and denote the (u,v)-entry of A* by a’,.
Suppose that the result is true for [ = L, that is, there is aZ, walks of length L in T
between v and v. Consider identity A*™ = A" A. We have

L+1 _ L+1 __ § L
(A )UU - auv - a’uza’zv'

zeV

We know, by assumption, that a’. is number of walks of length L in I" joining u and z. If

a,, = 0 we know by definition of adjacency matrix that z and v are not neighbors, and
because of that there is no walk of length L + 1 between u and v, which contains z as its
penultimate vertex. For every a., = 1 we know that there is a’, walks of length L + 1
between u and v, which contains z as its penultimate vertex (there is aZ, walks of length L
between u and z, and because a,, = 1, z and v are adjacent, which means that we can use aZ,
walks between u and z and then use edge between z and v). When we sum up these numbers,
we deduce that alf! is the number of walks of length L + 1 joining u to v. Therefore, the
result for all [ follows by induction. m

(3.02) Example

Consider graph I's given in Figure 10. Let’s say that we want to find number of walks of
length 4 and 5, between vertices 3 and 7. Then first that we need to do is to find adjacency
matrix for I's. After that we need to find (3, 7)-entry (or (7, 3)-entry) of A* and A°.

12345678
1fo1 000001
2l70 100001
3101010000
Az 400101000
5100010110
6loooor1010
r, 7100001100
sli11000000
FIGURE 10
Simple graph I's and its adjacency matrix.
7 6 5 1 1 0 0 6] (12 18 7 6 1 1 1 13]
6 12 2 5 0 1 1 6 18 14 17 2 7 1 1 18
5 2 70 5 115 7 17 2 12 2 6 6 7
4 _ |1 5 07 2 5 5 1 5 |6 2 12 2 17 7 7 6
Wehave A=\ o o 5 5 g ¢ (|2adA =11 7 % 7 14 818 1 0
01 15 6 76 0 1 1 6 7 18 12 13 1
01 15 6 6 70 1 1 6 7 18 13 12 1
6 6 51 1 0 0 7 13 18 7 6 1 1 1 12
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4 The total number of (rooted) closed walks of a given
length

(4.01) Definition (functions of diagonalizable matrices)

Let A = PDP~! be a diagonalizable matrix with k distinct eigenvalues A1, Aa, ..., Ay, where
the eigenvalues in D = diag(Ai 1, Ao, ..., A\ ) are grouped by repetition. For a function f(x)
that have finite value at each \; € o(A), define

FOL 0 .0
sy=ppoppi=pl IO 0
0 0 FOWI

(4.02) Lemma
Let A be an n x n matriz with entries in R and suppose that A has r different eigenvalues
o(A) = {1, Ay, ..., A} Let & denote eigenspace that correspondent to eigenvalue \; :

Ei=ker(A-NI)={zxeR" | (A-NI)x =0} ={z e R" | Az = \;x}.

Suppose further that dim(&;) = m; for all 1 < i < r. Then matriz A is diagonalizable if and
only if my +mg + ... + m, =n.

Proof: The geometric multiplicity of A is dimker(A — AI). In other words, geo mult 4(\) is
the maximal number of linearly independent eigenvectors associated with \. By assumption
geomult 4(\;) = dim(&;) =m; (1 <i <r). Let B; denote a basis for eigenspace &;. Consider
set B=B;UDByU...U B,. Before we begin with proof of this lemma we want to answer the
following question: How much of vectors are in set 37

For eigenspaces &1, &, ...,E, we have & N E; = {0} for i # j. Why? Because, if there is
some nonzero vector u € span(B) such that v € & and u € &; for i # j we will have

Au= Nuand Au= X ju = Xlu=XMu = (N—X)u=0
from which it follows that \; = A;, a contradiction (with \; # A;). Therefore
&ﬂc‘fj:{O}forz#j - BiﬂBj:@forz';éj,

and since dim(&;) = |B;| = m; we can conclude that set B have m; + mgy + ... + m, elements,
ie.
|B| = my +mg + ... +m,.
(=) Assume that A is diagonalizable. Then A has n linearly independent eigenvectors, say
{uy,u, ..., u, }, in R" (Proposition 2.08). Since for every u; (1 <1i < n) there exist some &;
(7 €{1,2,...,r}) such that u; € &;, and since & N E; = {0} we must have
dim(&;) + dim(&) + ... + dim(&,) > n that is
m1+m2+...+mr Zn

On the other hand, since B; is basis for & C R", and since B = B; U By U ... U B, we must
have span(B) C R", that is |B| < n. With another words

mi+me+ ... +m, < n.

Therefore
mi+mo+ ...+ m, =n.
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(<) Assume that m; +my + ... + m, = n where
m; = dim(&;) = dim(ker(A — \;1)) = geomult 4()\;). Every nonzero vector from &; is
eigenvector of matrix A, and this mean that every vector from B; (1 <i < r) is eigenvector of
A (B, is basis for &;). Since B; N B; = 0 for i # j, we obtain that

matrix A have n linearly independent eigenvectors.

By Proposition 2.07, this mean that A is diagonalizable. O]

Let I' = (V, E) denote a simple graph with adjacency matrix A and with d + 1 distinct
eigenvalues Ao, A1, ..., \g. Let & denote the eigenspace & = ker(A — \;I), and let dim(&;) = m;,
for 0 < i < d. Since A is real symmetric matrix, it is diagonalizable (Proposition 2.09), and for
diagonalizable matrices we have

mo+mi+...+mg=n (6)

by Lemma 4.02.

Matrix A is symmetric n X n matrix, so A have n distinct eigenvectors U = {uy, ug, ..., up}
which form orthonormal basis for R™ (Lemma 2.06). Notice that for every vector u; € U there
exist £ such that u; € &;. Since & NE; = () for i # j, it is not possible that eigenvector u;

(1 <i <n) belongs to different eigenspaces. So, by Equation (6), we can divide set U to sets
Uy, Uy, ...,Uy such that

U;is a basis for &, U=U,UU,U..UU; and U;NU;=0.

(4.03) Definition (principal idempotents)

Let I' = (V, E) denote simple graph with adjacency matrix A, and let \g > A\ > ... > Ny
be distinct eigenvalues. For each eigenvalue \;, 0 <1 < d, let U; be the matrix whose columns
form an orthonormal basis of its eigenspace &; := ker(A — \;I). The principal idempotents of
A are matrices E; := U;U;". o

(4.04) Lemma

Let ' = (V, E) denote a simple graph with adjacency matriz A and with d + 1 distinct
eigenvalues A, A1, ..., \g. Then there exist matrices Eq, E+, ..., Eq4 such that for every
function f(x) that have finite value on o(A) we have

f(A) = F(Mo)Eo + f(M)EL + ... + f(Aa) Ea.

Proof: By Proposition 2.09, there exist matrix P' such that

A O 0

- 0 Ao 0
P'AP =D, where P = [ul Uy ... un},D: )

0 0 ... M\,

and diagonal entries \; of D are eigenvalues of A, that don’t need to be all distinct. Now, we
can permute columns of matrix P so that P looks like P = [Uy|Uy|...|Uy] (recall, U;’s are

Uy
U’

matrices which columns are orthonormal basis for ker(A — \;1)). Then PT = and

UJ

0
A:PDPT: [UO‘U1||Ud] . : : R
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Finally, from definition of function for diagonalizable matrices (Definition 4.01)

fO)I 0 .. 0 Uy
MI .. 0 Ul

f(A) = Pf(D)P™" = [Up|U4|...|Ud] I :1) : —1 =
0 0 .. fOWI]| |UT

= fQo)UoUy + FOUUL + ... + fF(A)UaUy
= f(Mo)Eo+ f(M)EL + ...+ f(X)Eq.

(4.05) Proposition

Let ' = (V, E) denote a simple graph with adjacency matriz A, with d + 1 distinct
eigenvalues g, A1, ..., \q and let Ey, E1, ..., E4 be principal idempotents of I'. Then each power
of A can be expressed as a linear combination of the idempotents E;

d

=0

d
Proof: We have p(A) = > p(\;)E;, for every polynomial p € R[z], where \; € 0(A) (Lemma
i=0
4.04). If for polynomial p(x) we pick p(z) = 2* we have
d

A=) ME;

=0

(4.06) Proposition
Let T' = (V, E) denote a simple graph with adjacency matrixz A, spectrum
spec(T') = {)\81()‘0), )\T()‘l), s A?(Ad)} and let Ey, E, ..., E; be principal idempotents of T.
Then
trace(E;) = m()\;), i=0,1,...d.

Proof: For each eigenvalue \;, 0 < i < d, we know that E; = UiUZ-T where U; is matrix whose
columns form an orthonormal basis for the eigenspace &; = ker(A — A\;I). From linear algebra
we also know that

trace(AB) = trace(BA),

where A and B are appropriate matrices for which product exist - proof of this is easy:

trace<Am><an><m> = Z(AB)’L’L = Z Z(A)zk(B>kz =

i=1 i=1 k=1
=3 ) (Bhi(A)ir =D _(BA)k = trace(ByumApxn)-
k=1 i=1 k=1
Therefore,
uy
u
trace(E;) = trace(U;U,") = trace(U,' U;) = trace( ,2 [uq|ug|...|um,]) = trace(Ln, xm, ),
U,

where m; = m();). Therefore, trace(E;) = m(\;). O



24 CHAPTER 1. BASIC RESULTS FROM ALGEBRAIC GRAPH THEORY

(4.07) Theorem
IfT = (V, E) has spectrum spec(I') = {A\7"00) XA AmOY then the total number of
(rooted) closed walks of length | > 0 is trace(A') = Zj:o m(\)AL

Proof: Number of closed walks of length k from vertex i to i is (A¥);;. Therefore, to obtain
the number of all closed walks of length k, we have to add values (Ak)zZ over all 7, that is, we
have to take the trace of A*. From Proposition 4.05, we have A" = Z?:o NE,. Tf we take

(2

traces we get trace(A*) = trace(zglzo NEy) = Z?:o A trace(E;). Therefore,

(2

d
trace(A") = Zm()\z))\f
i=0
(see Proposition 4.06), and result follows. O

(4.08) Example

Consider graph I'y given in Figure 11. This graph has three eigenvalues \y = 2,

A\ = \/75 —1i = —¥5 _ 1 and spectrum:

2 2
vio1\ (=5 1Y
__fol | VY ~ — _ =
spec(F4>—{2,<2 2) ,(—2 2>}
4
12345
5 3 1Tor1 001
2170 100
A= 3oz 01 0
4100 101
s5V10010
1 2
r,

FIGURE 11
Simple graph I'y and its adjacency matrix.

Total number of rooted closed walks of lengths 3, 4 and 5 is
3 3
trace(A%) =1-2°+2- <%5— ) +2- (%5—%) =0,

4 4
o) =122 (1) 42 (1) =0

N =

and
5 5
- V5 - —
trace(A%) =120 +2- (Y= 1) 2. (5 - 1) =10, 0

5 The adjacency (Bose-Mesner) algebra A(I")

(5.01) Definition (adjacency algebra)

The adjacency (or Bose-Mesner) algebra of a graph T is algebra of matrices which are
polynomials in A under the usual matrix operations. We shall denote this algebra by
A = A(T'). Therefore

A) = {p(A) : p € Flz]}

(elements in A are matrices). o
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(5.02) Proposition
Let ' = (V, E) denote a simple graph with adjacency matriz A and with d + 1 distinct
eigenvalues Ao, \1, ..., A\g- Principal idempotents Eq, E+, ..., E4 satisfy the following properties:

: s E dfi=j
(Z) EZ'EJ'—&JE@—{ 0 Zf@?éj s
(ii)) AE; = \,E;, where \; € 0(A);

d
(111) p(A) = > p(\)E;, for every polynomial p € Rx], where \; € o(A);
i=0
d
(Z'U) E0+E1 + ... +Ed = ZEZ = [,'
i=0

d
(v) Y NE; = A, where \; € 0(A).
i=0

Proof: From Definition 4.03 we have that E; = UiUiT, where U; is a matrix which columns
form an orthonormal basis for eigenspace & = ker(A — \;I), (0 <i < d). We know that
Uy

UJ [U1|Us|...|Ug) =1 soU'U, = Liti=j, Therefore

: HE2leld ’ v 0 otherwise. ’

Uy
o gyt U =g
E.E; =UU, U;U; —{ 0 ifid] =0, E;,

and (i) follows.
For (ii) we have

and (i) follows.
Proofs for (iii), (1v) and (v) easy follow from Lemma 4.04. O

(5.03) Proposition
Suppose that non-zero vectors vy, ..., v, in a finite-dimensional real inner product space are
pairwise orthogonal. Then they are linearly independent.

Proof: Suppose that aq, ..., a, € R and
a1y + ... + av,. = 0.
Then for every ¢ = 1, ..., 7, we have
0= (0,v;) = {101, ..., U, ;) = a1 (V1,0;) + ... + (U, V) = V5, ;)

since (v;,v;) = 0 if j # 4. From assumption v; # 0, so that (v;,v;) # 0, and so we must have
a; = 0 for every ¢ = 1, ..., r. It follows that vectors vy, ..., v, are linearly independent. O

(5.04) Proposition
If simple graph T has d + 1 distinct eigenvalues, then {I, A, A”, ...,Ad} is a basis of the
adjacency (Bose-Mesner) algebra A(T).
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Proof: We have that the set {Ey, E, ..., E;} form orthogonal set (Proposition 5.02(¢)). That
means that set {Ey, E1, ..., E;} is linearly independent (Proposition 5.03).
Next, from Proposition 5.02(iii) we see that if for polinomyal p we pick 1, z, 22, .., z?,
then we can write A", for every i € {0, 1,2, ...,d}, like linear combination of Ey, E1, ..., E; :
I = Ey+E,+..+Ey,
A MEo+ ME| + ...+ NEy,
A® = XNE,+MNE,+..+)NE,,

AY = ME,+ ME, + ..+ )\E,

Notice that the above equations we can write in matrix form

I 1 1 .. 1] [E
A )\0 )\1 )\d El
A (NN L N |E,

A M A L M B

-~

=B

Matrix BT above is Vandermonde matrix, and it is not hard to prove that columns in BT
constitute a linearly independent set (see [37], page 185) (hint: columns of B" form a linearly
independent set if and only if ker(B") = {0}).

Now, we set up question: Is it {7, A, A?, ..., A?} linearly independent set? Assume it is not.
Then, they would be some numbers ay, o, ..., ag € R such that
aol + a1 A + anA® + ... + ayA? = 0. We would then obtain that

ﬁOEo + 51E1 + ...+ ﬁdEd =0

where
ﬂi:Oéo—i‘Oél/\i—F...—i—Oéd)\?, OSZSCZ

In general, it may happen that 8; = 0 for all ¢, even if some of «; are not zero. But, from fact
that

_ﬁo_ _1 )\0 )\g )\g_ _CEO_
ﬁl 1 )\1 )\% >\Cll (071
Bol = [1 A2 A3 o A3 |
_Bd_ _1 )\d )‘?l . /\z_ _ad_
e ”

where BT is actually a Vandermonde matrix, above system have unique solution, and this
imply that if some of «; are nonzero, then also some of 3; are nonzero. We obtain that
{Ey, E, ..., E4} is linearly dependent set, a contradiction.

Since matrix B is invertible, every Ey, k = 0,1, 2, ...,d can be expressed as linear
combination of I, A, A%, ..., A%. Matrices A%™', AT .. we can write as linear combination of
I, A, A% .. A? because A" = Z?:o ME; for every ¢ (Proposition 4.05). So {I,A,A?, ..., A%} is
maximal linearly independent set.

Therefore, {I, A, A ..., A%} is a basis of the adjacency algebra A(T"). ]

(5.05) Observation
From the last part of the proof of Proposition 5.04 we have that that principal
idempotents are in fact also elements of Bose-Mesner algebra. o
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(5.06) Proposition
Let T = (V, E) denote a graph with diameter D. Prove that the set {I, A, A, ..., A"} is
linearly independent.

Proof: Assume that apl + a1 A + ... + apA” = 0 for some real scalars ag, ..., ap, not all 0.
Let i = max{0 < j < D :q; # 0}. Then

. 1 .
A = f(&g] + OélA + ...+ O{i_lAl_l). (7)

Q;

Pick x,y € V with d(z,y) = i. Recall that for 0 < j < D, the (z,7)-entry of A’ is equal to the
number of all walks from x to y that are of length j (see Lemma 3.01). Therefore the
(z,y)-entry of A’ is 0 for 0 < j <i — 1, and the (z, y)-entry of A" is nonzero. But this
contradicts Equation (7). O

(5.07) Proposition
In simple graph I with d 4+ 1 distinct eigenvalues and the diameter D, the diameter is
always less than the number of distinct eigenvalues: D < d.

Proof: If T has d + 1 distinct eigenvalues, then {I, A, A% ..., A%} is a basis of the adjacency
or Bose-Mesner algebra A(I") of matrices which are polynomials in A (Proposition 5.04).
Moreover, if I has diameter D,

dimA(T) =d+1> D +1,
because {I,A, A% ..., A"} is a linearly independent set of A(T") (Proposition 5.06). Hence, the
diameter is always less than the number of distinct eigenvalues: D < d. O]

(5.08) Example
a) Consider graph I's given in Figure 12. Eigenvalues of I's are \y = 3 and \; = —1, so
d + 1 = 2. Diameter is D = 1. Therefore D = d.

2
1234
1T01 11
20 11
3 A= 3177 01
1710
r, 1

FIGURE 12
Simple graph I's and its adjacency matrix.

b) Consider graph I'y given in Figure 13. Eigenvalues of T are A\g = 3, \; = v/5, Ay = 1,
A3 = —1 and Ay = —V/5, so d + 1 = 5. Diameter of I's is D = 3. Therefore D < d.
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FIGURE 13
Simple graph I'q and its adjacency matrix. O

6 Hoffman polynomial
Matrices P and () with dimension n x n are said to be similar matrices whenever there

exists a nonsingular matrix R such that P = R™!QR. We write P ~ () to denote that P and
() are similar.

(6.01) Lemma (similarity preserves eigenvalues)
Similar matrices have the same eigenvalues with the same multiplicities.

Proof: Product rules for determinants are
det(AB) = det(A) det(B), for all n x n matrices A, B

and

det <§ g) = det(A) det(D) if A and D are square.

1
Use the product rule for determinants in conjunction with the fact that det(P~!) = dct(P) to
e

write

det(A — M) = det(P~'BP — ) = det(P~1(B — \I)P) =
= det(P~ ') det(B — M) det(P) = det(B — ).

Similar matrices have the same characteristic polynomial, so they have the same
eigenvalues with the same multiplicities. O]

(6.02) Lemma
If A and B are similar matrices and if A is diagonalizble, then B is diagonalizable.

Proof: Since A and B are similar, there exists a nonsingular matrix P, such that

B = P71 AP. Since matrix A is diagonalizable, we know that there exist an invertible matrix
R, with entries in R, such that A = RAqR™!, where A is diagonal matrix, with entries in R.
Now we have

B=P AP =P 'RAR'P = (P 'R)Ay(P'R)™".

If we define D := P~'R we have
B = DAODfl.

Therefore, B is diagonalizable. ]



6. HOFFMAN POLYNOMIAL 29

(6.03) Lemma
Let A and B be a diagonalizable matrices. Then AB = BA if and only if A and B can be
simultaneously diagonalized 1.e.,

A=UAU" and B=UBU"'
for some invertible matrix U, where Ay and By are diagonal matrices.
Proof: (=) Assume that matrices A and B commutes, and assume that
0(A) = { kg, Meyy -os Aky +» with multiplicities m(A, ), m(A,), ...m(Ag,). Since A is

diagonalizable there exist invertible matrix P such that Ay = P~'!AP where columns of P are
eigenvectors of A and Ay = diag(A1, A2, ..., An) (A’s not necessary distinct). We can reorder

Mgl O ... O
0 XMl ... O
columns in matrix P so that P produces Ay = . where each [ is the
0 0 ... Nd

identity matrix of appropriate size.
Now consider matrix D = P~'BP (from which it follow that B = PDP~!). We have

AB = BA
PAP'PDP! = PDP!'PA,P!
PA,DP™' = PDAyP!

AoD = DA
)\1 0 .. 0 d11 d12 dln d11 d12 dln )\1 0 .. 0
0 X ... O doy dog ... day doyy day ... day 0 X ... O
0 0 ... A\ |du dp2 ... dpn dpy dpa ... dpy 0 0 ... X\

)\1le - dij)\j

B, 0 .. O
0 B,

So, if \; # A\; we have d;; = 0, and from this it follow D = | . , for some
0 0 .. B,

matrices By, Bs, ..., By, where each B; is of the dimension m(Ag,) x m(\g,). Since B is

diagonalizable and D = P~!BP it follows that D is diagonalizable (Lemma 6.02), so there
exists an invertible matrix R, with entries in R such that R~*DR is a diagonal matrix, with

entries in R, that is
D = RDyR™ .

Similar matrices have the same eigenvalues with the same multiplicities (Lemma 6.01), so we
have that Dy = B, that is
D = RByR™"

and from form of matrix D we can notice that R have form

R 0 ... O
0 R, ... O

0 0 .. Ry
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Now we have
B=PDP!'=PRB,R'P L

Notice that RAgR™! is equal to Ay because R\ IR, 1 = \,I. Therefore, we have found matrix
U := PR such that
A=UAU™" and B=UBU .

(<) Conversely, assume that there exist matrix U such that
A=UAU™" and B=UBU™"'

where Ay and By are diagonal matrices, for example

a11 0 0 bll 0 0

0 a .. 0 0 b .. 0
Ao=| . 7 | and By= . |

0 0 ... apn 0 0 ... by,

Notice that A[)BQ = B()Ao. Then
AB=UAU ' UBU ' =UAB,U ' =UByA U =UBU ' UA U = BA.

Therefore, matrices A and B commute. O

(6.04) Corollary
Let A and B be symmetric matrices. Then A and B are commuting matrices if and only if
there exists an orthogonal matriz U such that

A=UAU", B=UBU',

where Aqg is a diagonal matriz whose diagonal entries are the eigenvalues of A, and By is a
diagonal matriz whose diagonal entries are the eigenvalues of B.

Proof: Proof follow from Lemma 2.09 and from proof of Lemma 6.03. If we use Lemma 2.09,
in the proof of Lemma 6.03 matrices P~!, R~! and U~! we can replace with P", R and U,
respectively. ]

(6.05) Theorem (Hoffman polynomial)
Let T' = (V| E) denote simple graph with n vertices, A be the adjacency matriz of T and let

J be the square matriz of order n, every entry of which is unity. There exists a polynomial
H(x) such that
J=H(A)

if and only if ' is reqular and connected.

Proof: (=) Assume that there exist polynomial H(z) = hg + hyx + hox® + ... + hpa® such
that J = H(A) that is J = hol + h1A + hoA® + ... + hA¥. Then we have

AJ = hoA + A% + hoA® + ...+ h A¥ and

JA = hoA + hi A% + hoA® + ... + h, A",
that is AJ = JA (A commutes with J). With another words (since A is symmetric)

1 ai; a2 ... QAip

ay;; a1 ... QAip 1 1 ... 1
11 1 12 A29 ... Q9p

1 1
a2 G2 ... QA2p 1 1 1

A1y Qop o Gpp| [1 1 001 1 1 ... 1] (a1, a2, ... apn
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We denoted valency of vertex u by 4, and it is not hard to see that d§, = (AJ),, for arbitrary
v, and that d, = (JA),, for arbitrary w. Since (AJ),, = (JA),, we have 6, =, for every
u,v € V. So I is regular.

Next, we want to prove that graph I' is connected. It is not hard to see that, if v and v are
any vertices of T, there is, for some ¢, a nonzero number as the (u, v)-th entry of A*;
otherwise, no linear combination of the powers of A could have 1 as the (u,v)-th entry, and
J = H(A) would be false. Thus, for some ¢, there is at least one path of length ¢ from u to v.
But this means I' is connected.

(<) Conversely, assume that I is regular (of degree k) and connected. As we saw in the
proof on necessity, because I is regular, A commutes with J. Thus, since A and J are
symmetric commuting matrices, there exists an orthogonal matrix U such that

J=UJU", A=UAU',

where Jj is a diagonal matrix whose diagonal entries are the eigenvalues of J, namely

Jo = diag(n, 0,0, ...,0), and Ay is a diagonal matrix whose diagonal entries are the eigenvalues
of A, namely Ay = diag(A\s,, Ay, s Ar,,). Now 5 = [1 1 ... 1]T is an eigenvector of both A and
J, with k£ and n the corresponding eigenvalues, a consequence of the fact that I' is regular of
degree k. Because I' is connected, k is an eigenvalue of A of multiplicity 1 (Proposition 2.15)
(also, from the same proposition, an eigenvalue of largest absolute value; see also Theorem
2.13). Let A\g =k, A1, ..., Ag be the distinct eigenvalues of A, and let

(Ao — i)

=1

-
Il

where n is order of A. We can always reorder columns of matrix U in A = UA U and obtain
that A is of form Ay = diag(Ag, Asys -5 As,, ). Then

XN 0 .0 H(Xo) 0 0 n 0 .. 0
0 A, .. O 0 H(\s,) .. 0 00 .. 0
HA)=H(], b= | . e N e
0 O As,, 0 0 . H()\,) 00 0
that is
H(Ao):JQ,
say

Jo = hol + kiAo + hoAf + ... + haAj.
Notice that
A=UAUT,
A=A - A=UAUUAUT =UAUT,

A=A A A=UAUTUAUT ..UAUT =UAUT,

d times
SO

J=UJU" = U(hol + h1Ag + ho A} + ... + haADU " = H(A).
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Let us call
n](x—N\)
H(z) = ——
flow-»

the Hoffman polynomaial of graph I', and say that the polynomial and graph are associated
with each other. It is clear from this formula that this polynomial is of smallest degree for
which J = H(A) holds. Further, the distinct eigenvalues of A, other than Ay, are roots of
H(z).




Chapter 11

Distance-regular graphs

In this chapter we will define distance-regular graphs and show some examples of graphs
that are distance-regular. Main results will be the following characterizations:

(A) T is distance-regular if and only if it is distance-regular around each of its vertices and
with the same intersection array.

(B) A graph I' = (V, E) with diameter D is distance-regular if and only if, for any integers
0 <i,5 < D, its distance matrices satisfy

AA; = ZpkAk (0<1i,5<D)

for some constants pf]

(B’) A graph I' = (V, E)) with diameter D is distance-regular if and only if, for some
constants ap, by, ¢, (0 < h < D), ¢g = bp = 0, its distance matrices satisfy the three-term
recurrence

ApA =by 1 Ap1 +anAp + chiApn (0<h < D),

where, by convention, b_; = cpy1 = 0.

(C) A graph I' = (V, E)) with diameter D is distance-regular if and only if {/, A, ..., Ap} is
a basis of the adjacency algebra A(T).

(C’) Let I' be a graph of diameter D and A;, the distance-i matrix of I'. Then I is
distance-regular if and only if A acts by right (or left) multiplication as a linear operator on
the vector space span{l, Ay, A, ..., Ap}.

(D) A graph ' = (V, E) with diameter D is distance-regular if and only if, for any integer
h, 0 < h < D, the distance-h matrix Aj, is a polynomial of degree h in A; that is:

A, =pu(A) (0<h<D).

(D’) A graph T' = (V, E) with diameter D and d + 1 distinct eigenvalues is distance-regular
if and only if I is regular, has spectrally maximum diameter (D = d) and the matrix Ap is
polynomial in A.

(E) A graph [' = (V, E) is distance-regular if and only if, for each non-negative integer ¢,
the number a’,, of walks of length ¢ between two vertices u,v € V only depends on h = d(u, v)
(E’) A regular graph T' = (V, E') with diameter D is distance-regular if and only if there
are constants af and a/*! such that, for any two vertices u, v E V' at distance h, we have

a, = al and a"+' = /" for any 0 < h < D — 1, and a2 = af for h = D.

33
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Characterizations (F), (H) and (I) have two terms which are maybe unfamiliar:
predistance polynomials and distance o-algebra D. Predistance polynomials are defined in
Definition 11.07 and distance o-algebra D in Definition 8.07. Here we can say that predistance
polynomials {p; }o<i<a, dgrp; = i, are a sequence of orthogonal polynomials with respect to
the scalar product (p, ¢) = Ltrace(p(A)q(A)) normalized in such a way that ||p;||* = pi(Ao),
where spec(A) = {A\{", A1, ..., A}, and that vector space D = span{l, A, A,,...,Ap} forms
an algebra with the entrywise (Hadamard) product of matrices, defined by

(X oY)uw = (X)uwo(Y)uo-

(F) Let I be a graph with diameter D, adjacency matrix A and d + 1 distinct eigenvalues
Ao > A >...>Ag. Let A;, i =0,1,..., D, be the distance-i matrices of I', E;, j =0,1,...,d, be
the principal idempotents of I', let p;;, i = 0,1, ..., D, j = 0,1, ...,d, be constants and p;,
j=0,1,...,d, be the predistance polynomials. Finally, let A be the adjacency algebra of T',
and d = D. Then

I' distance-regular <= AE; =p;E;, i,7=0,1,..,d(=D),

d
<~ AizzpjiEja Z,]IO,l,,d<: D),

J=0

d
< Azzzpl()\J)Ej, Z,j:O,l,,d(I D),
7=0

— A, e A i=0,1,..,d(=D).

(G) A graph I'' with diameter D and d + 1 distinct eigenvalues is a distance-regular graph
if and only if for every 0 < i < d and for every pair of vertices u,v of I, the (u,v)-entry of E;
depends only on the distance between u and v.

(H) Let I' be a graph with diameter D, adjacency matrix A and d + 1 distinct eigenvalues
Ao > A >...>Ag. Let A;, i =0,1,..., D, be the distance-i matrices of I', E;, j =0,1,...,d, be
the principal idempotents of I, let ¢;;, ¢ = 0,1, ..., D, 7 = 0,1, ...,d, be constants and p;,
j =0,1,...,d, be the predistance polynomials. Finally, let ¢;, j = 0,1, ...,d be polynomials
defined by ¢;();) = mjizgj\\gg, i,7=0,1,...,d, let A be the adjacency algebra of I', D be
distance o-algebra and d = D. Then

I' distance-regular <= Ej;oA; = ¢;;A;, 1,7=0,1,...d(= D),

D
< Ej :ZQ’LJA“ ]:O,l,,d(: D),
=0

&

|

| —
R
~
<
=
<

|
=
=
u&.
—~

I
S

&
m
9
<

|
=
A
i
S

(I) Let T be a graph with diameter D, adjacency matrix A and d + 1 distinct eigenvalues
Ao > A > ...> N Let A;,i=0,1,..., D, be the distance-i matrix of I', E;, j = 0,1, ...,d, be
the principal idempotents of I', and let al(-J), 1=0,1,....,D, 7 =0,1,....d, be constants. Finally,
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let A be the adjacency algebra of I', D be distance o-algebra and d = D. Then
I distance-regular <= A7 o0 A; = agj)AZ-, i,7=0,1,...,d(= D),
d
= A=) a4, ij=0]1,.4d=D)
i=0
= A= gNA, j=01,..d=D),

=0 [=0
— AeD, j=0.1,..d.

7 Definitions and easy results

Let I' = (V, E) denote a simple connected graph with vertex set V, edge set E and
diameter D. Let 9 denotes the path-length distance function for I'.

FIGURE 14
Petersen graph. For example, we have 0(vy,vs) = 2, I'1(v1) = {uq, vs3,v4},
[y(ve) = {u1, us, ug, us, v1,vs}, [Ti(v1) N Pa(v2)| = [{ur, vs}| = 2.

FIGURE 15
The cube.

(7.01) Definition (DRG)
A simple connected graph I' = (V| E) with diameter D is called distance-regular whenever
there exist numbers p?j (0 < h,i,5 < D) such that for any =,y € V with d(x,y) = h we have

Ti(z) N T5(y)] = pij.

where I';(z) :=={z € V : 0(z,z) = i} and |I';(z) N T';(y)| denote the number of elements of the
set I';i(x) N Ly(y). o
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(7.02) Example (the cube is distance-regular graph)
The graph that is pictured on Figure 15 is called cube. We will show that the cube is
distance-regular, and in this case we want to use only the definition of distance-regular graph.

From Definition 9.01 we will see that the cube is from family of Hamming graphs, and in
Lemma 9.08 we will prove that Hamming graphs are distance-regular. If we compare this
proof with the proof of Lemma 9.08, the proof of Lemma 9.08 is much more elegant.

Let V =4{0,1,..., 7} denote set of vertices of the cube. Notice that the diameter of graph
is 3 (D = 3). We must show that there exist numbers p}; (0 < h,i,j < 3) such that for any
pair x,y € V with d(z,y) = h we have
Ti(z) NT(y)| = {z € V : 9(x,2z) = i and d(z,y) = j}| = p};. Because we want to use only
definition, we must to consider all possible numbers p?j, and for every of this number we must
examine all possible pairs. With another words, since d(x,y) = d(y, x), we will have to
examine

for every pair of vertices x, y € V.

i EY < ) [,(0) b) r.(5) <

>$2 > (0) r,5)C_64C

$6>T,0) rE T8

0 ry(5)

FIGURE 16
The cube drawn on four different way, and subsets of vertices at given distances from the root.

Consider the number pY; for 0 <4 < 3, that is consider |To(z) N To(y)|, |T1(x) N T1(y)],
ITa(x) N Ta(y)], [I's(x) N Ts(y)| for every two vertices z, y such that d(x,y) = 0. Note that for
x,y € V we have d(x,y) = 0 if and only if z = y. Therefore pl; = |T';(z) N Ty(x)| = |Ts(x)| for
every x € V. But itiseasytoseethat I;(z)| =11if i € {0,3}, and |[';(x)| = 3 if i € {1, 2}.

Consider the number p for 0 <1i4,5 < 3, where ¢ 7é j. Note that for =,y € V we have
d(x,y) = 0 if and only if x = y. Since i # j we have pY; = [[';(z) N T';(x)| = [@] = 0 for every
zeV.
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Next we want to find numbers p}j for 0 < 1,5 < 3. Note that for z,y € V we have
O(z,y) = 1 if and only if x and y are neighbors. Using Figure 16 one can easily find that
Poo = 0, pgy = 1 = piy (for example |To(0) NT'1(2) = [{0} N {0,3,6}] = [{0}| = 1),
Poz = 0 = Py, Pog = 0 = p3y (for example |To(0) NT3(2)| = [{0} N {5}| = [0] = 0), p}; =0,
P2 = 2 = Py, p%s. =0= pzlﬂa P =0, pés =3= pém p:153 = 0.
We will left to reader, like an easy exercise, to evaluate p?j for 0 <i,5 <3 and p?j for
0<i,j<3(pgo=0,p51 =0=ply, P =1 =p3o, Ps =0 =p3o, P, =2, ...) 0

It is clear from the solution of Example 7.02, that the given definition of distance-regular
graphs is very inconvenient if we want to check whether a given graph is distance-regular or
not. Therefore, we want to obtain characterizations of distance-regular graphs, which will
relieve check whether a given graph is distance-regular or not. In Theorem 8.12
(Characterization A), Theorem 8.15 (Characterization B), Theorem 8.22 (Characterization C)
and so on, we will obtain statements that are equivalent with definition of distance-regular
graph and which are "easier” to apply.

(7.03) Proposition

Let T' = (V, E) be a distance-regular graph with diameter D. Then:

(i) For 0 < h,i,j < D we have p?j = 0 whenever one of h,i,j is greater than the sum of
the other two.

(i1) For 0 < h,i,j < D we have p?j % 0 whenever one of h, 1,7 is equal to the sum of the
other two.

(iii) For every x € V and for every integer 0 < i < D we have pY; = |T;(x)|.

(iv) T is reqular with valency p?;.

Proof: (i) Pick z,y € V with d(x,y) = h and assume p; # 0. This means that there is z € V
such that 0(x, z) =i and J(y, z) = j. By the triangle inequality of path-length distance 0 we
have h <14 7,1 < h+j and 7 <1+ h. It follows that none of h,i, j is greater of the sum of
the other two.

FIGURE 17
[lustration for sets I';(z) in connected graph T’

(74) Assume that one of h, 1,7 is the sum of the other two. If h =i+ j, then pick x,y € V
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with d(z,y) = h, and let z denote a vertex which is at distance ¢ from x and which lies on
some shortest path between x and y. Note that z is at distance j from y, and so p?j # 0.

If i = h + j, then pick z, z € V with 0(x, z) = i. Let y denote a vertex which is at distance
h from = and which lies on some shortest path between z and z. Note that d(y, z) = j, and so
z € Ty(x) NT;(y). Therefore, pf; = [Ts(x) NT;(y)| # 0. The case j = h + i is done analogously.

(ii7) Pick z € V and note that p% = |T;(z) N T;(z)| = |Ty(z)].

(1v) Immediately from (zii) above. O
From now on we will abbreviate k; = p.

(7.04) Lemma
Let I' = (V, E) be a distance-regular graph with diameter D, and let k; = p%. Then:
(z) k;hp?j = k;pl, for1<i,j,h < D;
(ii) p}ll,h—l + iy, +p]f,h+l = k1 f07”.0 <h<D;
(i) if h+i < D then pfll,h—l < Pl

Proof: (i) Fix z € V. Let us count the number of pairs y, z € V such that d(z,y) = h,
I(x,z) = j and d(y, z) = i. We can choose y in k, different ways (k;, = p), = |Tn(z)]), and for
every such y, there is p; vertices z (0(z, z) = j and O(y, z) = i). Therefore, there is kxp]; such
pairs.

On the other hand, we can choose z in k; different ways, and for every such z, there is p{h
vertices y (9(x,y) = h and d(y, z) = 7). Therefore, there is k;p}, such pairs.

It follows that k‘hp?j = jpgh.

e LX M) Thx) Tha(X) [ Fo(X)

FIGURE 18
Ilustration for numbers p}; and for sets Iy (x) (vertices that are on distance A from z) of
distance-regular graph.

(1) p}j_1 + Pl + Py is the number of neighbors of arbitrary vertex from I'y(z),
1 < h < D. Since I' is regular with valency k; (by Proposition 7.03(7i7)), this number is equal
to kl-

(7i1) Pick arbitrary y € I'y(x) and arbitrary z € I'yi(x) N T;(y) (such z exist because
h+1i < D). Notice that z is on distance ¢ from y. We have I';,_1(x) N 'y (y) C T'ipi(2) N T1(y),
because all vertices that are in I',_1(x) N T'1(y) are on distance ¢ + 1 from z, and maybe there
are some vertices in I';11(2) NIy (y), which are not in I',_; (). Therefore

Py = T1(y) NThoa(2)] < Tu(y) NTiga(2)] = plig L

For better understanding of distance-regular graphs we will next introduce concept of local
distance-regular graphs.
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(7.05) Definition (local distance-regular graph)
Let y € V be a vertex with eccentricity ecc(y) = € of a regular graph I'. Let Vi, := T'x(y)
and consider the numbers

cp(x) == |1 (z) N Vi),

ap(z) = [Ty (z) NV,

be(z) == |T'1(z) N Vi,
defined for any = € Vj and 0 < k < e (where, by convention, co(x) = 0 and b.(z) = 0 for any
x € V.). We say that I' is distance-regular around y whenever cg(x), ax(z), by(x) do not
depend on the considered vertex x € V}, but only on the value of k. In such a case, we simply

denote them by ¢, ar and by, respectively, and we call them the intersection numbers
around y. The matrix

0 ¢ ... Ccq1 ce
Z(y) = |a a .. ac_1 ac

bp b1 ... b._y O

is called the intersection array around vertex y. o

Vv, V, V.,

o<

@iop
A+
@)k

FIGURE 19
Intersection numbers around y.
R
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FIGURE 20

Simple connected regular graph that is distance-regular around vertices 1 and 8 (intersection
numbers around 1 are ¢cg =0, a9 =0,00=4,¢c1=1,a; =0,0; =3, co =2, a, =0, by = 2,
c3=3,a3=0,b3=1,¢4 =4, ay =0, by =4). This graph is known as Hoffman graph.
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FIGURE 21
Simple connected graph that is distance-regular around vertex 14.

(7.06) Comment (I" distance-regular = I' is distance-regular around every vertex)
It follows directly from a definition of distance-regular graph we see that if a graph I is
distance-regular then it is distance-regular around each of its vertices and with the same
intersection array. In other words, if we consider the partition I1(7) of V(I") (where I is
distance-regular) defined by the sets I'y(i), k = 0, 1, ..., ecc(i), the corresponding quotient
['/TI(3) is a weighted path with structure independent of the chosen vertex .
Locally distance-regular graphs shown in Figure 20 and 21 are not distance-regular. O

(7.07) Comment (intersection numbers)
Let I' = (V, E) denote arbitrary connected graph which is distance-regular around each of
its vertices and with the same intersection array

0 ¢ ... Co1 c
1= ap Ay ... Qg—1 Q¢
bp b1 ... b1 O

Then every vertex has the same eccentricity ¢ and diameter of I" is D = . Directly from
definition of distance-regularity around vertex it follow that for every 0 < h < D there exist
numbers ¢y, a and by, such that for any pair of vertices z,y € I' with d(x,y) = h, we have

cn = [Di(@) N Thoa(y)| for h=1,2,... D,
ap, = |I'i(z)NTh(y)| for h=0,1,..., D,
b, = |I'i(z)NThi(y)| for h=0,1,...,D — 1.

where bp = cg = 0. We will call these numbers the intersection numbers of T'. O

(7.08) Comment

Let x,y be any pair of vertices with d(x,y) = h and let I' = (V, E) denote arbitrary
connected graph which is distance-regular around each of its vertices and with the same
intersection array. Then the intersection number a;, is equal to the number of neighbors of
vertex x that are on distance h from y, coefficient b, presents the number of neighbors of
vertex x that are on distance h + 1 from y and coefficient ¢; presents the number of neighbors
of vertex x that are on distance h — 1 from y. O



7. DEFINITIONS AND EASY RESULTS 41

y
F(y)  Tuy) Foay) Tuy)  Toaly) Fo(y)
FIGURE 22
[lustration for coefficient ay,, by, and ¢, in connected graph which is distance-regular around
each of its vertices and with the same intersection array. O

(7.09) Lemma

Let T' = (V, E) denote arbitrary connected graph which is distance-regular around each of
its vertices and with the same intersection array. Then the following (1)-(iii) hold.

(i) T is reqular with valency k = by.

(i1) ag =0 and ¢, = 1.

(111) a; + b; +¢; = k for 0 <i < D.

Proof: Consider graph pictured on Figure 22. Where are edges of this graph? We can notice
that it is not possible to have edge between sets I';(y) and T';;12(y) for some 1 <i < D — 2
(Why?). So every edge in this graph is between I';(y) and I';41(y), and because of that

ap + by, + ¢, is valency of vertex x.

(1) Pick x € V. We have |I';(x)| = |I'y(x) N Ty (z)| = by (see Comment 7.07). It follows that
I' is regular with valency k& = bg.

(i1) Pick x € V and note that we have ag = |T'y(z) NTo(z)| = |@] = 0. Pick y € V such that
J(z,y) = 1 and note that we have ¢; = |[I';(z) NTo(y)| = {y}| = 1.

(173) Pick x € V, 0 <i < D and y € T';(x). Note that, by definition of path-length distance,
all neighbors of y are at distance either ¢ — 1 from z, or ¢ form x, or ¢ + 1 from x. Therefore,
[y (y) is a disjoint union of I'; (y) N T';—1(x), I'1(y) N Ty(x) and T’y (y) N Ty (x), and so we have
k=0bo=|I(y)| = T1(y) NTima ()| + [T1(y) N i) + [Ti(y) NTisa(@)] = ¢ + a; + bi. 0

Let ' be distance-regular graph with diameter D. By Lemma 7.09 T is regular with
valency k = by, and because of (iii) of the same lemma we have a; = k —b; — ¢; for 0 < i < D.

(7.10) Proposition

Let T' = (V, E) denote arbitrary connected graph which is distance-reqular around each of
its vertices and with the same intersection array and let k; = pY. Then

(i) by > by > by > ... > bp_y;

(11) c1 < o <e3< ... <cpy

(111) ki_1b;—1 = kic; for 1 <i < D;

(ZU) k?z = (bgbl...bi_1>/<0102...0i) fOT 1 S 1 S D.

Proof: (i) Pick x,y € V with d(z,y) = i. Consider a shortest path [z, z1, 29, ..., 2i_2, Zi_1, Y]
from z to y. Consider the distance-partitions of I" with respect to vertices x and z; (see Figure
23 for illustration). Denote by B; set B; = I';11(z) N Ty (y), by B;_1 set B;_1 = 'j(z1) NT1(y)
and notice that b; = |B;|, b;_1 = |B;_1|. Pick arbitrary vertex w € B;. We have that w ~ y and
J(z1,w) = i. This mean that w € B;_;. We conclude that B; C B;_1, and therefore

bi = |Bi| < [Bi_1] = bi_1.
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N Mo(z) Ta(z) T(z)\T.(z) 'o(z))

i-1

Mz)  Ty(z)

FIGURE 23
Mlustration for coefficient a;, b; and ¢; in connected graph I'" with two different partition.

(i7) We will keep all notations from (7). Notice that y must be in I';_1(z;). Now, denote by
M set M =T;_1(x) NT1(y), by N set N =T_5(21) NI'1(y), and notice that |M| = ¢,
|N| = ¢;_1. Pick arbitrary u € N. Note that since u is a neighbor of y, we have
O(z,u) € {i — 1,4, + 1}. But on the other hand, d(u,z) <7 — 1, since d(u, z1) =i — 2 and z
is a neighbor of x. Therefore 0(x,u) =i — 1, and so u € M. Therefore N C M and so
Ci—1 — |N| S |M| = C;.

(4ii) In Lemma 7.04() we had shown that k;_1p};' = kip’i’(i_l), 1 < < D; but in new
symbols that means precisely k;_1b;_1 = k;c; for 1 <1 < D.

(1v) Pick y € V and consider distance partition with respect with y. We claim that
T (y)| = (boby...bi—1)/(c1ca...c;). We will prove the result using induction on n.

BASIS OF INDUCTION
Observe that by = ki, so the formula holds for ¢ = 1.

INDUCTION STEP

Assume now that formula holds for ¢ < D. We will show that formula holds also for ¢ + 1.
Note that by (#ii) we have k; 11 = b;k;/c;11. Since by the induction hypothesis we have
k; = (bob1...bi—1)/(c1c3...¢;), the result follows. O
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8 Characterization of DRG involving the distance
matrices

In the texts that follow we want to obtain some characterizations of distance-regular
graphs, which depend on information retrieved from their adjacency and distance-¢ matrices.

(8.01) Definition (distance-i matrix)

Let I' = (V, E) denote a graph with diameter D, adjacency matrix A and let Matr(R)
denote the R-algebra consisting of the matrices with entries in R, and rows and columns
indexed by the vertices of I". For 0 <1i < D we define distance-i matriz A; € Matp(R) with
entries (A4;)y = 1 if O(u,v) =7 and (A;),, = 0 otherwise. Note that Ag is the identity matrix
and A; = A is the usual adjacency matrix of T o

2

s~

/

FIGURE 24
Octahedron.

Distance-i matrices for octahedron (that is for graph which is pictured on Figure 24) are

AO y A1 and A2:

Il
cooco o~
cor~rooco
o oo oo
—oo0oocoo

Il

0
1
0
1
1
1

[N eNoeNol -
S oo OO
—_—_ O =k O
_ =0 =k O
— R, OR O
O O = =
OO =
SO O OO
OO R OO O
OO OO o
SO OO —=O
_o o oo

O OO OO

(8.02) Theorem
For arbitrary graph ' = (V, E) which is distance-reqular around each of its vertices and
with the same intersection array, the distance-i matrices of I' satisfies

AZA(: AA,) = bz‘—lAi—l + CLZ'Ai + Ci+1AZ‘+1, 0 S 1 S D

where a;, b; and c¢; are the intersection numbers of T' (see Comment 7.07) and A_,, Apyq are
the zero matrices.

Proof: (1°) Let I' = (V, E) be a distance-regular around each of its vertices with diameter D.
Then Vz,y1,ys,y3 € V for which 0(x,y1) = h — 1, d(z,y2) = h and d(z,y3) = h + 1, there
exist constants ap, by, and ¢, (0 < h < D) (known as intersection numbers) such that
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ap, = |I'1(y2) N Th(z)], ap—1 = |I1(y1) N Tpoi(2)], ant1 = |Ti(ys) N Tppa(2)],
b = |T1(y2) N Ty ()], bh—1 = |T1(y1) N ()], bhy1 = |T1(ys) N Thga()],
cn = |Ti(ye) N Thoa(z)], ch1 = |Ti(yr) NThoa(x)], cher = [Ti(ys) N ()],

(see Figure 25 for illustration).

FIGURE 25
[lustration for numbers ay, b, and ¢,.

Now, if we consider arbitrary vertices u,v € V, for uv-entry of A, A (of course A = A;) we
have

ap, if O(u,v) =h
bp_1, if d(u,v)=h-—1
(AA) o = Y (An)uy( A} = [Tala) NTafe)] = § 2t ET00) =0

yev .
0, otherwise

Similarly
ap, if O(u,v)=nh
bp—1, if O(u,v) =h—1
Chi1, 1f O(u,v)
0, otherwise

Therefore, ApbA = by, 1An_1 + apAp + cpi1Apr (0< h < D).
(2°) Notice that

(bp—1An—1 + anApn + chi1Ani1)w =

(AAp)uw = Z(A)uz(AD>zv = [I1(u) NTp(v)] =

zeV

bpfl, if 8(u,v) =D-1
ap, if d(u,v) =D

= (bp—1Ap_1 + apAp)uw-

(8.03) Definition (mapping p)

Let ' = (V, E) denote a simple graph with diameter D, and for any vertex x € V' let
e, = (0,...,0,1,0,...,0)" denote the z-th unitary vector of the canonical basis of R™. Then for
regular graph I', and for subset U of the vertices of I', we define mapping p by

pU = Zez.

(pU turns out to be the characteristic vector of U, that is, (pU), = 1 if z € U and (pU), = 0
otherwise). o
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(8.04) Proposition
Let T' = (V, E) denote connected graph which is distance-reqular around vertez y, and let
Ck, a and by, be the intersection numbers around y (k =0,1,...,ecc(y)). Then the polynomials

obtained from the recurrence
xry = bp_1rp—1 + Ty + ey,  with =11 =,

satisfy
Tk(A)ey = ka = Akey

where k = 0,1, ...,ecc(y) and Vi, := Tx(y).

Proof: Let I' = (V, E) denote connected graph which is distance-regular around vertex y.
Since

(Vi) = { 0. otherwise — { 0, otherwise | 0, otherwise (- \k)e)
and _ -
i 1, ifo(l,y) =k
~ | 0, otherwise
D_{ 1, if9(2,y) =k
oV, = Z e, — Z e, — 0, otherwise = (Ap)sy (8)
2€Vy, z€l (y)
a 1, if d(n,y) =k
|~ | 0, otherwise |
notice that
aijpr a2 ... QAp |
21 Q22 ... Q9p
(ApVi). = il | =
Ap1 Ap2 ... Qpp ’ -
O(=1 or 0)
O(=1 or 0)
= [aml A2 azn} . = [['(z) N Ti(y)l,
O(=1 or 0)
that is
ag, ifd(y,x) =k
B ) b, HO(y,z)=k—1
(ApVi)e = [T(z) NV = ki1, i O(y, ) =k+1 "
0, otherwise
so we have

ApVi, = by 1pVi—1 + arpVi + Cry1p Vit

| |
On the other hand, since Ay = |(Ar)«1  (Ak)s2

and the previous recurrence reads

AAkey = bk_lAk_ley + akAkey + Ck+1Ak+1€y,

(10)
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or in details

AAje, = 0+ apAoe, + ciArey,
AA1€y = bvoey + CL1A1€y + CQAQCy,
AAgey blAley + CLQAQey + 03A36y,

AA,e, = byn1An_1e,+a,Ae, +0,

where, m = ecc(y), b_1 = ¢y1 = 0. On the other hand the polynomials obtained from the
recurrence

Ty = bp_1Tr-1 + agTk + Ty, With g =1, 71 =z,

satisfy
Ark(A) = bkfl’l”kfl(A> + CLkT’k(A) + Ck+17’k+1(A),

Ark (A)ey = bk_lrk_l(A)ey + agpTi (A)ey + Ck41Tk+1 (A)ey, (11)

or in details

Arg(A)e, = 0+ agro(A)e, +ciri(Ae,
A?"l (A)ey bo?"o (A)ey +airy (A)Cy + CoTy (A)ey
AT‘Q (A)ey = 617“1 (A)ey + QaoT2 (A)ey + Cc37r3 (A)ey

Ar,(Ae, = bp_1rm-1(A)e, + anrm(Ae, + 0.

In the end, if we consider equations (9), (10) and (11), since rq(A) = I and r1(A) = A, with
help of mathematical induction on k, we have r(A)e, = pV. ]

(8.05) Proposition

Let T' = (V, E) denote arbitrary connected graph with diameter D which is distance-reqular
around each of its vertices and with the same intersection array. Then for 0 < i < D there
exists a polynomial p; of degree i such that

Moreover, if p;(A) = B + BiA+ ... + BIA", then BE, Bi, ..., BE depends only on aj, b, c;.

Proof: We prove the result using induction on 1.
BASIS OF INDUCTION
It is clear that the result holds for i =0 (Ag = I, po(x) = 1) and for i = 1 (A; = A,
m(z) = x).
INDUCTION STEP
Assume that A; = p;(A) for 0 < j < for some i < D. By Theorem 8.02 we have

Ci+1Ai+1 = AA; — b_1Ai_ — aA;.
From the induction hypothesis we know that for A; and A;_; there exists a polynomials p;

and p;_; of degree i and ¢ — 1 such that A; = p;(A) and A;,_; = p;_1(A). The result now
follows from equation A;;; = i(AAi — b;i_1A;_1 — a;A;) and induction hypothesis. O
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(8.06) Lemma
Let A; € Matr(R) (1 <i < D) denote a distance-i matrices. Vector space D defined by

D =span{l, A A,,....,Ap}

forms an algebra with the entrywise (Hadamard) product of matrices, defined by
(X © Y)UU = (X)u’v(Y)uv

Proof: If we want to prove this lemma, we must to show that all condition from definition of
algebra! are satisfied. Here we will only show that for arbitrary X,Y in D we have X oY € D.
First notice that A; 0 A; € D for 0 <i,5 < D since A;0A; =01if i # j and is A; it i = j.
But now, the general proof that for X, Y in D we have X oY € D is a consequence of the
fact, that D is a vector space.
Rest of the proof is left to reader like an easy exercise i.e. it is left to show that
D is a vector space;
(XoY)oZ=Xo(YoZ), VXY, Z €D,
XoY+2)=(XoY)+(XoZ2),VX,Y,Z €D;
(X+Y)oZ=(XoY)+(YoZ),VX,Y,Z €D,
VX,Y € D and Vo € R we have a(X oY) = (aX) oY = X o (aY). O

(8.07) Definition (distance o-algebra)
Algebra D from Lemma 8.06 will be called the distance o-algebra of T. o

(8.08) Comment (I,A,J € AND)
Let I' denote a regular graph with diameter D and with d + 1 distinct eigenvalues. For
now (see Proposition 5.04) we have two algebras in game:

adjacency algebra A = span{I, A, A% ... A"} and
distance o-algebra D = span{l, A, Ay, ..., Ap}.

FIGURE 26
Intersection A N D for regular graphs. O

Notice that I,A € Aand I,A€ D, so [,A € AND. For any connected graph I" it is not
hard to see that Ag + A; + ... + Ap = J (J is the all-1 matrix), so J € D. But Theorem 6.05

say that there exist some polynomial p(x) (Hoffman polynomial) such that J = p(A), so also
J € A. Therefore I,A,J € AND.

'Recall: A vector space V over a field F that is also a ring in which holds a(uv) = (au)v = u(aw) for all
vectors u,v € V and scalars «, is called an algebra over F.
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Is this all that we can say about A N D?

(8.09) Corollary

Let T' = (V, E) denote arbitrary connected graph which is distance-reqular around each of
its vertices and with the same intersection array, and let A;, 1 <1 < D, be a distance-i
matrices. Then

A" e D.
for arbitrary non-negative integers n. Moreover, if A" = ByAo + B1A1 + ... + BpAp, then By,
b1, ..., Bp depends only on a;, b;, c;.

Proof: We will prove the corollary using induction on n.

BASIS OF INDUCTION
It is clear that the result holds for n = 0 and n = 1 (A° = I € span{Ay, A, ...,Ap} and
A' = A € span{Ay, A:, ..., Ap)}).

INDUCTION STEP
Assume now that the result holds for n. Then there are scalars g, ..., ap such that
A" = OéoAg + a1A1 + ...+ OéDAD. We have

An+1 = AAn = A(OjoAQ + a1A1 + ...+ CYDAD) = OZ()AAO + alAAl + ...+ OzDAAD

The result now follows from Theorem 8.02. Result for A" is then some linear combination
of Ay, Ay, ..., Ap, say 0pAo + 0141 + ... + 64Ap where dy, 6;...,0p depends only on a;,b;,c;. O

Recall from Definition 5.01 that the adjacency algebra A of a graph I' is the algebra of
polynomials in the adjacency matrix A = A(I"). By Proposition 5.04, dimension of A is d
where d + 1 is number of distinct eigenvalues of I'.

(8.10) Corollary
Let ' = (V, E) denote arbitrary connected graph which is distance-reqular around each of
its vertices and with the same intersection array. Then we have

A="D.

Proof: First we will show that A C D. By Corollary 8.09 we have A* € D so
coA? 4+ c; A + ...+ ¢,,A™ € D for arbitrary m € N and for arbitrary co, ci, ..., ¢ € F.
Therefore, A C D.

Now we want to show that D C A. By Proposition 8.05 there exists polynomials p; of
degree i such that Ay = po(A), A1 = p1(A), ..., Ap = pp(A). Therefore,
span{Ag, Ay, ...,Ap} C A.

The result follow. n

(8.11) Lemma

Let T' = (V, E) denote connected graph which is distance-reqular around each of its vertices

and with the same intersection array. Then for 0 < i,5 < D there exist numbers o

ij
(0 < h < D) such that
D
AA; =D allA,,
h=0
where for x,y with O(z,y) = h and for 0 <1i,5 < D we have

ITi(z) N L(y)| = a?j.
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Proof: From Corollary 8.10 A = span{Ay, A;, ..., Ap}. That means that for every A;;A; € A
we have A;A; € A and so there exist unique scalars Oz?j (0 <i,7,h < D) such that

AiAj = Ot?jAo -+ Ckilel + ...+ OdgAD.

Notice that

(Oé?jAo + Oéilel + ...+ ongD)xy = ozlhj if d(z,y) = h.

If we consider Comment 7.07, since distance is unique, for d(x,y) = h, we have

a;, if oz, y) =7
ol = (AiAy)ey = S (A)ea(A))zy = IDi(@) T = { en, Oz y)=j+1 |
zeV bjfla if 3(x,y) = j —1

and

(8.12) Theorem (characterization A)

Let ' = (V, E) denote a graph with diameter D and let the set I'y(u) represents the set of
vertices at distance h from vertex u. I' is distance-reqular if and only if is distance-reqular
around each of its vertices and with the same intersection array (with another words if and
only if for any two vertices u,v € V at distance d(u,v) = h, 0 < h < D, the numbers

cn(u,v):=Tp_1(u) NT (W), ap(u,v):=|Tx(u) NT(0)|, bp(u,v):=[Thii(u) NT(v)],

do not depend on the chosen vertices u and v, but only on their distance h; in which case they
are denoted by cp, ap, and by, respectively).

Proof: (=) If ' = (V, E) is distance-regular then by definition there exist numbers p};

(0 <4,4,h < D) such that for any u,v € V with d(u,v) = h we have [I';(u) N T;(v)| = pj;. If
weset j=1,1€ {h—1,h,h+ 1} we have that for any two vertices u,v € V at distance
d(u,v) = h, 0 < h < D, the numbers

cn(u,0):=p_1 1 = [Thoa(w) NT()], an(u,v):=phy = [Tn(u) NT(v)],

bn (1, v):=ph 11 = |Thga(w) NT(v)],

do not depend on the chosen vertices u and v, but only on their distance h.
(<) Conversely, assume that for any two vertices u,v € V' at distance d(u,v) = h,
0 < h < D, the numbers

Ch(“? U):|Fh—1(u) n F(U>|7 ah(u7 v):|Fh(u) n F(U>|7 bh(ua U):|Ph+1(u> A P(U)|’

do not depend on the chosen vertices v and v, but only on their distance h. With another
words we have cp,(u,v) = ¢, ap(u,v) = ap, bp(u,v) = by, where numbers ¢y, ap, by, are
intersection numbers from Comment 7.07. From Corollary 8.11 we have

IDs(x) NT5(y)| = o

g

for x,y with d(x,y) = h and for 0 < 4,5 < D. Therefore, I is distance-regular, with p?j = a?j,

for 0 <i,5,h < D. O]
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(8.13) Comment

Thus, one intuitive way of looking at distance-regularity is to "hang” the graph from a
given vertex and observe the resulting different "layers” in which the vertex set is partitioned;
that is, the subsets of vertices at given distances from the root: If vertices in the same layer
are "neighborhood-indistinguishable” from each other, and the whole configuration does not
depend on the chosen vertex, the graph is distance-regular (see Figure 16 for illustration, hang
of the cube).

Second thing is, that for distance-regular graphs we have (see Corollary 8.10)

AND=A=D.

FIGURE 27
Intersection A N D for distance-regular graphs. O

(8.14) Definition (intersection array)
Let I" be distance-regular graph with diameter D, and let a;, b; and ¢; be numbers from
Theorem 8.12. By the intersection array of I' we mean the following matrix

0 ¢ ... ¢cp_1 ¢p
I:=\1ay ai .. ap—_1 ap

bp b1 ... bp_1 O

(since a; = § — b; — ¢; where ¢ is valency of graph I' (Lemma 7.09), some authors intersection
array denote by {bg, by, ...,bp_1;¢1,Ca,...,CD}). o

(8.15) Theorem (characterization B)
A graph T' = (V, E) with diameter D is distance-reqular if and only if, for any integers
0 <i,5 < D, its distance matrices satisfy

D
AA; =) phA, (0<i,j<D)

k=0

for some constants pf]

Proof: (=) Let I' = (V, E) be a distance-regular graph with diameter D. Pick two arbitrary
vertices u and v on distance h (O(u,v) = h), where 0 < h < D. Now, for every 0 <i,j < D
we have

(Aid)) o = D (Ad)us(Ag)aw = ITaw) N T(0)] = 1 = (s An)ue

zeV
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where p}; are numbers from definition of DRG (Definition 7.01). From uniqueness of distance
we have

D
k
AA; =D phA;L
k=0
(<) Assume that for any integers 0 < 4, j < D, distance matrices of a graph I' = (V| E)
satisfy

AA; = Zp’fAk (0<i,j<D)

for some constants pf;. Pick two arbitrary vertices v and v on distance h (9(u,v) = h), where
0 < h < D. Consider the following equations

D1 () NTa ()] = D (A)ue(An)ew = (A14n) ZplhAk = Pln;

zeV

IP1(w) N Thea(0)] = D (A us(An-1)e0 = (A1An1) Zplh | = Pla-1:

zeV

T3 () NThia (0)] = D (A e (Ans1)eo = (A1Anit)ue ZP1 ne1Ak)us = Pl pir-

zeV

Now, we see that the numbers |I'; (u) N Ty (v)|, [Ty(uw) N Thoq(v)], [T1(w) N Ty (v)| depend
only on distance between u and v, so the result follows from Theorem 8.12 (Characterization
A). O

(8.16) Exercise
Show that graph pictured on Figure 24 is distance-regular, and find numbers p?j
(0 <i,7,h < D) from definition of DRG (Definition 7.01).

Solution: It is not hard to compute the distance matrices for a given graph

7A]_: 5A2:

oo = O OO
O =R OO OO
— o O o oo
— R =k O~ O
— = O R O
=== O RO

1
0
1
0
1
1

OO = O OO
_ o o o oo
O O O O O

SO OO +=H OO
OO OO o
[ elNelNel =)

OO = = = =
O O = ==

OO OO o
(=l el elell e
O OO = OO

Now we have A()AU = Ao, AOA1 = A1A0 = Al; AoAQ = A2A0 = AQ,
ALA, = 4A, + 24, + 4A,,

AjAy = ArA, = Ay,
A2A2 = AO)

so from Theorem 8.15 (Characterization B) we can conclude that given graph is
distance-regular. From obtained equations we have pJ, = 1, p}; = piy = 1, p3y = 3o = 1,
P, =4, pl, =2 p} =4, ply, =p =1, pY, = 1, and all the rest numbers are equal to 0. O
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(8.17) Theorem (characterization B’)
A graph T' = (V, E) with diameter D is distance-reqular if and only if, for some constants
ap, bp, cn, (0 < h < D), cog=bp =0, its distance matrices satisfy the three-term recurrence

ApA = by 1Ap_1 + anAp + cpiApyr (0<h < D),
where, by convention, b_y = cpyq = 0.

Proof: (=) This direction follows from Theorem 8.02.
(<) Assume that for some constants ay, by, ¢, (0 < h < D), ¢g = bp = 0, distance
matrices of graph I' = (V, E), satisfy the three-term recurrence

ApA =b,1Ap1 + apAp +cp1Ann (0<h < D),

where, by convention, b_; = cpy1 = 0. Now, pick two arbitrary vertices u,v € V' on distance h
(O(u,v) = h) where 0 < h < D. Consider equations that follows

L) NT1(0)] =D (An)ue (Ao = (AnA)uy = (bn-1An_1 + anAn + ch1 A1 )uw =

zeV

ap, if O(u,v)=h
= bhfl, if a(u, ’U) =h-1 = Qp,
Ch1, if O(u,v) =h+1

ITp_1(u) NIy (v)| = Z(Ahq)um(A)xv = (Ap—1A)uww = (bp—2An—2 + an—1Ap_1 + chAp)u =

zeV

ap—1, if O(u,v) =h-—1
= bh_g, if 8(u,v) =h-—2 = Cp,
cn, if O(u,v) =h

T () NT10) = (Ani)ue(A)aw = (Ans1A)uw = (0nAn + ans1Anir + chioApio)uw =

zeV
aps1, if O(u,v) =h+
= bh, if 6(u, U) =h = bh.
Chya, if O(u,v) =h+
Therefore, the result follow from Theorem 8.12 (Characterization A). O

(8.18) Example
We want to show that graph pictured on Figure 15 is distance-regular, and we want to
find his intersection array.

First we will compute the distance matrices of given graph:

10000000 01 101000
01000000 10010100
000100000 10010010

A, — 000 10000 L, o1 100001
0000100 0] 10000110
000000100 01001001
00000010 00101001
0000000 1] 00010 1 1 0
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Az =

—__0 ) O 00O
— OOk O OO
_— O OO OO

= =0 000

R OO,k OO+
= el el e B e i e i an}
OR OO OO oo
SO R OO O OO
[N e Nelt o NoNeNe)

[N eleNoll =Rl
[N elolNoNol ool
[N eloloNoeNoell S =
SO OO O OO

— OO OO~ FO
OO R O, OO
OO OO~ FHO

0

Now, with little help of computer, it is not hard to compute
A A=0+0Ag+ 1A,

AlA=3A)+04A, +2A,,
AA=2A,+0A,+ 3 A3,
A;A=1A,+0A;+0,
and from the obtain equations (and Theorem 8.17 (characterization B’)) we conclude that
given graph is distance-regular. From this we also see that

aozo,alzo,a2:0,a3:0,

60:3,191:2,()2:1,63:0,
00:0,01:1,C2:2,03:3.

Demanded intersection array is {3,2,1;1, 2, 3}. O

(8.19) Lemma (d=D)
Let ' = (V, E) denote a distance-reqular graph with diameter D. Then

A =span{l, A A% ... A"}

Proof: We know that A = span{l, A, A, ..., Ap} for distance-regular graph I" (Corollary
8.10). Because every distance matrix A; of I' can be written as polynomial in A that is of
degree i (see Proposition 8.05), it is enough to show that I, A, A% ..., A” are linearly
independent. But, from Proposition 5.06, this is true, and it follows

A =span{l,A, A% ... A"}

(8.20) Comment
Since A = D (Corollary 8.10), {1, A, A’ ...,Ad} is basis of the adjacency algebra A
(Proposition 5.04, where d + 1 is number of distinct eigenvalues) and
A =span{l,A, A% ... A"},
D =span{l, A Ay, ..., Ap},
we have that for any distance-regular graph I' = (V, E') with diameter D, there exist D + 1

distinct eigenvalues. So, just by realizing that a graph is distance-regular, we automatically
know how many eigenvalues it’s adjacency matrix has! O

(8.21) Exercise
Compare number of distinct eigenvalues of distance-regular graphs given in Figure 15,
Figure 24, Figure 41 and Figure 28, with diameter of these graphs.



54 CHAPTER II. DISTANCE-REGULAR GRAPHS

b
Pt

1 2
FIGURE 28

Petersen graph.

Solution: Eigenvalues for octahedron (Figure 24) are -2, 0, 4 (diameter of octahedron is 2).
Eigenvalues for the cube (Figure 15) are -3, -1, 1, 3 (diameter of the cube is 3). Eigenvalues of
Heawood graph (Figure 41) are -3, —/2, v/2 and 3 (diameter of Heawood graph is 3).
Eigenvalues of Petersen graph (Figure 28) are -2, 1, 3 (diameter of Petersen graph is 2). O

(8.22) Theorem (characterization C)
A graph T = (V, E) with diameter D is distance-reqular if and only if {I,A,...,Ap} is a
basis of the adjacency algebra A(T).

Proof: This theorem can be proved on many different ways, but in our case, we want to use
Lemma 8.19.

(=) Assume that a graph I' = (V| E) with diameter D is distance-regular. Notice that the
set {Ag, Ay, ..., Ap} is linearly independent because no two vertices u, v can have two different
distances from each other, so for any position (u,v) in the set of distance matrices, there is
only one matrix with a one entry in that position, and all the other matrices have zero. So
this set is a linearly independent set of D 4 1 elements. Since any distance-i matrix of
distance-regular graph I' can be written as a polynomial in A that is of degree ¢ (Proposition
8.05) (we have A; € A for any i = 0,1, ..., D) and since dim(A) = D + 1 (for example see
Lemma 8.19), the set {Ag, Ay, ..., Ap} must span arbitrary polynomial p(A), and be a basis
for A(L).

(<) Assume that the set {I, A, ..., Ap} is a basis of the adjacency algebra A(T"). Because
A is algebra and by assumption A = span{/, A, A,, ..., Ap} it follow that A;A; € A for every
t,7. Now, there are unique afj € R such that

D
AA; = o) Ag+ oA+ ..+ afAp =) afA, (0<ij<D)
k=0

Now, result follows from Theorem 8.15 (Characterization B). [

(8.23) Theorem (characterization C’)

Let T be a graph of diameter D and let A; be the distance-i matriz of I'. Then I is
distance-reqular if and only if A acts by right (or left) multiplication as a linear operator on
the vector space span{l, A, As,...,Ap}.

Proof: (=) Assume that a graph I' = (V, E) with diameter D is distance-regular. Then by
Corollary 8.10 and Lemma 8.19 we have A = span{I, A, A* ..., AP} = span{l, A, A, ..., Ap},
and from this it is not hard to see that A acts by right (or left) multiplication as a linear
operator on the vector space span{/, A, As,...,Ap}.
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(<) Now assume that in a graph I' = (V, F') with diameter D, matrix A acts by right
multiplication as a linear operator on the vector space span{I, A, As, ..., Ap}. That means

A AA AA, ... ApA € span{l, A, As, ..., Ap)

so there exist unique 8 € R (1 < k < D) such that

D
A A=) BA (1<h<D).

k=1
If we consider arbitrary (u,v)-entry of A,A we have

Br, if O(u,v) =h

i)y = 3 (Auld)as = D) T = 4 0 00 =0

eV .
0, otherwise

so for some constants B,_1, On, Bur1, (0 < h < D), its distance matrices satisfy the three-term
recurrence

ApA = B 1An—1 + BrAn + Bri1Ania.

Result now follows from Theorem 8.17 (Characterization B’). O

9 Examples of distance-regular graphs

(9.01) Definition (Hamming graph)

The Hamming graph H(n,q) is the graph whose vertices are words (sequences or n-tuples)
of length n from an alphabet of size ¢ > 2. Two vertices are considered adjacent if the words
(or n-tuples) differ in exactly one term. We observe that |V (H (n,q))| = ¢". o

(9.02) Example

Fix a set S = {a,b} (|S| = 2). Let V = {aaa, aab, aba, abb, baa, bab, bba, bbb}, and
E={{z,y}: x,y € V, x and y differ in exactly 1 coordinate}. Then graph pictured on
Figure 29 is Hamming graph H (3, 2).

abb bbb

aab bab

aba bba

aaa baa
FIGURE 29

Hamming graph H (3, 2). O

(9.03) Example
Fix a set S = {a,b,c,d} (|S| =4). Let V ={a,b,c,d}, and
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E={{z,y}: xz,y € V, x and y differ in exactly 1 coordinate}. Then Hamming graph H(1,4)
pictured on Figure 30 is the complete graph Kj.

c
a g
b
FIGURE 30

Hamming graph H(1,4). O

(9.04) Example

Fix a set S = {a,b,c} (|S| = 3). Let V = {aa, ab, ac, ba, bb, be, ca, cb, cc}, and
E={{z,y}: x,y € V, x and y differ in exactly 1 coordinate}. Then graph pictured on
Figure 31 is Hamming graph H (2, 3).

FIGURE 31
Hamming graph H(2,3). O

(9.05) Example
The Hamming graphs H(n,2) are the n-dimensional hypercubes, Q,,. @4 is shown on
Figure 32.

FIGURE 32
Hamming graph H (4, 2). O

We will show that the Hamming graphs are distance-regular. First, we need Lemma 9.06
and Lemma 9.07.
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(9.06) Lemma

For all vertices x,y of H(n,q), distance O(x,y) =i if and only if num(x,y) = i, where
num(x,y) is defined to be the number of coordinates in which vertices x and y are different
when considered as words (or n-tuples).

Proof: We will prove this lemma by induction on 1.

BASIS OF INDUCTION

Let x and y be vertices of Hamming graph, H(n,q). Then by the adjacency relation, if
J(z,y) = 0 then x and y are the same vertices and therefore differ in 0 coordinates. Similarly,
if O(x,y) = 1 then x and y are adjacent and by the adjacency relation differ in exactly one
term.

INDUCTION STEP

Suppose that hypothesis holds for d(z,y) < i. Consider d(z,y) = i. Then by definition of
distance, there exists a path between x and y of length i say [z, vy, va, ..., v;_2, 2, y]. So there
exists a vertex z, which is on distance ¢ — 1 from x and distance 1 from y. Assume that x is
word z1Z3...x,, vertex z is word z12s...2, and because d(z, z) = ¢ — 1, by the induction
hypothesis, z differs from = in exactly ¢ — 1 terms, say in these terms which have indexes
{h1, ha, ..., hi—1 }. Without loss of generality we can assume that we have
T = C1C2...Cp—i41Thy Thy---Th;_, ANd 2 = C1Co...Co—i+12hy Zhy---2h,_, - Vertex z differs from y in
exactly 1 term by the adjacency relation. This term can’t be one with indexes
{h1, ha, ..., h;_1} because in that case x and y (y = ¢1C2...Ch—i+12h, Zhy---Yk---2h,_, ) Will have
i — 1 different terms and by induction hypothesis that induced 0(x,y) < i, which is
impossible. Thus, y differs from z in exactly ¢ — 1 4+ 1 = ¢ terms. ]

(9.07) Lemma
The Hamming graphs are vertez-transitive.

Proof: Recall: The simple graphs I'y = (Vi, Fy) and I'y = (V,, Es) are isomorphic if there is a
one-to-one and onto function f from V; to V5 with the property that a and b are adjacent in
I’y if and only if f(a) and f(b) are adjacent in Ty, for all @ and b in V3. Such a function f is
called an isomorphism. An isomorphism of a graph I' with itself is called an automorphism of
I'. Thus an automorphism f of I" is a one-one function of I" onto itself (bijection of I') such
that u ~ v if and only if f(u) ~ f(v). Two vertices u and v of the graph I' are similar if for
some automorphism « of I, a(u) = v. A fized point is not similar to any other point. A graph
is vertex-transitive if every pair of vertices are similar.

By definition of vertex-transitivity, H(n,q) is vertex-transitive if for all pairs of vertices
x,1y there exists an automorphism of the graph that maps x to y. In this proof, we will
interpret vertices of H(n,q) like words (sequences) of integers d;ds...d,, where each d; is
between 0 and ¢ — 1. Why this interpretation? In this way, if we for example consider H (5, 3),
we can sum up two vertices termwise modulo ¢, for example x = 00122, y = 00121, z = 11002
then x + 2z = 11121 and y + z = 11120. This interpretation will help us to easier show that the
Hamming graph is vertex-transitive.

Let v be a fixed vertex and = € V(H(n,q)). Then the mapping p, : © — = + v, where
addition is done termwise modular ¢, will be an automorphism of the graph since if the words
(or n-tuples) z,y differ in exactly 1 term, then the words x 4+ v and y + v will differ in exactly
1 term thus preserving the adjacency relation. And for any two vertices, z,y € V(H(n,q)),
the automorphism p,_, maps = to y. Thus, Hamming graphs are vertex-transitive. O]

(9.08) Lemma
The Hamming graph H(n,q) is distance-reqular (with a; =i(q—2) (0 <i <n),
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bi=n—i)¢g—1) 0<i<n—1)andc;=1i (1<i<n))

Proof: For a graph to be distance-regular, by Theorem 8.12 (Characterization A) it is
enough to show that for any vertex, the intersection numbers a;, b;, and ¢; are independent of
choice of vertex. We will prove this lemma on two ways.

FIRST WAY

In the first proof, we will, like in proof of Lemma 9.07, interpret vertices of H(n,q) like
words (sequences) of integers dyds...d, where each d; is between 0 and ¢ — 1.

Pick vertices x,y such that d(x,y) = i. Since H(n, q) is vertex transitive, suppose, without
loss of generality, that vertex x is the word 00000...0 (z = 00...00...00). By Lemma 9.06, y will
have ¢ nonzero entries, and say that y = y1y5...y;0...0. Now, a; is the number of neighbors of y
that are also distance i from x. To get neighbor of ¥ we need to pick an term of y, say a
(a € {y1,92,...,¥i,0}), and change it in an element that is different from a, say to b (b # a).
Because we need z such that d(z, z) =i we can’t pick a to be zero, that is @ must be some
term from word y;4s...y;. Term b can’t be 0, and it must be # a, so for z we have i choices of
coordinate in which to differ from y and ¢ — 2 letters of the alphabet to choose from. Thus,
a; = (1)(qg—2) = i(q — 2) (see Figure 33 for illustration).

b#0, b#a b#0 b=0
x= 00...00...00 x= 00...00...00 x= 00...00...00

Y= 00 y=yey00) Y00
2 2 0&
) (0
illustration for illustration for illustration for
calculation numbera,  calculation number b, calculation number

FIGURE 33
To get neighbor of y we need to pick an term of y, say a, and change it in an element that is
different from a, say to b.

Number b; is the number of neighbors of y that are also distance 7 + 1 from x. For a we
must pick zero and change it to b # 0. So for vertex u there are n — i places in which to differ
from y and g — 1 letters to choose from. So b; = (n —i)(q¢ — 1).

As for ¢;, we are counting the number of vertices that are distance ¢ — 1 from x and
adjacent to y. For term a we will pick one of nonzero terms from y,s...y;, and b must be zero.
So we can change any of the ¢ nonzero terms to choose to turn back to zero. So ¢; = ¢. Thus
the Hamming graph is distance-regular.

SECOND WAY

Pick =,y € V with d(z,y) = i. By Lemma 9.06 x and y are differ in 7 terms and assume
that © = x129...2,, Yy = Y1Y2...y, differ in coordinates with indexes {hq, ho, ..., h;}. Note that
b; = |T'1(z) NTiyq(y)|. Pick z € I'y(x) NT41(y), and assume that z and z differ in jth
coordinate. If j € {hq, ha, ..., h;}, then because 0(x,y) = i we have d(z,y) € {i — 1,i}, a
contradiction. Therefore j & {hy, ha, ..., h;}. So we have n — i possibilities for j, and for each of
these possibilities we have ¢ — 1 choices for the jth coordinate of z. Therefore
b= (n—i)(q — 1).

Let us now compute ¢; = [I'1(z) N1 (y)| (1 <i<n). Pick z € I'1(z) NT;_1(y), and
assume that z and x differ in jth coordinate. If j & {hy, ho, ..., h;}, then O(z,y) € {i,i+ 1}, a
contradiction. Therefore j € {hy, h, ..., h;}. So we have i possibilities for j, and for each of
these possibilities, the jth coordinate of z must be equal to the jth coordinate of y. Therefore
¢ =1.



9. EXAMPLES OF DISTANCE-REGULAR GRAPHS 29

It is an easy exercise to prove that H(n,q) is regular graph. This shows that H(n,q) is
distance-regular. O

(9.09) Definition (Johnson graph)

The Johnson graph J(n,r), is the graph whose vertices are the r-element subsets of a
n-element set S. Two vertices are adjacent if the size of their intersection is exactly » — 1. To
put it on another way, vertices are adjacent if they differ in only one term. We observe that

V(I 7))l = (7)- ©

(9.10) Example (J(4,2))

Let S be a set S = {a,b,c,d} (|S| =4). Set {z,y} in this example we will denoted by zy.
The Johnson graph J(4,2) is graph with vertex set V' = {ab, ac, ad, bc, be, cd}, and edge set
E={{z,y}: x,y € V, x and y are intersect in exactly 1 element (Jx Ny| =7 —1)} (see
Figure 34).

bd

bc cd bd

ab ad

ac

ac

FIGURE 34
Johnson graph J(4,2), drawn in two different ways (this graph is also known as octahedron).

(9.11) Example (J(3,2))

Let S be aset S = {a,b,c} (]S| =3). Set {x,y} in this example we will denoted by xy.
The Johnson graph J(3,2) is graph with vertex set V' = {ab, ac, bc}, and edge set
E={{z,y} :z,y €V, |xNy| =r — 1} (see Figure 35).

ac

ab be

FIGURE 35
Johnson graph J(3,2). ¢

(9.12) Example (J(5,3))
Let S be aset S =1{0,1,2,3,4} (|S| =5). Set {z,y, 2z} in this example we will denoted by
xyz. Edge set is B = {{z,y} : x,y € V, 2 and y are intersect in exactly 2 elements}. The
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Johnson graph J(5,3) is graph pictured on Figure 36.

FIGURE 36
Johnson graph J(5, 3). O

We will show the Johnson graphs are distance-regular but we need the following lemma
first.

(9.13) Lemma
If x,y are vertices of the Johnson graph J(n,r), then O(x,y) =i if and only if
ltNy|l=r—1.

Proof: We will prove this lemma by induction on 1.

BASIS OF INDUCTION

Let x,y be vertices of J(n,r). Then d(z,y) = 0 if and only if z and y are the same
vertices, which holds if and only if [z Ny|=r =7 —0. And 9(z,y) = 1 if and only if z and y
differ in only one term i.e. |z Ny|=7r — 1.

INDUCTION STEP
Suppose the result holds for any z,y with d(x,y) < i. That is, for any 0 < k < ¢ assume
that d(x,y) = k if and only if |z Ny| = r — k. If we write this with details we have

Ir,y) =1 fenyl=r—-1« (Jr\y|=1and |y\z| = 1),

Ir,y) =2 [rNyl=r—-2& (lz\yl = 2 and |y\z| = 2),

Oz,y)=i—3<|zny|l=r—i+3< (Jz\y| =i—3 and |y\z| =i — 3),
Ir,y)=i—2&|zNy|l=r—i+2< (Jr\y| =i—2 and |y\z| =i — 2),
Nr,y)=i—1sznyl=r—i+l<(Jz\y|=i—1and |[y\z| =i—1),

where symbol ”\” denote difference of sets. Notice that r —1>r—-2> ... >r—i+3 >
>r—1+2>r—1+1.
(=) If O(x,y) = i, then O(x,y) >i—1,s0 | Ny| <r—i+ 1 by the induction hypothesis.
So
leNy| <r—i. (12)
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By definition of distance, there exists a path of length ¢ from x to y. Thus, there exists a
vertex z that is distance ¢ — 1 from z and adjacent to y (9(x,z) =i —1, 9(z,y) = 1). So by
the induction hypothesis

|2\z| =i —1and |y\z| = 1.

Now we notice that

[y\z] = [[(¥\z) N 2] U [(\2)\]] = [(m\2) N 2] + [(y\)\z].

Since (y\z) Nz C z\z and (y\z)\z C y\z we have |y\z| < [2\z| + |y\z| = (i — 1) + 1, so
|y\z| < i which implies
[Ny >r—i. (13)

From Equations (12) and (13) we conclude [z Ny| = r — ¢ as desired.

(<) Now suppose |z Ny| =r —i. We need to show that d(z,y) = i. If d(z,y) < i then, by
the induction hypothesis, |z Ny| > r — i, a contradiction. So

O(z,y) > i.
On the other hand, if we let

.I\y - {xb 7IZ} and y\l’ = {yb "‘7yi}7

then we can define, for each j (0 < j <),

z; = (e\{z1, ..., z;}) U{y1, ...,y -

If we write this with details, we have
20 =,

z1 = (x\{21}) U{wi},
zg = (z\{z1, 22}) U {y1, 92},

zi = (@\{@1, ., 2 }) U{yr, o 0}

(z; and z;_; differ in one coordinate for 0 < j <3). Then the sequence [z = zp, 21, ..., 2; = y] is
an xy-path of length 7. So
O(z,y) <1,

forcing d(x,y) = i as desired. O

(9.14) Lemma
Johnson graph J(n,r) is distance-reqular (with intersection numbers
a;=(r—0i+in—r—i),b=—i)(n—r—1),c=1).

Proof: 1t is enough to show that the intersection numbers for Johnson graphs are
independent of choice of vertex for the graph to be distance-regular. We will prove this lemma
on two ways.

FIRST WAY

Let z,y be vertices of J(n,r) such that d(z,y) = i. By Lemma 9.13 that means
|x Ny| =r — 4. Say, without lost of generality that x = {cy, ..., ¢,—, 71, ..., z;} and
y={c1, s r—is Y1, ..., ¥i }. To get a neighbor of y, we need to pick an element of y, say a
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(a € {c1y...,riyy1, ..., yi }), and change it in element that is not in y, say to b
(b {c1,...,cr—isy1, ..., yi}). There are four ways this can be done.

Case 1: If a is an element of z Ny = {¢1,...,¢,—;} and b is an element of z\y = {1, ..., x;},
then z will differ from y in 1 element and from x in 7 elements because ¥, ..., y; € z but
Y1, -, Yi € x (a was common to both x and y but b does not belong to y). This gives a
neighbor of y such that d(z, z) = i.

g S
¢ £
r = {01,02, neey Cr— z,xl, coey Ty} T = {617/02_7-;;@' iy L1 - . To}
Y= {01,02, - Cr uyla- - Yi} y= {\017023--7 Cr— z/yla ,yi}
Q’ @Q/
acxNy bex\y a€xNy bgzxzUy
illustration for case 1 (9(z, z) = 1) illustration for case 2 (9(z,2) =i+ 1)
S S
\ L
T = 1C1,Cp, o0, Cr ”@1’ oy T} T = {01702’ i:', Cr uxla 7:132}
Y= {Ch €2y .-ey Cr— lagla . :\} Yy = {Cl7 C2, .. CT’ Z)(lél{i?a/@y\/}
Q)Q/ 0’
acy\z bezx\y a € y\zr bxUy
illustration for case 3 (0(z,2) =i — 1) illustration for case 4 (0(z,2) = 1)

FIGURE 37
To get a neighbor of y, we need to pick an element of y, say a, and change it in element that
is not in y, say to b.

Case 2: If a is an element of x Ny and b is not an element of z Uy, then z will be a
neighbor of y that differs from y in 1 element and from z in ¢ + 1 elements. So d(x,z) =i+ 1.

Case 3: If a is an element of y\x and b is an element of z\y, then z will differ from y in 1

element and from x in only ¢ — 1 elements since we are changing a to a element that is already
in . Thus 0(z,z) =i — 1.

Case 4: If a is an element of y\z and b is not an element of x Uy, then z will differ from y
by 1 element and from z in i elements since a was not in x and neither is b. Thus 0(z, z) = 1.

Now, by definition the intersection number a; is given by |I';(z) NT'1(y)|. So we want to
count all vertices z, such that d(x,z) =i and 9(z,y) = 1. These are given by Case 1 and Case
4. From Case 1, we have that there are r — i choices for a (a € z Ny, [tNy| =7 —1) and i
choices for b (b € z\y, |z\y| = 7). From Case 4 we have ¢ choices for a (a € y\z, |y\z| = 1)
and n — r — i choices from b (b € x Uy, |[tUy| = (r — i)+ 2i = r 4+ ¢. Thus
a; = (r—a)i+iln—r—1).

The intersection number b; is given by |[';11(z) Ny (y)|. So we want to count all vertices z,
such that 0(x, z) =i+ 1 and 9(z,y) = 1. These are given by Case 2. We have r — i choices for
a(a€xnNy, |rNy| =r—1) and since we must pick z not in the union of x and y, we have
n—2r+ (r—i) =n—r —i choices for b. Thus b; = (r —i)(n —r — ).

The intersection number ¢; is given by |I';_1 () N T (y)|. So we want to count all vertices z,
such that d(x,z) =i — 1 and 0(z,y) = 1. These are given by Case 3. We have i choices for a
(a € y\z, |y\z| = i) and i choices for b (b € z\y, |z\y| = i), thus ¢; = i*. Since the intersection
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numbers for J(n,r) are independent of choice of vertex, the Johnson graph is distance-regular.

SECOND WAY

Pick z,y € V(I') with d(z,y) = h. Let = {z1, 29, ..., Tr—p, Tr_pt1, ..., T, } and
y={x1,%2, o, Trep, Yr—ht1, .-, Yr} (see Lemma 9.13). Pick z € I'y(x) N T',41(y). Note that z
and z differ in exactly one element and assume z\z = {z;}. If j > r — h + 1 then
{1, 29, ...,2,_p} C z. This implies that {x1, 29, ...z} C 2Ny and therefore |zNy| >r — h.
This shows, by Lemma 9.13, that d(z,y) < h, a contradiction.

Therefore j € {1,2,...,7 — h}. So, to get z from x we have to replace any of elements
{z1,...,x,—p}. This gives us (r — h)(n —r — h) possibilities for z in total. This shows that
bp=(r—h)(n—r—h) (0<h<D-1).

Pick z € T'y(z) NT'h—1(y). Hence |z\z| =1 and |z N x| =7 — h + 1. Again, assume
2\z = |z;|. If j € {1,2,...,r — h}, then |z Ny| =7 — h — 1. Therefore, to get z from z, we have
to replace one of the {z,_ni1,..., .} with one of {y,_pi1,...,y.}. This gives us h? possibilities
in total. Therefore ¢, = h? (1 < h < d). O

(9.15) Definition (generalized Petersen graph)
Let n>3and 1 <k <n-—1,k# %, be integers. A generalized Petersen graph GPG(n, k)
is the graph with vertex set V = {u; : i € Z,} U{v; : i € Z,} and edge set

= {{Ui,ulqu} | 1€ Zn} U {{ui,vi} ’ 1€ Zn} U {{UZ‘,UZ'+]€} ‘ 1€ Zn} <

(9.16) Exercise
Prove that the Petersen graph GPG(5,2) is distance-regular.

Solution: Consider Theorem 8.12 (Characterization A). We will draw graph with subsets of
vertices at given distance from the root, where for a root we will consider all possibilities. If
vertices in the same layer are "neighborhood-indistinguishable” from each other, and the
whole configuration does not depend on the chosen vertex, the graph is distance-regular. For
illustration see Figure 38. Therefore, Petersen graph GPG(5,2) is distance-regular.

FIGURE 38
Petersen graph GPG(5,2) drawn on 10 different ways, each with different root. O
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10 Characterization of DRG involving the distance
polynomials

(10.01) Definition (distance-polynomial graphs, distance polynomials)

Graph I is called a distance-polynomial graph if and only if its distance matrix A; is a
polynomial in A for each i = 0,1, ..., D, where D is the diameter of I'. Polynomials {p }o<k<p
in A, such that

A =pe(A) (0< k< D),

are called the distance polynomials (of course, py = 1 and p; = z). o

(10.02) Lemma
If the graph T is regular, connected and of diameter 2, then I is distance-polynomial.

Proof: Consider the sum I + A; + A, = J. Since I is regular and connected, J is a
polynomial in A; say J = ¢(A) (Theorem 6.05). Then

Ar=J—-1—-A =J—-1—-—A=q(A)—1—A, is polynomial in A. Thus I" is
distance-polynomial. O

FIGURE 39
The 3-prism (example of distance-polynomial graph which is not distance-regular).

(10.03) Comment

From Proposition 8.05 we see that, distance-regular graphs are distance-polynomial, that
is, in a distance-regular graph, each distance matrix Ay is a polynomial of degree h in A:

Ay = pu(A) € AT) (0< h < D).

The simplest example (that we took from [48]) of a distance-polynomial graph which is
not distance-regular is the 3-prism I' (Figure 39). I' clearly has diameter 2, is connected and
is regular. Thus I' is distance-polynomial. It is straightforward to check that I' is not
distance-regular. A distance-polynomial graph which is not distance-regular need not have
diameter 2. This example show that classes of distance-regular and distance-polynomial are
distinct.

We shall see that distance polynomials satisfies some nice properties which facilitate the
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computation of the different parameters of I'.

distance -regular graphs

negulan graphs

FIGURE 40

[lustration of classes for distance-regular and distance-polynomial graphs.

(10.04) Exercise

Find distance polynomials of distance-regular graph which is given in Figure 41.

10

11

12

13

14

FIGURE 41

Heawood graph.

Solution: First we will find distance matrices:

S
CoCcOoCcCOoCO 00O~ O
COoOHOOCOO0O0O0O O ~O
coococo-“o0o0cO0O~O—HOO
~Cco0co0cCcO0OO0OO0O~O—~O0OOO
cCoo~0coco~NOoOHOOOO
coocococo-HOoO~0O0O—O
o-“0cocoHOHOOOOOO
coco—~o-H00O0~0O0O
cCooO~OHO0O0COO0OO0O O~
coHOoO~OO0OOHOOOOO
o0~ 0CO0OO0O0COCOO—~0OO
~O0O-HO0OO0OO0O-N0OO0O0O0OOO

CHOOoOOoOOoOoOo o H0 oo

Il
<

SCcococcocoocococoococoo —~
cococoococoococococoo~o
cococococoococoococo—~oo
coocococoocoocoo~0oO0O
coocococoocooco~0O0OO
coococococoocoo—~ocoocoo
cocococococoo—~oco0ocooo
cococooco~ocococoocoo
cococooco~ocoococoocoo
coco-Hoocoococoocoo
cooo0oo0o0O0O0OOCOOCOO
co-ocococooocoocoocoo
c~ocococococoocoocoooOo

10000000000000_

Il
o
<
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0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 00 0 1 0 O
0001010101010 1 000010001010 10
1 0001010101010 0 000010T10T1000 1
01000101010 101 100000 100O0T10 10
101 00010101010 01 0000O0T10T10 100
001010001010 1 0 1 101000001000 10
4, _|1 0101000101010 , {000100000T10101
2=lo 10 101000 10 10 1”7 11 010100000100 0
1 0101010001010 01 000 1000O0GO0 1 0 1
0101010100010 1 0010101 0000G0 10
1010101071000 T10 01 01000100000 1
0101010101000 1 1000101010000 0
1 0101010101000 01 0101000710000
o 1010101010 1 0 0 0 01 00 01010 10 0 0
After that we can calculate
Ay =A"=1,
1
A=A =A,
A, = (—3)A° + A?
2 — ( ) + )
5 1
Ay =(—2)A+ - A°
3 3
Distance polynomials of a given graph are py(z) =1, p1(x) = x, pa(x) = —3 + z* and
__5 1,3
p3(7) = =3 + 32°. O

(10.05) Proposition

Let ' = (V, E) be a simple connected graph with adjacency matriz A, |V| =n and let
Rlz] = {ao + a1z + ... + ax™|a; € R} be a set of all polynomials of degree m € N, with
coefficients from R. Define the inner product of two arbitrary elements p,q € R[x] with

(0,4) =~ trace(p(A)a(A)).

Prove that R[x] is inner product space.

Proof: We need to verify that R[z] is vector space, and that defined product (-, ) satisfy
axioms from definition of general inner product?. We will left this like an easy exercise. O]

(10.06) Exercise

Let I' = (V, E) denote regular graph with diameter D, valency Ao, and let {p,}o<n<p be
distance polynomials. Then

(1) kp == |Th(w)| = pr(Xo), for arbitrary vertex u (kj, is number independent of w);

(#) lpall® = pr(Xo);
forany 0 < h < D.

Solution: (i) By j we will denote vector which entries are all ones, j = | :| . From

Proposition 2.15, j is eigenvector for A with eigenvalue \g so Aj = Aoj,

2Recall: An inner product on a real (or complex) vector space V is a function that maps each ordered pair
of vectors z,y to a real (or complex) scalar (x,y) such that the following four properties hold.
(x,x) is real with (x,z) > 0, and (z,z) = 0 if and only if z = 0,
(x, ay) = afz,y) for all scalars a,
oy + 2) = (2,) + (z, 2),

(x,y) = (y,x) (for real spaces, this becomes (x,y) = (y,x)).
Notice that for each fixed value of z, the second and third properties say that (x,y) is a linear function of y.

Any real or complex vector space that is equipped with an inner product is called an inner-product space.
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AQj =A- Aj =A. AoJ = >\0Aj = )\3.7',
Akj = )\kj for any k € N). 14
0

Then for arbitrary vertex u € V
ITh(w)| = (An - 5)u = (Pu(A) - §)u = (A" 4 1 A"+ A+ cod) - |1 ])u =

= (nAYT + AT T e o + cof)u =
= Cm)\()n + Ch_l)\gl_l + ...+ Cl/\O +co = ph()\o).

(ii) Let ! =1 if shortest path from u to v is of length h and let ¢, = 0 otherwise. Notice

that we have
i 1, ifo(h,k)y=i=y
knChk = 0, otherwise '

If we denote vertices of graph T' with numbers from 1 to n, that is V' = {1,2,...,n}, we have

h h h

C}LI C}LQ e C}Ln
& c .. C : :
A, — ?1 ?2 2n 7 Czlc?u n CZQCSU N CZnCZu _ numb.er of vertices which are ’
: on distance h from vertex u
h h h
Cnl Cn2 Cnn

trace(ApAp) = Y (ki + clach + . + chycie) = [Ta(D)] + [Th(2)] + .. + [Ta(n)] @ k.
k=1
Finally

thH2 = (PhsPn) = %trace(ph<A)ph(A)) = %trace(AhAh) = ky, = [Tn(u)] = pr(Xo).-

In terms of notation from Proposition 7.10, we have kj, = (boby...bp_1)/(c1Co...cp) for
1< h<D.

(10.07) Proposition
Let {px}o<k<p denote distance polynomials for some regular graph I' = (V, E) which has n
vertices, and diameter D. Then

_ ) kn tfh=1
{Pn, 1) = { 0, otherwise.

where inner product of two polynomials is defined with (p,q) = *trace(p(A)q(A)), and

ky, = [Ty (w)| is number independent of wu. !

Proof: Let ¢!, = 1 if shortest path from u to v is of length h and let ¢, = 0 otherwise.

Notice that we have
y 1, if O(u,v) =h=1¢
c = )
woon 0, otherwise

Y

that is f O(u,v) =h="¢
1, if d(u,v) =h =
(Ah)uv (Af)uv - { 0, otherwise '
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It follows from Exercise 10.06, that (py,pp) is k. Now assume that h # ¢ and compute
(pn,pe). We have (pp,, pe) = +trace(p,(A)pe(A)) = ~trace(A,A,). Pick a vertex u of T' and
compute (u, u)-entry of A,A,:

h h h L L L

c}ll1 C}LQ Cllln 0%1 c%2 e
(AAy), — c?1 0?2 c?n 0?1 0?2 N, _ Z(Ah)ua; (Ao
Ay oy | |y )
As h # €, either (Ap)yr =0, or (Ag)zy = 0. Therefore (ApA;)u, = 0, and so trace(4,4;) = 0.
This shows that (pp,pe) = 0. ]

(10.08) Theorem (characterization D)
A graph T' = (V, E) with diameter D is distance-reqular if and only if, for any integer h,
0 < h < D, the distance-h matriz Ay, is a polynomial of degree h in A; that is:

Ap=pn(A) (0<h < D).

Proof: (=) Let I' = (V, E)) be distance-regular graph with diameter D. Then, every
condition from Proposition 8.05 is satisfied, so we have

(<) Now assume that for any integer h, 0 < h < D, the distance-h matrix A, is a
polynomial of degree h in A; that is Ay, = ps(A). If T has d + 1 distinct eigenvalues, then
{I,A A% ... A% is a basis of the adjacency or Bose-Mesner algebra A(I") of matrices which
are polynomials in A (Proposition 5.04). Moreover, since I' has diameter D,

AmAT) =d+1> D +1,

because {I,A, A% ..., A"} is a linearly independent set of A(T") (Proposition 5.06). Hence, the
diameter is always less than the number of distinct eigenvalues:

D<d (15)

Is it true that for any connected graph I" we have Ay + Ay + ... + Ap = J, the all-1
matrix? Yes, and it is an easy exercise to explain why. Now, notice that I + A+ ... + Ap = J,
that is po(A) + p1(A) + ... + pp(A) = J, and degree of h = py + p1 + ... + pp is D. Comment
after Theorem 6.05 say that Hoffman polynomial H is polynomial of smalest degree for which
J = H(A) and this polynomial has degree d, where d + 1 is the number of distinct eigenvalues
of T'. Thus, assuming that I has d + 1 distinct eigenvalues and using (15) we have

D <d<dgr(h) =dgr(po+pi+..+pp)=D.

The above reasoning’s lead to D = d, and to conclusion that {I, A, A%, ..., AP} is a basis of the
adjacency algebra A(T).

As distance matrices A; are polynomials in A, they belong to the Bose-Mesner algebra.
Distance matrices are clearly linearly independent, and since dimension of Bose-Mesner
algebra is d + 1 = D + 1, they form a basis for Bose-Mesner algebra. By Theorem 8.22
(characterization C), I is distance-regular. O

The existence of the first two distance polynomials, py and py, is always guaranteed since
Ay=1Tand A, = A.

Recall that eccentricity of a vertex u is ecc(u) := max,cy 9(u,v). Now, if every vertex
u € V has the maximum possible eccentricity allowed by the spectrum (that is, the number of
distinct eigenvalues minus one: ecc(u) = d, Yu € V'), the existence of the highest degree
distance polynomial suffices:
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(10.09) Theorem

A graph T' = (V, E) with diameter D and d + 1 distinct eigenvalues is distance-reqular if
and only if all its vertices have spectrally mazimum eccentricity d (= D = d) and the distance
matriz Ay is a polynomial of degree d in A:

Ag = pa(A).

This was proved by Fiol, Garriga and Yebra [19] in the context of "pseudo-distance-regularity”
- a generalization of distance-regularity that makes sense even for non-regular graphs. We will
prove similar theorem in Section 11, and our proof will use Lemma 13.07 that we had found in
[13] and part of proof from [21].

(10.10) Theorem (characterization E)
A gmph I' = (V, E) is distance-regular if and only if, for each non-negative integer £, the
number a’, of walks of length € between two vertices u,v € V only depends on h = d(u, 'U)

Proof: (=) Assume I is distance-regular. From Proposition 5.04 we know that

{I,A A% ... A" is a basis of the adjacency algebra A, where d + 1 is number of distinct
eigenvalues. From Corollary 8.10 and Lemma 8.19 we had that for distance-regular graphs
A =span{l,A,A,,..,Ap} = span{I, A, A% ..., A”}. So distance matrices {I, A, A,, ..., Ap}
are a basis for a Bose-Mesner algebra. It follows that A® is a linear combination of distance
matrices for every ¢, that is for every A* € A there are unique constants at, such that

D
- ZaiAk = Za (Ag)uy for arbitrary u,v € V.
= k=0

That is, the number (A%),, = a% of walks of length £ between two vertices u,v € V only
depends on h = 0(u, v).

(<) Conversely, assume that, for a certain graph and any 0 < k < D, there are constants
af, satisfying A* = S°0_ af Ay (> 0), where af is number of walks of length ¢ between two
vertices on distance k. As a matrix equation,

I @ 0 0 .. 0][1I
A ap aj 0 ... 0 A
A Z |ad a2 @k .. 0] |A
_AD | _aé) al ab . ag_ |Ap |
T

where the lower triangular matrix 7', with rows and columns indexed with the integers 0, 1 ...,
D, has entries (T)g = af. In particular, note that aj = ai = 1 and a} = 0. Moreover, since

ay > 0, such a matrix has an inverse which is also a lower triangular matrix and hence each
Ay, is a polynomial of degree k in A. Therefore, according to Theorem 10.08 (characterization
D), we are dealing with a distance-regular graph. (Of course, the entries of 7! are the
coefficients of the distance polynomials.) ]

We do not need to impose the invariance condition for each value of ¢. For instance, if ' is
regular we have the following result:

(10.11) Theorem (characterization E’)

A regular graph T' = (V, E) with diameter D is distance-regular if and only if there are

constants af and a}™ such that, for any two vertices u,v € V at distance h, we have a", = al!
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(a®. - number of walks of length h) and a1 = aZH for any 0 < h < D —1, and a2 = daB for
h=D.

Proof: To illustrate some typical reasoning’s involving the intersection numbers, let us prove
characterization E’ from the characterization A.
(=) Assume first that I' is distance-regular. We shall use induction on k.

BASIS OF INDUCTION
The result clearly holds for k& = 0 since a2, = 1 = af and a;, = 0= qaj (a,
walks of length 0 from u to u, and a.,, is number of walks of length 1 from u to w.)

L

FU) I,(u) Mei(u) T(u) Te(u IS())

is number of

FIGURE 42
[lustration for computing numbers a¥ and a*f!.

INDUCTION STEP

Assume that a®7! = a¥~1 and a¥, = af | for any vertices u, v at distance k& — 1. Then, for
any vertices u, v at distance k we get equation, say:
k k-1
oy = Z Ay = ak 1|Fl€ 1( )HF(U)’ (16)
wel_1(u)NT'(v)
so we have
a¥ = ai~lcg for all u,v € V at distance k,

and from that af = af~1c;. Notice that
if d(u,w) = k — 1 then by assumption a*, =af . (17)

Similarly, using equality a¥, = agjck and

ayt = > Ty = Gy T D Oy =
wE[Lg_1 (w)Ul'g (w)]NI'(v) welg_1(u)NT'(v) wely (u)NI'(v)

17 _
D 0k I (u) NT ()] + @b~ e T(u) N T ()| =

= aj_o|Th-1(u) NT ()] + ag[Ti(u) NT(v)] (18)

we have

aﬁjl = a’,j_lck + aijckak for every u,v € V.

We infer that ai“ = aﬁflck + a’,jjckak, and the result follows.
= Conversely, suppose that such constants af and af,, do exist. Now, if O(u,v) = k,
k k41
from af, = af and a*, = a}"1|T%_1(u) NT(v)| (see (16)) we obtain that

Cra(u) NT)] = ==




10. CHARACTERIZATION OF DRG INVOLVING THE DISTANCE POLYNOMIALS 71

does not depend on the chosen vertices u € V, v € I'y(u) and so

(19)

cx(u,v) =cp = R

A1

Analogously, from a
we get

uv uv

B = af ! and afH = af T 1 (u) NT(v)| + af|Dx(u) NT(v)] (see (18))
k+1 ko A k
ay = a7 + ap|Te(u) N T(v)],
Ap—1
where we have used the above value of ¢;. Consequently, the value

k+1 k
a A1

Ti(u) NI ()] = - — ==
a a5

k+1 k
a ap_
ag(u,v) = ap = 21— — Zj (20)
k ap—1

Finally, since I is regular, of degree ¢ say,
be(u,v) = [Ty NT(0)| = — ¢ — ay,

shows that by, is also independent of u, v and, hence, since Equations (19) and (20) are true, I'
is a distance-regular graph. O]

In Proposition 10.05 we have define inner product in R[z] with (p, q) = Ltrace(p(A)q(A)).

We also have: "

(10.12) Proposition
Let T' = (V, E) be a simple, connected graph with spectrum

spec(T") = {/\810‘0), /\T(’\l)7 s )\Zl(/\d)}, let p and q be arbitrary polynomials, and let |V| =n
(number of vertices in I" is n). Then

(p,q) = %kapO‘k)Q()\k)'

where my = m(X\g) (0 < k <d).

Proof: By Lemma 2.06, there are n orthonormal vectors vy, ..., v,, that are eigenvectors of
the adjacency matrix A of I'. For these eigenvectors there are some eigenvalues A, Ay, -,
A, , not necessary distinct, and because of Proposition 2.07 we have that D = P71 AP where

Ny 0 0
0 Xy .. O

P = |:’U1 Vo ... ’Un] and D = . . . )
0 0 A

that is A is diagonalizable. Notice that PPT = I (that is Pt = PT),
A*=A.-A=PDP"PDPT =PD?P" , A"=A-A-..-A=..=PD"P",
P(A) = A" + a1 AV 4+ A+ ol

p(A) = P(a,D" + a1 D" + ...+ a1 D+ ag) P (21)
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For arbitrary matrices A, B for which product AB and BA exist, we know that

trace(AB) = trace(BA). (22)
Now ]
(p.4) =~ trace(p(A)g(4))
- ltrace(Pp(D)q(D)PT) = itrace(p(D)q(D)PT P) =
1 1 o
= Etrace(p Zp i) = Zm (A)p(Ak)g(Ag)-

=0

(10.13) Proposition
Let T'= (V| E) denote a distance-reqular graph with adjacency matriz A and with spectrum

spec(T") = {)\SI(AO), /\T(’\l)7 o )\m(/\d)} Then multiplicities m(X;), for any \; € spec(I'), can be
computed by using all the distance polynomials {p;}¢_, of graph T':

where k; := p;(Xo).

Proof: Consider matrix P = ) i ) , where p;(z)’s are distance

pa(Ao) pa(A) - pa(Aa)
polynomials. From Proposition 10.07

gy — B R =1
PhyP1) = 0, otherwise ’

while from Proposition 10.12

3}—!

d
k=0
From this we have

(Ph,pn) = %(m()\o)}?h()\o)2 +m(A)pa(M)? + .+ m(Aa)pn(Aa)?) = ki

and
(pi,pj) = %(m(Ao)pi(Ao)Pj(Ao) +m(A)pi(A)pj (A1) + ... + m(Aa)pi(Aa)pj(Aa)) = 0, if i # j.

If we use the above equations, it is not hard to see that PP~! = I where

A A A
m(}\o)poéoo) m(}\o)p1lilo) m()\o)pd,id())
A A A
P_1 — l m(Al)pOlgol) m(/\l)pllill) m(Al)pdlidl)
n . :
A A A
m()‘d)pol(md) m()\d)pll(ﬂd) m(Ad)pdlidd)
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is inverse of P. Since P~'P = I, we have

% (m(Ao)p—0%°)2 +m(>\0)p—1(]:10)2 + ... +m()\o)pd(2l())2) -1

1 Po(Ad)” A Pa(Ad)®
- =1
" (m()\d) o +m(Aq) " + ... +m(A\g) ™
that is
1 1
2]
ﬁm()\i) (Z k_jp]()\z) ) =
7=0
a4 -1
= m(\) =n (Z kjp]()\z) )
7=0
where k; = |I';(z)| = pi(Xo) (see Proposition 10.06). O

11 Characterization of DRG involving the principal
idempotent matrices

(11.01) Proposition
Let T' = (V, E) be a (simple and connected) graph with adjacency matriz A, and spectrum

spec(I') = spec(A) = { A\, AT, ., A},

where the different eigenvalues of I' are in decreasing order, \g > A1 > ... > Ay, and the
superscripts stand for their multiplicities m; = m(\;). Then all the multiplicities add up to
n = |V, the number of vertices of T.

Proof: We know that an eigenvalue of A is scalar A such that Av = v, for some nonzero

v € R". From (A — Al)v =0 it follow that Av = Av if and only if det(A — A\I) = 0, that is iff
A€ { )Xo, A1, ..., Mg} where det(A — AT) = (A — Ao)™ (A — A1)™ ...(A — Ag)™. Recall that
number m; is called algebraic multiplicity of \;.

Since A is a real symmetric matrix, it follows from Proposition 2.09 that A is
diagonalizable, and (by Theorem 2.12) it follows that geomult4(A) = algmult4(\) for each
A€ a(A) ={ o, A1, ..., Ag}, where geomult4();) is geometric multiplicity of A;, that is
dimker(A — \;I) = dim(&;). Finaly, from Lemma 4.02, my + my + ... + mg = n, and result
follows. [l

In Definition 4.03 we have defined principal idempotents of A with E; := UZ-UZAT where U;
are the matrices whose columns form an orthonormal basis of eigenspace &; := ker(A — \;1)
(Ao > A1 > ... > )y are distinct eigenvalues of A).

(11.02) Example

Let I' = (V, E) denote a regular graph with )¢ as its largest eigenvalue. Then (from
Proposition 2.15) multiplicity of \g is 1 and j = (1,1,...,1)7 is eigenvector for \g. From this it
follows

1 1 1 ..1
. =T
1 11 1 ... 1
MRV ] no|io
11 1
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(11.03) Exercise
A path graph P, (n > 1) is a graph with vertex set {1,2,...,n} and edge set
{{1,2},{2,3}, ..., {n — 1,n}} (graph with n > 1 vertices, that can be drawn so that all of its
vertices and edges lie on a single straight line, i.e. two vertices will have degree 1, and other
n — 2 vertices will have degree 2). Illustration for Ps is on Figure 43 (left).
Cartesian product I'y x I'y of graphs I'y and I's is a graph such that
() the vertex set of I'y x I'y is the Cartesian product V(I'y) x V(I'y) and
(71) any two vertices (u,u’) and (v,v’) are adjacent in I'; x I'y if and only if either
(a) u =wv and u' is adjacent with v" in I'y, or
(b) v = v and w is adjacent with v in T'y.
[lustration for Py x Pj3 is on Figure 43 (right).
Determine principal idempotents for graph I' = P x P;.

Q(C)a) ‘( ¢b) 4( c,c)

a éb) a) ‘(b) b) (b) C)
j

c L(a;a) ‘L‘l} b) L(a)c)

P3 P3 xP3

FIGURE 43
Path graph P; and graph P3; x Ps.

Solution: Spectrum of graph P; x Pj is
spec(Py x Py) = {2v2', V27,03, /2", —2v/2').

Eigenspace & is spanned by a vector u; = (1, V2,1,/2,2,4/2,1,V/2, 1)T, eigenspace & is
spanned by vectors uy = (1,4/2,1,0,0,0, —1, =2, —1)T, and
us = (—v2,—-1,0,-1,0,1,0,1,4/2) 7, eigenspace &, is spanned by vectors
uy = (0,0,1,0,—1,0,1,0,0)", us = (1,0,0,0,—1,0,0,0,1)" and

=(0,1,0,—1,0,—1,0,1,0) ", eigenspace &3 is spanned by vectors
ur = (v/2,-1,0,-1,0,1,0,1, —v/2)T and ug = (1, —v/2,1,0,0,0, —1,v/2, —1)" and, finelly,
eigenspace &, is spanned by a vector ug = (1, —V2,1,—/2,2,—v2,1, —/2, 1)T. Now we can
use the Gram-Schmidt orthogonalization procedure (if it is necessary) and compute
orthonormal vectors:

_ 11 11 11 INT
v = (471 2747_ 27§az 27ZaZ 271) )
1V2,5,71V2.0,0,0,.—3v2, =5, —3v2) T,

\/_07% 2__ 757 \/—Oa}l ) )

fo 1\/’0\/‘00)

<
v
I
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ot

Il
/‘\/\/‘\/‘\/‘\/‘\/‘\/‘\
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After that it is not hard to obtain Uy, Uy, Uy, Us and Uy, and evaluate

[1 V2 o1 V2 2 V2 o1 V2 o1
V22 V22 2v2 2 V22 V2
1 V2 o1 V2 2 V21 V2 o1
1 V22 V22 2v2 2 V22 V2
Eo=—1|2 22 2 2v2 4 2v2 2 22 2
lva 2 v2a 2 208 2 V3 2 &
1 V2 o1 V2 2 V2 o1 V2 o1
V22 V22 2v2 2 V22 V2
|1 V2 1 V2 2 V21 V21
ro2 V2 0 V20 —V/2 0 —V2 -2
V2 2 V2 0 0 0 —V2 -2 -2
0 V2 2 -2 0 V2 -2 =2 0
1 V2 0 -2 2 0 -2 V2 0 -2
Ei=-| o0 0 0 0 0 0 0 0 o |,
81_v2 0 vVZ -2 0 2 —v2 0 2
0 -2 -2 V20 —V/2 2 V2 0
V2 -2 V2 o0 0 0 V2 2 V2
-2 =2 o0 -2 0 V2 0 V2 2 |
3 0 -1 0 -2 0 -1 0 37 r2 —-v2 0 —-v2 0 v2 0 V2 =27
0o 2 0 -2 0 -2 0 2 0 V2 2 =2 0 0 0 V2 -2 2
-1 0 3 0 -2 0 3 0 -1 0 V2 2 V2 0 —v2 -2 V2 0
(10 -2 0 2 o0 2 0 -2 0 1—\/50\@20—2—\/50\/5
E;y=-|-2 0 -2 0 4 0 -2 0 -2, E3==]0 0 0 0 0 0 0 0 o |,
8lo -2 0o 2 0 2 0 -2 0 81va 0 —vZ —2 0 2 V2 0 -2
-1 0 3 0 -2 0 3 o0 -1 0 V2 -2 —v2 0 V2 2 -2 o
o 2 0 -2 0 -2 0 2 0 VZIoo—2 V320 0 0 3 2 -3
L3 0 -1 0 -2 0 -1 0 3] 2 2 0 V2 0 VB 0 3 9 |
M1 -2 1 -2 2 -2 1 -2 1 ]
V2 2 -2 2 —2v2 2 -2 2 V2
1 -2 1 -2 2 -2 1 —V2 1
" 2 2 —/2 2 —2v/2 2 -2 2 -2
E,=—| 2 —2v/2 2 —2V/2 4 —2v/2 2 —2v/2 2 .
16
-2 2 V2 2 —2v2 2 V2 2 V2
1 -2 1 -2 2 -2 1 -2 1
V2 2 -2 2 —2v2 2 -2 2 -2
| 1 V2 1 -2 2 -2 1 -2 1]

(11.04) Proposition
Set {Eo, E,...,E;} is an orthogonal basis of adjacency algebra A(T).

Proof: By Proposition 4.05 we have that A = span{E,, E1, ..., E;}. We have seen that
E,E; = 6;;E,; (Proposition 5.02), and since orthogonal set is linearly independent (Proposition
5.03), the result follow. O

(11.05) Proposition
Let ' = (V, E) denote a simple graph with adjacency matriz A and with d + 1 distinct
eigenvalues. Principal idempotents of I satisfy the following equation

d
Ei:%H(A—)\jI), (0<i<d

‘=0
JF#i

where ¢; = szo(j#)(ki — ).
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Proof: We know that for a set of m points S = {(z1,v1), (2, ¥2), ..., (Tm, Ym)} there is unique
polynomial

H(95 - ;)
=1 H (i — ;)
i
of degree m — 1 which pass through every point in §. This polynomial is known as
Lagrange interpolation polynomial. Let o(A) = { Ao, A1, ..., \g} be a set of all, distinct,
cigenvalues of A, and let f(z) be function which has finite value on o(A). Consider set

S1 = {(Xo, f(No)), (A1, f( A1), .o, (Mg, f(Xa))}. Lagrange interpolation polynomial for S; is

d j=0 : d d

=3 [ ——| = | 5 I =)

=0 [Ti=x) ] =0\ =
o

In notation for matrix A this mean

ﬁm—&n

j=0

d d
=2 || =2 | g I A=
S B  CYR W =
7=0

JF#i
By Lemma 4.04, we know that f(A) = f(Xo)Eo + f(M)E; + ... + f(Ag)Eg4. If for function f

above we pick
GANE=N 0, ifx£N

ISH

we have .
MAa-xn
i 1
p(A) =E; and p(A) = T—— = JH(A — i),
[T = 4) =
%
and the result follows. O

(11.06) Theorem
Principal idempotents of I represents the orthogonal projectors onto & = ker(A — \;1)

(along im(A — \;1) ).

Proof: First recall some basic definitions from Linear algebra. Subspaces X, ) of a space V
are said to be complementary whenever

V=X+Y and XNY ={0},

in which case V is said to be the direct sum of X and ), and this is denoted by writing
Y =X @ ). This is equivalent to saying that for each v € V there are unique vectors r € X
and y € Y such that v = x + y. Vector x is called the projection of v onto X along ). Vector
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y is called the projection of v onto ) along X'. Operator P defined by Pv = x is unique linear
operator with property Pv =z (v=x +y, z € X and y € ) and is called the projector onto
X along Y. Vector m is called the orthogonal projection of v onto M if and only if v =m +n
where m € M, n € M+ and M C V. The projector Py onto M along M+ is called the
orthogonal projector onto M.

Pick arbitrary principal idempotent E; of I'. The proof that E; is projector rests on the
fact that
E}=E;, — im(E,) and ker(E;) are complementary subspaces. (23)

To prove this, observe that R" = im(E;) + ker(E;) because for each v € R",
v=FEv+ (I — E;)v, where E;v € im(E;) and (I — E;)v € ker(E;) (24)

(and (I — E;)v is in ker(E;) becouse E;((I — E;)v) = (E; — E?)v = (E; — E;)u = 0).
Furthermore, im(E;) Nker(E;) = {0} because

r€im(E;) Nker(E;}) = x=Ewand Ex=0 = 1=Ew=EFEv=Ezxr=0,

and thus (23) is established. Now since we know im(FE;) and ker(E;) are complementary, we
can conclude that FE; is a projector because each v € V' can be uniquely written as v = z + v,
where x € im(E;) and y € ker(E;), and (24) guarantees E;v = z.

With this we had showed that E; is projector on im(E;) and that

R" = im(E;) @ ker(E;).
Now notice that

= Elx=0 < zcker(E])

reim(E)t & (Ey,2)=0 & y' E/lz=0 & (y,E/z)=0
and this holds for every y in R"™ that is
im(E;)* = ker(E])

which is equivalent with
im(E;) = ker(E])*.

Since E; = (U;U")T = U;U;" = E; we have that
im(E;) = ker(E;)*.
But E; must be an orthogonal projector because last equation allows us to write
E,=E] <— im(E,))=im(E]) < im(E;) =ker(E;)> <= im(E;)Lker(E;).
And we obtained that
R" = im(E;) @ ker(E;) = ker(E;)* @ ker(E;) = im(E;) @ im(E;)".

It is only left to show that im(E;) = ker(A — A\;I) and that ker(E;) = im(A — \;1). To
establish that im(E;) = ker(A — \;I), use im(AB) C im(A) and U,' U; = I to write

Thus
im(E;) = im(U;) = ker(A — \1).
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To show ker(E;) = im(A — \1), use A = Z?:l A;E; with the already established properties of
the F,’s to conclude

k k
j=1 i=1

But we already know that ker(A — \;I) = im(E;), so
dimim(A — N\ 1) =n — dimker(A — \;1) = n — dimim(E;) = dimker(E;),

and therefore,
im(A — N\ 1) = ker(Ej).

Therefore, E; is orthogonal projector onto &; (along im(A — \;1)). O

A R"

< FE;v

2

FIGURE 44
E; projects on the \;-eigenspace &;.

(11.07) Definition (predistance polynomials)

Let I' = (V, E) be a simple connected graph with |V| = n (number of vertices is n). The
predistance polynomials po, p1, ..., pa, dgr p; = 1, associated with a given graph I' with
spectrum spec(I') = spec(A) = {A{"°, A", ..., A"}, are orthogonal polynomials with respect to
the scalar product

n

(p.0) = - trace(p(A)a(A)) = > mip()a(n)

on the space of all polynomials with degree at most d, normalized in such a way that
1p:]1* = pi(Xo). o

(11.08) Problem

Prove that polynomials p;(z) from Definition 11.07 exists for all i = 0,1,...,d (so that
given definition makes sense). O
Solution: Consider linearly independent set {1, z, 22, ..., 2%} of d + 1 elements. Since we have
scalar product (x,x) we can use Gram-Schmidt orthogonalization procedure and form
orthonormal system {rg, 71, ...,74} (because of definition Gram-Schmidt orthogonalization
procedure notice that for our system {rg,ry,...,74} we will have dgrr; = j and ||r;|| = 1).

Now for arbitrary numbers ag, aq, ..., ag set {aoro, aq71, ..., agr, } is orthogonal set (because
(ajr;, 0qr;) = ajoy(rj, ;) = 0 for i # j). This means that if we for arbitrary r; define
c:=1;(No) and p;(z) := cr;j(x) we have

Ip;|I* = (crj, ersy = il = ¢ ¢ = erj(Ao) = pj( o)
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that is ||p;||> = pj(Xo). Therefore, set {po, p1, ..., pa} where p;(x) := r;(Xo)r;(z) is orthogonal
system and ||p;||* = p;j(Xo) for j =0,1,...,d. O

(11.09) Comment
We can now observe polinomyal py from Definition 11.07. Notice that dgr (py) = 0 so we
can, for example, say that py = c. Since

(po, po) = kapo (Ak)po(Ar) = ka =

and [|p;||* = pi(\g) we have that ¢® = ¢, and this is possible if and only if ¢ = 1. Therefore

Po = 1.
If I" is o-regular then

<1,l’> = %Z?:omi )\z
d

11> = 5 Xigmi = 1,

z]* = %Z?:(] miN? by Theo 107 trace(AQ) =6 = \o.

by Theo. 4.07

trace(A) = 0,

It is clear from the above three lines, that if p; = x, then we have that p; is orthogonal to py
and that ||pi]|* = p1(No)- O

(11.10) Comment

From Proposition 10.07 we see that distance polynomials of regular graph are orthogonal
with respect to the scalar product (p, ) = Ztrace(p(A)g(A)). Since this polynomials satisfy
condition ||p;||* = pi(Mo) (see Exercise 10.06), we have that if distance polynomials p; of
regular graph have degree ¢ then they are in fact predistance polynomials. O

(11.11) Proposition

Let T = (V, E) be a simple (connected) reqular graph, with spec(I') = {\g", A\T", ..., Ay},
and let py, p1, ..., pa, be sequence of predistance polynomials. If ¢; = ijo p; then

or in other words, qq is the well-known Hoffman-polynomial.
Proof: To prove the claim, we first show that ¢; is the (unique) polynomial p of degree i that

maximizes p()g) subject to the constraint that (p,p) = (¢, ¢;). To show this property, write a
polynomial p of degree i as p = >_" =0 QiPi for certain o (for fixed 7). Then the problem

reduces to maximizing p(\g) = Z; 0 @pj(Ao) subject to Zj 0 @p;(Ao) = (¢, i), becouse

p) = <Z @Dy, Z%‘M) = Z %2-<Pj,]9j> = Z CVJQ'PJ‘(AO)
j=0 k=0 j=0 j=0
Notice that

p7 QZ Za]pj7zpk Za]<p]7p]> = Zajp]()‘())u
=0 =0
(- ) Zpg,Zpk Z Pj» D5 Zpg (Xo)-
7=0
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Now problem become: find polynomial p od degree ¢ that maximizes

p(Xo) = Z a;p;i(Ao) (25)

subject to the constraint that
Z aip;(No) = ij(/\o), (26)

or in another words

Since p;(Ag) >0, 7 =0,1,....d (Problem 11.08), we have that given constraint become
1—aj=0forj=0,1,..,i. Now it is not hard to see that for maximal p(\o) subject to the
constraint that (p, p) = (¢, ¢;) we must have g = oy = ... = o; = 1, and therefore ¢; is the
optimal p.

Same conclusion we will obtain if we consider Cauchy-Schwartz inequality
(p,q:)| < |Ipllllg:l| (with equality iff polynomials p and g; are linearly dependent), that is
(p,qi)|* < |Ip|l*llg:||* or in another words

008 2 (S| < | Saimon] [Snow] 2 | Saon)] [Saow] - acr

j=0

with equality if and only if all a; are equal to one. The constraint and the fact that
p;(Ao) > 0 for all j guarantees that ¢; is the optimal p.
On the other hand, since (p,p) = 2p(Xo)* + + Z;{:l m;p(\;)*(Definition 11.07), that is

d
1 2 1 2
gp(Ao) = (p,p) — - ;mg‘p(%’) ,

the objective of the optimization problem is clearly equivalent to minimizing ijl m;p(\;)%
For i = d, there is a trivial solution for this: take the polynomial that is zero on A; for all
j=1,2,...,d. Hence (since g4 is the optimal p) we may conclude that g4()\;) = 0 for
j=1,2,...,d, and from the constraint it futher follows that

d
1) = 37 00 = (aasa0) = b2) = ~p00)* = ~0aVo)

that is

qa(Xo) = n.
Recall that in Example 11.02 we had Ey = %J, and from Proposition 5.02(ii)
p(A) = Z?:o p(A)E;, so we have
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(11.12) Lemma
Let po, p1, ..., pa, be sequence of predistance polynomials. If Ag = pqs(A), then A; = p;(A)
foralli=0,1,....d.

j‘ o(z,z) >d—1i

3(z, ) T 0ly,2) =d B 2y <=t~
Y

o(z,y) <1

FIGURE 45
If O(z,y) <iand d(y, z) = d then O(x, z) > d —i.

Proof: Since p; is a polynomial of degree 7, it follows that if x and y are two vertices at
distance larger than 4, then (p;(A))., = 0. Suppose now that A; = py(A). In Proposition
13.07, that is obtained independently of this lemma, we will see that for any orthogonal
system rg, 71, ..., rq we have that rq_;(x) = 7;(x)re(z) for some polynomial 7;(z) of degree i.
Since predistance polynomials form an orthogonal system, it follow p;(A) = p,_,(A)A4. If the
distance between x and y is smaller than 7, then for all vertices z at distance d from y, we
have that the distance between z and z is more than d — i (by the triangle inequality), hence

(Pa—i(A))s» = 0. Thus

(Pi(A))ay = Pa1(A)Ad)ey = Y (Ba_i(A))2=(Ad)zy = 0

z

(if the second factor in sum (that is (Ag4).y) is non zero, then (by the previous comments) the
first factor (that is (py_;(A))..) is zero). Therefore, for arbitrary z, y we have that

pi(A)zy, = 0 for (x,y) > i and for d(x,y) < i. Because this holds for all i =0, 1, ...,d and
because Z?:o pi(A) = qa(A) = J, it follows that p;(A) = A; for all i =0, 1, ..., d. O

(11.13) Lemma

The algebras A and R(z]/(Z), with their respective scalar products (R, S) = Ltrace(RS)

and (p,q) = %Z?:o mip(Ni)q(N;), are isometric (where Ao > A1 > ... > \g is a mesh of real

numbers and (Z) is the ideal generated by the polynomial Z = Hfzo(a: — \i) - much more
about Rx]/(Z) we will say in Section 12).

Proof: Just identify both algebras through the isometry p = p(A), that is, for any R, S € A:

(R,S) = (p(A),q(A)) = ltl"aCG(p(A)qr(A)) = %Z mip(Ai)g(Ni) = (D, q).

n

(11.14) Theorem

Let T be a regular graph and let py, p1, ..., pg be its sequence of predistance polynomials.
Let 64 = || Aq||* = %trace(AdAd). Then 64 < pa(Xo), and equality is attained if and only if
Ag=pa(A).
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Proof: Consider vector space of matrices T = A + D (where A is Bose-Mesner algebra and
D is distance o-algebra). In the regular case I, A and J are matrices in AN D, as

Ao+ A +...+A;=J = H(A) € A. Thus we have that dim(7) < d+ D — 1. Notice that we
can define an scalar product into 7, in two equivalent forms

(R.9) = Ltrace(RS) = L3 (BS) = £ 30 S (AulS) = - 30D (R)

u

:—ZZRoS Z(ROS)

uv

Let {pi}o<i<a be sequence of predistans polynomials. From Lemma 11.13 space A is
isometric with R[z]/(Z), so since {p;}o<i<q is orthogonal basis for R[z]/(Z) we have also that
{R; = pi(A)}o<i<a are orthogonal basis for A. If we use given scalar product, we can expand
{R;}o<i<a to the basis of space T, say to {R;}o<i<a+p—1. Now arbitrary matrix S € 7 we can
write in form

d+D—1 d d+D—1
S, R; S, pi(A S, R;
—  ||Ri — [lpi(A)] Rt |22
G.A EAL
Notice that for 0 <¢<d -1
(Aa,pi(A)) =0 (27)

becouse p; is of degree 4, p;(A) = ;A" + ... + col for some constants c, ...,¢; and (AE)W is
number of walks of length ¢ from u to v.
Now consider the orthogonal projection

T— A
denoted by B
S —S.
Using in A the orthogonal base pg, p1, ..., pq of predistance polynomials, this projection can

be expressed as

d
~ Ay, pi 7 (Ag, Agpo+pi+ ...+
Ad:Z< dp;>pj(2:)< apd) _ (Anpot ; Pa,,
| [[pall
prop. 1111 (Ag, H)  (Aq, Ag) g

Pda= — 5 Pd = —~Pd;
Ipall? Pl ™"~ pao)

where

0a = %trace(AdAd) — %Z AGAd)u Z Z (Ad)un(Ad)vu Z Ta(w)]

ueV

IFd(U)ﬂFd(U)l

and I'y(u) is the set of vertices at distance d from wu.
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Consider the equahty Ag=Ay+ N, with N € At. Combining both Pitagoras Theorem

and equation Ad ( v I obtained above, we obtain

2 _ 2 A 112 53 . 5d
[N = [|Adll? = [|[Aal® =04 — — = =da (1 — —— | -
) Pa

Pd()\o (/\0)
This implies the inequality. Moreover, equality is attained if and only if N is zero (04 = pa(No)
S N={0 A=A, A, c Aspy(A) =A,). O

We point out that the relation d; < pg(Ag) holds for any graph. Now we can prove one
characterization that is very similar to one given in Theorem 10.09 from Section 10.

(11.15) Theorem (characterization D”)

A graph T = (V, E) with diameter D and d + 1 distinct eigenvalues is distance-regular if
and only if T' is reqular, has spectrally maximum diameter (D = d) and the matriz Ap is
polynomial in A.

Proof: Let I'y be the graph with the same vertex set as I' and where two vertices are
adjacent whenever they are at distance k in I'. Then, for example A, is adjacency matrix for
I'y. For matrix A we know that Aj = A\¢j so that

A"j = )\kj  forany keN.

If Ay = q(A) we have Ayj = q(A)j = q(A\o)j and this is possible if and only if I'y; is a regular
graph of degree ¢()\g). Next, notice that (5d = q(\o) because

1
0q = ||Adll* = (Aqg, Ag) = Z g (u = Zq(/\o) = q(\o).

uEV ueV

It is clear that ¢ has degree d, and since

= > ma)r(n) = trace(a(A)r(4)) = (Aar(A)) = 0

n

for every r € Ry_1[x], we have

d
(g: i) (¢: pa)
Di = Dd, (28)
1= 2 T = Tl
that is
pa(z) = cq(x)
where ¢ = Llf; ‘;lg Let us prove that ¢ = pg. Indeed,
1
lall* = Zmzq ) = —trace(q(A)q(A)) = (Ag, Aa) = da = q(Mo),

n
and because of equation (28)

Q()\O) <q pd> ( )

[pal2 P

(¢,pa) = (g cq)

that is
(¢.9) =clg,q) = c=1

Therefore ¢ = pg. Now result follow from Lemma 11.12 and Theorem 10.08 (characterization
D).
Proof in opposite direction is trivial. ]
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(11.16) Theorem (characterization F)

Let T be a graph with diameter D, adjacency matriz A and d + 1 distinct eigenvalues
Ao > M >..> N Let A, i =0,1,..., D, be the distance-i matrices of I', E;, j =0,1,...,d, be
the principal idempotents of I', let p;;, @ = 0,1,..., D, j = 0,1,...,d, be constants and p;,
j=0,1,...,d, be the predistance polynomials. Finally, let A be the adjacency algebra of ', and
d=D. Then

I' distance-reqular <= AE; =p;E;, i,7=0,1,..,d(=D),

d
<~ Ai:ijiEja Z:O,l,,d(: D),

Jj=0

d
<~ Alzzpl()\])Ej7 Z:O,l,,d(: D),
=0

<— A, €A i=0,1,..,d(=D).

Proof: We will prove that: I' distance-regular = A,E; = p;;E; = A, = Zj:o pjiE; =
A; € A =T distance-regular. And, that I distance-regular < A; = Zj:o pi(A\)E;.

(I distance-regular = A;E; = p;;E;). We will prove this by mathematical induction.

BASIS OF INDUCTION
Pick arbitrary E; for some j =0,1,...,d. Since Ay = I we have AgE; = E; = 1E;.
Therefore pjo =1 for j = 0,1, ...,d. If we consider product AE; we have

. | | | |
AEj :14(]](]]—r :A U1 Ujo ... ujkj UJT: AUjl AUjQ Au]'k. UT:

= >\juj1 /\juj2 /\jujk
| | |

Therefore, p;; = A; for j =0,1, ..., d.

INDUCTION STEP

Assume that for any E; there exist some p;; such that A,E; = p;,;E; fori=0,1,....k < D.
We want to use this assumption and to prove that exist some p; ;1 such that
Ak+1Ej = pj7k+1Ej for j = 0, 1, ciey d.

In Theorem 8.02 we have shown that for arbitrary graph I' = (V| E) which is
distance-regular around each of its vertices and with the same intersection array, the
distance-: matrices of I" satisfies

Ul = \UU = \E;.

J

AA, =b 1A+ aA; + A, 0<i<D

for some a;, b; and ¢;. If we choose k for 7, we can multiply this equation from the right side
by E;, and get
AAkE] = bkflAkflEj + ClkAkEj + Ck+1Ak+1Ej.

Since, by assumption AyE; = p;E; and Ay_1E; = p;_1E; we have
ApirE; = b_1pj 1 Ej + arpjpE; + cri1Ar B,

that is
pixPi By = pjr1br 1 Ej + pjrarE;j + e Ap Ej.
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Now it is not hard to see that

1
A Ej = E(pjkpﬂ — Pjk-1bk—1 — Djrar) E;.
Jr
Pj?l:+1

The result follows.

(AE; =p;E; = A, = Zj:o pjiE;). First recall that Ey + Ey + ... + E4 = I (Proposition
5.02(iv)). For any ¢ we have

d
7=0

The result follows.

(A; = Z?:o p;iE; = A; € A). Since {E, E, ..., E;} is an orthogonal basis of adjacency

algebra A(I") (Proposition 11.04) and since any A; (i =0, 1, ...,d) we can write like
A= Z(;:o p;iE;, the result follows.

(A; € A = T distance-regular). Since {I, A, A,, ..., Ap} is linearly independent set,
dim(A) =d = D and A; € A we have that {I,A, As,...,Ap} is basis of the A and result
follow from Theorem 8.22 (characterization C).

(I distance-regular < A; = Zj:o pi(Aj)E;,). Assume that I is distance-regular graph,

and let U; be matrix which columns are orthonormal basis for ker(A — \;I) (see proof of
Lemma 4.04). For this direction we will use mathematical induction.

BASIS OF INDUCTION
Let P = [Uy|Uy|...|Uqg). Notice that we have

Ay=1=FE,+FE,+..+E,

and from this it follow pg(x) = 1. Also, we have

Xl 0 .. 0] [U)

- 0 M ... 0| U/
A=PDP :[U0|U1||Ud] . . : _ :)\0E0+)\1E1+...+>\dEd

0 0 .. NI||UJ

and it follow p;(z) = =.

INDUCTION STEP
Assume that A; = Z?:o pi(A\)E;, for i =1,2,...k (k < D) and use this assumption to
show that there exist polynomial py,(x) of degree k + 1 such that

We know that distance-i matrices of distance-regular graph satisfies three term recurrence
AA, = by 1Ak 1 + ar Ay + ciy1 Ak for some constants ay, by and ¢ (Theorem 8.02). Since

Crp1Appr = AAp — b1 Ay — aj Ay =
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() (3] e (S0 ) o (S

d d
= (Z)‘ka ) Z —bg—1pk—1( )_akpk()‘j))Ej

7=0 7=0
that is
T
Appr = — <)\jpk(>\j) — bi—1pr—1(Nj) — akpk(/\j))Eja
Ck+1 =0
and from this it is not hard to see that for polynomial
1
Pit1(z) = — (xpk(ﬂﬁ) — by—1pp—1(z) — akpk@)),
Crk+1

of degree k + 1 we have Ay 1 = Z;lzopkﬂ(/\j)Ej for j =0,1,...,d.

But now, polynomials pg, p1, ..., pre1 satisty xpy = by_1pr_1 + arpr + crr1prs1 and since I'
is distance-regular (around every vertex) from Proposition 8.04 we have p;(A) = A;,
t=20,1,...,k + 1. From Exercise 10.06 and Proposition 10.07 it follows that obtained
polynomial are predistance polynomial and the result follows.

Conversely, suppose that A; = E?:o pi(A;)E; for predistance polynomials p;, j = 0,1, ...,d.
Immediately we see that A; € A for ¢ = 0,1, ..., D and since d = D the result follow. n

(11.17) Proposition (characterization G)

A graph T' with diameter D and d + 1 distinct eigenvalues is a distance-reqular graph if
and only if for every 0 <i < d and for every pair of vertices u,v of I, the (u,v)-entry of E;
depends only on the distance between u and v.

Proof: (=) Suppose that I is a distance-regular graph, so that it has spectrally maximum
diameter D = d (Theorem 8.22 (characterization C) and Proposition 5.04). We know that

d
=> p(ME
=0

for every polynomial p € R[z], where \; € 0(A) (Proposition 5.02). Now, taking p in equation
above to be the distance-polynomial pg, 0 < k£ < d, we get

d
A=) p(ME; (0<k<d)
=0
or, in matrix form,
Ay po(Ao)  po(A1) po(Aa)\ [Eo
A _ pl(/\o) p1(A1) pl(/\d) E,
Ay pi(Ao) pa(M) . pa(Ad)) \Ea
~

We have alredy considered matrix P in the proofe of Proposition 10.13 where we noticed that

A A A
m(}\o)po]goo) m(}\o)p1lilo) m()\O)pd]ng)
A A A
P_l — l m(Al)pOlgol) m(/\l)pllill) m(Al)pdlidl)
n : : .
A A A
m()‘d)pol(md) m()\d)pll(ﬂd) m(Ad)pdlidd)
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is the inverse of P. So

E, m(Ao)”O,izo) m(Ao)mgo) m(}\o)pdéjo) A,
E, _ 1 m()\l)l’ol(gjl) m(}q)pl]ﬁjl) m()‘l)pd;gjl) A
Ed m()\d)poli())‘d) m()\d)z%i\d) m()\d)z%jd) Ad
Consequently,
d
E, = Z(P_l)ijAj = Z p;i(A L (0<i<a),
Jj=0 = Op]

and, equating the corresponding (u,v) entries, it follows that for vertices u, v with d(u,v) = h,
the (u,v)-entry of E; is equal to % Therefore, the (u,v)-entry of E; depends only on
the distance between v and v.

(<) Conversly, assume that for every 0 < i < d and for every pair of vertices u,v of I, the
(u,v)-entry of E; depends only on the distance between u and v. Then

D
E/ =) qiA; (0<(0<4d)

for some constants gj,. Notice that the set {Ao, Ay, ..., Ap} is linearly independent because no
two vertices u, v can have two different distances from each other, so for any position (u,v) in
the set of distance matrices, there is only one matrix with a one entry in that position, and all
the other matrices have zero. So this set is a linearly independent set of D + 1 elements.

The fact that {Ey, Ey, ..., E4} is a basis of adjacency algebra A(T") (Proposition 11.04),
(any element of the A can be writen like linear combination of E;’s), since {I, A, ..., Ap} is
linearly independent set and since the above equation imply that every E;’s can be writen as
linear combination of A;’s we have that {I, A, ..., Ap} is also a basis of A and the result
follows. 0

(11.18) Theorem (characterization H)

Let I = (V, E) be a graph with diameter D, |V| = n, adjacency matriz A and d + 1
distinct eigenvalues A\g > A; > ... > A\g. Let A;, 1 =0,1,.. D be the distance-i matrices of T,
E; j=0,1,...4d, be the pr’mczpal idempotents of I', let ¢;5, 1 =0,1,....,D, 7 =0,1,...,d, be
constants and p;, j = 0,1,...,d, be the predistance polynomials. Finally, let q;, j =0,1,...,d be
polynomials defined by q;(\;) = m]?E)‘ g i,j =0,1,...,d, let A be the adjacency algebra of T’
and D be distance o-algebra. Then

I' distance-reqular <= E;oA; = q;jA;, 1,j=0,1,...d(= D),

= E;=) q;A, j=01,..d=D),

1 )
< Ej = EZO:QZ()\J)A“ J :O,l,...,d<: D),
< E;eD, j=0,1,..,d=D,).
Proof: We will show that: I" distance-regular = E; 0 A; = ¢;;A; = E; = Zz‘io qijA; =
E; € D = T distance-regular and that I' distance-regular < E; = %Z?:o ¢ (Aj)A;.

(I distance-regular = E; o A; = ¢;;A;). If graph I is distance-regular the by Theorem
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8.22 (characterization C) we have that set {I,A, ..., Ap} is basis for A = span{I, A4, ..., A’} =

= span{Ey, E1, ..., E;}, and therefore for evry E; there are unique constants coj, ¢1j, .., ¢p;
such that
D
E] = Z CijAz
i=0
So we have
D
Ej OAi = (Z ijAk) OAi = Ciin
k=0

Now if we define ¢;; := ¢;; it follow E; o A; = g¢;;A;.
(EjoA; =qjA; = E; = Zfio ¢;;A;). For arbitrary E; we have

Ej OA0+Ej OA2+...—|—EjOAD :E]O(AO+A1+—|—AD) :EjOJ:Ej.
On the other hand Zio E;0A, = Zfzo ¢;;A; and the result follow.

(E; =3P 4i;A; = E; € D). This is trivial.

(E; € D = T distance-regular). Since {Ey, E1, ..., E;} is orthogonal basis for A and
E, = ZiD:o ¢;;A; it follow that A C D. Next, since {I,A A% .. A"} is basis of A, and
{I,A A* ... A"} is linearly independent set we have dimA = d + 1 < D + 1 = dimD, which
imply A = D, and the result follow.

(I distance-regular < E; = %Zfzo ¢i(Aj)A;). Assume that I is distance-regular. From
Theorem 8.22 (characterization C) we have that D = d, and because of Proposition 5.02(ii7)
we have p(A) = Z?:o p(Ai)E;. Distance polinomials of distance-regular graph are equal to
predistance polynomials (see Comment 11.10) and if we for p in the above equation set
distance polynomials {py }o<k<qs We have A, = Z?:o pr(A)E;. Now we can continue like in the
proof of Theorem 11.17 and obtain

d
E, ==Y m\)=2 A,
J Tl; ( ])pl<)\0)
pi(N))

If we define polynomials {g; }o<i<a by ¢:(};) = m(Aj)p,(/\O), the result follows.
Converse is trivial. ]

(11.19) Theorem (characterization I)

Let T be a graph with diameter D, adjacency matriz A and d + 1 distinct eigenvalues
Ao >N >..>Ng. Let A, i=0,1,..., D, be the distance-i matriz of I', E;, j =0,1,...,d, be
the principal idempotents of ', and let agj) and gi;, © =0,1,...,D, j =0,1,...,d, be constants.
Finally, let A be the adjacency algebra of I', D be distance o-algebra and d = D. Then

T distance-reqular <= A’ o A; = aﬁj)Ai, i,j =0,1,....d(= D),
d

= A=) aV4;, ij=01,..d~=D),
i=0

d

d
= A= qNA, j=01,..d=D),

=0 ¢=0
— AeD, j=01,...d.
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Proof: We will show that: I' distance-regular = A7 0 A; = agj )Ai = Al = Zfio aV )Ai =

7

A’ € D = T distance-regular and that T’ distance-regular < A7 = Z?:O Z?:o G\ A;.

(T distance-regular = A’ 0 A; = agj )Ai). Since I is distance-regular, by Theorem 8.22

(characterization C) we have that basis for the adjacency algebra A = span{[, 4, ..., AN is
{[,A,..,Ap}, so d = D. Now we have that for arbitrary A’ € A there exist unique constants
cjo, Cjt, ---, ¢jp such that

D
Al = Cj()] + leA + ...+ CjDAD = chkAk‘
k=0

So D
(Aj 0A;) = (Z cikAy) o Ai = cj;A;
k=0

()

Therefore, if we define a;”’ := ¢;;, it follow

AoA; =d9V4;, ij=01,..d(=D).

(AM o A; = agj)AZ- = AT =% a(j)Ai). For arbitrary A’ we have

j=0 "%
D D
D (AoA)=Aod A=AoJ=A
=0 =0

and since A7 0 A; = agj )Ai it follow

YA oA)=> a4
=0 =0
Therefore
D
A =3"a A,
=0

(A =% aPA; = A € D). This is trivial.

=0 "1

(A’ € D = T distance-regular). We known that A = span{l, A, .., A?}. Since A’ € D for
any j it is not hard to see that {I, A, ..., Ap} is basis of the A, and the result follow from
Theorem 8.22 (characterization C).

(T' distance-regular < A’ = Zio 25:0 gieX)A;). First notice that from Proposition 4.05

d
Al =>"XNE,.
=0

If we denote the (u,v)-entry of A7 by ), and (u,v)-entry of E, denote by mu.,(\¢), previous
equation imply

d
ag)) = (Aj)uv = Zmuv()‘é))‘g'
=0
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If T is distance-regular, by Theorem 11.17 (characterization G) it follows that (u,v)-entry
of E,; depends only on the distance between u and v. Therefore, for arbitrary vertices u, v at
distance 0(u,v) = i, we have my,(\¢) = ¢;¢ and

d
aq%) = (Aj)uv = ZC]MA;-
/=0

Since A’ = 327 agj JA; (see second equivalence above), it is not hard to see that all) = az(j ) for

vertices u, v at distance d(u,v) = i. Therefore

D D d
Al = Z a9V A; = Z Z Qie)\iAi
i=0

1=0 ¢=0

Conversely, suppose that A’ = Zio Z?:o qiuN,A;, that is A’ € D. Now, from this, it is
not hard to see that the result follows. O

(11.20) Proposition (Folklore)

The following statements are equivalent:
(i) T is distance-regular,
(ii) D is an algebra with the ordinary product,
(i1i) A is an algebra with the Hadamard product,

() A=D.

Proof: This proposition is now a corollary of the above characterizations. O]



Chapter 111

Characterization of DRG which involve
the spectrum

In this section we begin by surveying some known results about orthogonal polynomials of
a discrete variable. We will describe one interesting family of orthogonal polynomials: the
canonical orthogonal system. We begin by presenting some notation and basic facts. In
Definition 12.04 we will define the scalar product associated to (M, ¢g), and in Definition 14.21
we will define canonical orthogonal system. Let we here say that for set of finite many real
numbers M = { Ao, A1, ..., \y} and for gy := g()\), we define the scalar product
(p,q) = Z?:o gep(Ae)q(Ne), where p, q € Ry[x], and for this product we say that is associated
to (M, g). Let us also say that sequence of polynomials (p)o<k<d, defined with py := gy = 1,
P1i=@ —qo, P2 =q2 — G5 - s Pd—1 = Qa—1 — qd—2, Pd := qa — 9a—1 = Ho — qa—1 will be called
the canonical orthogonal system associated to (M, g), where g; denote the orthogonal
projection of Hy := gOLﬂO Hle(x — \i) (where my = H?Zl(/\o — \;)) onto Ry[x]. Main results
from this chapter are the following:

(14.22) Let 1o, 71, ..., T¢_1, 4 be an orthogonal system with respect to the scalar product
associated to (M, g). Then the following assertions are all equivalent:

(a) (rk)o<k<a is the canonical orthogonal system associated to (M, g);

(b) ro = 1 and the entries of the recurrence matrix R associated to (ry)o<k<a, satisfy
ap + by + ¢ = Ao, for any £k =0,1,...,d;

(¢) ro+r1+ ... + 714 = Ho;
(d) |Imel|? = re(Xo) for any k= 0,1, ...,d.

(K) A graph I' = (V, E)) with predistance polynomials {px }o<r<q is distance-regular if and
only if the number of vertices at distance k£ from every vertex u € V' is

pr(Xo) = Te(w)| (0 <k < d).

(J) A regular graph I' with n vertices and predistance polynomials {py }o<r<a 1S
distance-regular if and only if

n

ar(Mo) = (0<k <d),

1
EuGV sk (u)

where g, = po + ... + pr; si(w) = [Ni(u)| = [Fo(w)| + [T1(u)] + ... + [Tr(u)].

(J’) A regular graph I" with n vertices and spectrum spec(I') = {)\81()‘0), )\71"(’\1)7 s A?(Ad)} is

91
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distance-regular if and only if

duev /(n—ka(u) d 2
5 o ki) (7~ K)o O

d

where m, = [ (An — Ay) and kq(u) = [Ty(u)].
=0
i%h

12 Basic facts on orthogonal polynomials of a discrete
variable

Set of finite many distance real numbers {1, @, ..., ;. } are called a mesh of real numbers.
Let M :={ g, A1, ..., Add}, Ao > A1 > ... > Ay, be a mesh of real numbers and let
(Z) = {Z(x)q(x) : ¢ € R[z]} be ideal® generated by tha polynomial Z(z) := [Jo_o(z — Ar).
From Abstract algebra we know that R[z|/(Z) forms a ring (known as quotient ring), where
for any (Z) + a, (Z) + b € R[z]/(Z) operations addition and multiplication are defined on
following way

((Z2) +a)+ ((Z) +b) =(Z) + (a +b)
and

((Z) +a)((Z) +b) = (Z) + ab.

(12.01) Example
For example consider quotient ring R[x]/I where I = ((x — 1)(z + 4)) and two elements
I+xz,1+2*+1€R[z]/I. Then

(a)

IT+2)+ T +2°+ 1) =T+ +ox+1=1+1-(2*+32—4)+(-20+5)=1—-22+5
e
(z—1)(z+4)

(notice that [ + 2%+ 1 =1+ (2* +32x —4) +(=3x +5) = [ — 32+ 5).

N————
(x—1)(z+4)
(b)
(I4+z)- (I —=3z+5)=1-32"+5x=1—-3-(2°+3x —4) +(l4x — 12) = [ + 142 — 12.
N——
(z—1)(z+4)

Notice that we have

(I+z)- (I+2*+ 1) =T+2"+x=1+x- (2> + 32 —4)+(-32> + 51) =
~————
(z—1)(z+4)

=132 +5x=1-3-(2® +30 —4) +1da — 12 = [ + 14z — 12.
———
(z—1)(z+4)

O

'Recall: A nonempty subset I of a ring R is said to be a (two-sided) ideal of R if I is a subgroup of R under
addition, and if ar € I and ra € I for all a € I and all r € R. With another words 71 = {ra|a € I} C I and
Ir={ar|ae I} CIforallreR.
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It is not hard to show that in this ring, that is in R[z]/(Z), also holds

a(pq) = (ap)q = p(ag)

for all p,q € R[z]/(Z) and all scalars o. Therefore R[z]/(Z) forms quotient algebra.
Next, notice that Z(z) = HZZO(Q: — A¢) is polynomial of degree d + 1. From Abstract
algebra we also know that every element of R[x]/(Z) can be uniquely expressed in the form

(Z) + (bg + by + ... + bgz?)

where by, ..., by € R, and if we set r(z) = by + by + ... + bgz? then r(x) is polynomial such that
either r(z) = 0 or dgrr < dgr Z. This imply that R[z|/(Z) we can identify as Ry[z]. With this
in mind it is not hard to prove following lemma.

(12.02) Lemma (R[z]|/(Z) +— Ry[z])

For any monic polynomial Z(x) = szo(x — M¢) of degree d + 1 over the field R, quotient
algebra Rlx|/{(Z(x)) is isomorphic with the algebra of polynomials modulo Z(x) (the set of all
polynomials with a degree smaller than that of Z(x)), together with polynomial addition and
polynomial multiplication modulo Z(x). This algebra we will conventionally denoted by Ry|x].

By Fa we will denote set of all real functions defined on the mesh M = {\g, A1, ..., A4}
.FM = {fM %R‘M = {)\0,)\1,...,)\d}, Ao > AL > . > )\d}

(12.03) Lemma (F)

Let M = { )Xo, A1, ..., Aa}, be a mesh of real numbers and let Fpq denote a set of all real
functions defined on M. Then Faq is a vector space of dimension d + 1 and basis
{eo, €1, ...,eq} where e; are functions defined on following way

o ={ 45

0 otherwise.

Proof: We will left like interesting exercise for reader to show that F, satisfy all axioms
from definition of vector space?.
Let M = {)o, A1, ..., Ag} be a mesh of real numbers and consider functions e;, defined on

following way
1 ifi=
ei(A;) = { 0 otherwise.

Is the set of functions {eg, €1, ..., e4} linearly independent? That is, are there scalars ag, o, ...,
ag, not all zero, such that

(voeo + arer + ... + ageq)(N;) =0, foralli=1,2,....,n7

2A nonempty set V is said to be a vector space over a field I if: (i) there exists an operation called addition
that associates to each pair z,y € V a new vector z +y € V called the sum of  and y; (ii) there exists an
operation called scalar multiplication that associates to each a € F and x € V a new vector ax € V called the
product of a and z; (4i) these operations satisfy the following axioms:

( (V5). V is an additive Abelian group (with neutral element 0).

lv =, for all v € V where 1 is the (multiplicative) identity in F
a(fv) = (af)v for all v € V and all o, 8 € F.
V8)-(V9). There worth two law of distribution:

(a) a(u+v) =au+ av for all u,v € V and all « € F;

) (a+B)v=av+ pv forallv € V and all o, 5 € F.

The members of V are called vectors, and the members of F are called scalars. The vector 0 € V is called
the zero vector, and the vector —z is called the negative of the vector x. We mention only in passing that if we
replace the field F by an arbitrary ring R, then we obtain what is called an R-module (or simply a module over
R).

V1)-
V6).
V7).
)_
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From this, for arbitrary ¢, we have

apeo(Ni) + arer(N) + ... + agea(N;) =0,
azez(kl) = 0,
a; = 0.

Set of functions {eg, €1, ..., eq} is linearly independent.

Now, pick arbitrary function f € Fp. We want to show that f € span{eg,ey,...,eq}.
Define numbers cg, ¢, ..., ¢g as co = f(Xo), c1 = f(M1), vy ca = f(Ag). Now it is not hard to
see that function f we can write in form

f =coeq + creg + ... + cqeq.

Therefore, set {eg, e1, ..., eq} is linearly independent set that span vector space F,.
Dimension of Faq is d + 1. n

For arbitrary polynomials ag + a,z + ... + aa?, by + bz + ... + b%x? € Ry[z] there are
unique function f, g € Fpy, respectly, such that f(\g) = ao, f(A1) = a1, ..., f(Ag) = aq and
g(Xo) = bo, g(A\1) = by, ..., g(Ag) = bg. If we define mapping F : Fay — Ry[z] with

F(f) = fAa)x + .+ fF(A)z + f(No) = a0 + ez + .. + agz’,

F(g9) = gz + ... + gz + g(No) = by + by + ... + bgx?,
since (f + ¢g)(Ni) = f(N) + g(Ni) = a; + b;, we have

F(f+g)=(ao+by) + (a1 + b))z + ... + (ag + by)x? =
= (ag + a1z + ... + a’x®) + (bg + b1z + ... + bgx?) = F(f) + F(g).

Interesting question, which we will not consider here, is: Is it possible to define
multiplication of elements in F such that Fy, form an algebra that is isomorphic with Ry[x]?

From now on, we are interest in sets R[x]/(Z(x)), Ry[z] and Frq just as vector spaces, and
we invite reader to show that these sets are isomorphic as vector spaces, that is, that we have
following natural identifications

Fm > Rlz]/(Z(x)) «— Ralz] (29)

For simplicity, we represent by the same symbol, say p, any of the three mathematical objects
identified in (29). When we need to specify one of the above three sets, we will be explicit.

(12.04) Definition (the scalar product associated to (M, g))

Let g : M — R be positive function defined on mesh M = {\g, A1, ..., \y}. We shall
write, for short, gy := g(\¢). From the pair (M, g) we can define an inner product in Ry[x]
(indistinctly in Faq or in R[z]/(Z)) as

(p.a) =Y gpN)a(M), pq € Rala],
=0

with corresponding norm || % ||. From now on, this will be referred to as

the scalar product associated to (M, g). Function g will be called a weight function on M. We
say that it is normalized when gy + g1 + ... + g4 = 1. Note that (1,1) = 1 is the condition
concerning the normalized character of the weight function g, which will be hereafter
assumed. o
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For sake of next definition, it is interesting to consider mesh M = {\g, A1, A2, A3}, and real
numbers 7, 71, T and w3 defined as follows:

3
o = |)\0 - )\1H>\0 - >\2H)\0 - )\3\ = H P\o - )\8‘7
£=0 (£5£0)
3
m = |)\1 - )\OH)\l - )\2H)\1 - )\3\ = H \)\1 - )\e\,
£=0 (£#£1)
3
Ty = [A2 = Ao[A2 — Mi[[ A2 — N3] = H A2 = Adl,
0=0 (£+#£2)

3
7T3:|)\3—)\0H)\3—)\1||)\3—)\2‘: H ‘)\3_)\Z|
£=0 (¢£3)

Since \g > A1 > Ay > A3 we have

Mo = (Ao = A) (Ao — X)X = As) = (=1)" J] (=),
=0 (££0)
m = (=D =AM = ) =) = (=D [ =),
(=0 (1)
M = (=12 = A) (=D = M)A = Ag) = (=1 [ (ha=N),
=0 (££2)
m3 = (=1)(As = M) (=1 (As = M) (=D (As = Xo) = (=1)* [] (s =)
=0 (££3)

In order to simplify some expressions, it is useful to introduce the following momentlike
parameters, computed from the points of the mesh M, and the family of interpolating
polynomials (with degree d).

(12.05) Definition (7, Z;)
Let M = {Xo, A\, --s Aa}, Ao > A1 > ... > Ay be mesh of real numbers. We define
parameters 7, (0 < k < d) and polynomials Z;, (0 < k < d) on the following way

d d
mo= [ M=M= [T w=2) (0<k<a)
£=0 (££k) £=0 (££k)
(-"
Zy = I[[ z=X) (O<k<a).
ur
£=0 (£#£k)

(12.06) Proposition
Interpolating polynomials Zy, (0 < k < d) satisfy

Zi(An) = Onk,  (Zny Zk) = OniGn-
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Proof:

G Lo T
Zi(M\n) = [T Gw=2 === T On—2) =0
£=0 (L£k) £=0 (L£k)
0, ifh#k
Tk, if h==k

J/

(Zns Z) =Y 90Z0(N) Zi( M) = gnZn(Mn) - Zk(An) = 9nOnk = OnG-
——

= 1, ifk=h
0, ith#h

For a given set of m points S = {(z1,v1), (z2,%2); .-, (Tm, Ym) } in which the x;’s are
distinct, we know that there are unique polynomial

p(t) = ap + art + aot? + . 4 g t™ !

of degree m — 1 that passes through each point in §. In fact this polynomial must be given by

m

- | H | (t — ;)
p(t) _ Z ” J:in(#z)
i=1

I @ -2

=1 (j#0)

and is known as the Lagrange interpolation polynomial of degree m — 1.

Consider arbitrary polynomial p(z) = ax® + bx? + cx + d € Rs[z] and consider set of points
S ={(Xo,p(N0)), (A1, p(A1)), (A2, p(A2)), (A3, p(A3))}. Lagrange interpolation polynomial for
this set is

g T8, (= ) ) & (=1 ﬁ
p(t) Z<p( ) 3 Y ; " )(_1)1Hj=l(j#i)()\i_)\j)j=1(j75i)(t |

_ Z p(\i) (_1.)1 | 11 ‘(t— i) | = ZP()‘i)Zi(t)'

(12.07) Proposition
Let M = { )Xo, A1y -y Aa}, Ao > A1 > ... > Ay be mesh of real numbers. For arbitrary
polynomial p € Ry[x] we have

d
p=>Y_ p(\)Z
k=0
where {Zy, Z1, ..., Zq} is the family of interpolating polynomials from Definition 12.05.
Proof: Let p(z) = aqgz® + ... + ayx + ag be arbitrary polynomial of degree d, and consider set

of points S = {(Ao, p(No)), (A1, p(A1)), .., (Mg, P(Aa))}. Lagrange interpolation polynomial for S
is unique polynomial of degree d that passes through each point in S, and is given by

: ITjo(iz0(t =) ) : (—1) .
=5 [»in =5 [ p0) — Y
p(t) Z <p( ) H?:O (g;ﬁz)(Al - )‘]) ZX; p( ) (_1)1 H?:O (];ﬁz)(Al - )‘]) §=0 (ﬁgi)(t )
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d d

(t =2 | =P Zi0).
| .

)

= i p()\z') (_ﬂl)

J=0 (j#i

For mesh M = {\g, A\, A2, A3} consider family of interpolating polynomials
{Zy, Z1, Zo, Z3}. 1f we set p(x) = 1, from Proposition 12.07 we have

d 3 3
—1)*
V=Y 1-Zy=Zy+Zv+ 2o+ Z3= ) (=1) I @-»
k=0 =0 k0 (k)

If we look at coefficients of order 3 of above equation we have

23: (;1)k =0.

k=0

Now let p be p(x) = . From Proposition 12.07

d 3 (1) 3
k=0 k=0 Tk

i=0 (i#k)

and if we look at coefficients of order 3 we have

> P o

3
k=0

Next, let p be p(z) = 2%. From Proposition 12.07

and if we look at coeflicients of order 3 we have

> e

3
k=0

Finaly, if we for p set p(z) = 23, from Proposition 12.07

Ny ~ DT
=Y N Ze=) N —— [ @-N)

i=0 (ik)

we have

(12.08) Corollary
Momentlike parameters m, == [[/_, (k) | AR — Ae| satisfy

d d
(=", . (=D 4
No=0 (0<i<d-1), A =1,
kE:() p— (0<i< ) ;?:o p—
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Proof: For function p from Proposition 12.07 if we use p(x) = 1, p(x) =z, ..., p(x) = =% we
have

NG O -
=Y NZi=) A - I[I @-x). ©<i<a.
k=0 k=0 §=0 (j#k)

d k d k
Z(_l) No=0 (0<i<d-1), Z(_l) A =1,

T
k=0 'k

(12.09) Proposition
Suppose that V is a finite-dimensional real inner product space. If {vy,...,v,} is an
orthogonal basis of V, then for every vector u € V, we have

U,V U, Uy,
< 1>v1—|—...—|— <HU H2>vn.

u =
[ ]|

Furthermore, if {vq,...,v,} is an orthonormal basis of V, then for every vector u € V, we have

w = (u,v1)v1 + ... + (U, v,)0p.

Proof: Since {vy,...,v,} is a basis of V, there exist unique ay, ..., @, € R such that
U= 1V + ... + OpUp.
For every © = 1, ..., n, we have
(u,v;) = (V1 + ... + QUL v;) = g (V1, V) + .o + @ (U, ;) = Vi, v;)
since (v;,v;) = 0 if j # ¢. Clearly v; # 0, so that (v;,v;) # 0, and so

o {(u, v;)
b (o)

for every ¢ = 1,...,n. The first assertion follows immediately. For the second assertion, note
that ||v;]|*> = (vi, v;) =1 for every i =1,...,n. O

(12.10) Definition (Fourier expansions, Fourier coefficients)
If B ={uy,us,...,u,} is an orthonormal basis for an inner-product space V, then each
x € V can be expressed as
T = (T, u)u1 + ... + (T, Up)Up.

This is called the Fourier expansion of x. The scalars o;; = (z,u;) are the coordinates of x
with respect to B, and they are called the Fourier coefficients. Geometrically, the Fourier
expansion resolves z into n mutually orthogonal vectors (x, u;)u;, each of which represents the
orthogonal projection of z onto the space (line) spanned by wu;. o

(12.11) Theorem (Gram-Schmidt orthogonalization procedure)
If B={x1,x9,....,x,} is a basis for a general inner-product space S, then the
Gram-Schmidt sequence defined by

k-1
and up = D = Dz (i T fork=2,..,n

1 e = 32023 iy )|

18 an orthonormal basis for S.

X1

Uy =
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Proof: Proof can be find in any book of linear algebra (for example see [37], page 309). [

(12.12) Problem
Let p(x) = (x — Xo)(x — A1) (x — Ag) € R[z| be irreducible polynomial and let
R? := {(a1, s, a3) " | a1, a0, a3 € R}. Consider vector space Rlz]/I where
I ={p):={pq|q € Rlx]}. Recall that elements of Rlx]|/I are cossets of form I + r where for
any I +ry, I + 1y € Rlz]/I, a € R we define

vector addition: (I + 1)+ (I +re) =1+ (ry + 1) and
scalar multiplication: a(I +ry) =1+ (ary).

Show that vector spaces R[z]/I and R® are isomorphic.

Solution: Roots of polynomial p(z) are \g, A; and \y. From Abstract algebra we know? that
arbitrary element I +r € R[z]/I can be uniquely expressed in the form

I + (az® + bx + ¢)
where a, b, c € R. Define function ® on following way
® : R[z]/I — R?,

O(I +ax® +br +c¢) = (a,b,c)".

We first want to show that ® is homomorphism of vector spaces:
((I+az®+br+c)+(I+a 2 +biz+c1)) = ®(I+(a+ay)z®+(b+b))x+(c+c1)) = (atar, b+by, c+ep) | =

= (a,b,¢)" + (a1,b,¢1)" = &I + az® 4+ bx + ¢) + O(I + ay2® + byz + ¢1),
(a(I + ax® 4+ bx +¢)) = ®(I + a(az’® + bx + ¢)) = (I + (caz® + abz + ac)) =
= (aa,ab,ac)’ = afa,b,c)" = a®(I + az® + bx + ¢)
Is ® well defined? Assume that I + ax® +bx +c = I + a12> + byx + ¢;. Then we have
I+ (a—a)>+b—b)r+(c—c) =1
that is
(a—a1)$2+(b—b1)$+(0—01) el

With another words
(a—a1)z®+ (b— b))z + (c — 1) = p(x)q(z)

for some ¢(x) € R[z]. If ¢ # 0 then degree of left side of above equation is 2, but degree of
right side is at last 3, a contradiction. So ¢ = 0, which imply that
(a—a)r* +(b—b)r+(c—c)=0
that is
a=ay, b="b, c=c;, = (a,b,¢)" = (a1,b1,c1)"

Therefore
O(I + ax® +bx +c) = ®( + a1z’ + bz +¢1).

3Theorem Suppose p = ag + a1@ + ... + a,a" € R[z] (R is a ring), a, # 0, and let I = (p) = p R[x] = {pf :
f € R[z]}. Then every element of R[z]/I can be uniquely expressed in the form I + (bg + b12 + ... + b, 12" 1)
where bg,...,b,_1 € F.
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Finally, we want to show that ® is injective and sirjective. Pick arbitrary (a,b,c)" € R
Then there exists at last one element from R[z]|/] which are mapping in (a,b,c)" (for example
I+ (ax?® + bz + ¢)). Therefore ® is sirjective. Now assume that

O(I + (az* +bx +¢)) = ®(I + (a12* + biw + ¢1))

for some a, b, ¢, a;, by, c; € Rlx]. With another words (a, b, ¢)" = (a;,by,c;)" which imply
a=ay,b=0b,c=c so

I+ (az® +br+c¢) =1+ (a12° + bz + c1).

Therefore, ® is isomorphism of vector spaces. O

13 Orthogonal systems

A family of polynomials rg, r1, ..., 74 is said to be an orthogonal system when each
polynomial 7, is of degree k and (ry,ry) = 0 for any h # k.

(13.01) Lemma
Let rg, r1, ..., rq be orthogonal system. Then every of ry(x), k =0,1,...,d, is orthogonal
on arbitrary polynomial of lower degree.

Proof: From Proposition 5.03 we know that {rg,r1,...,74} is linearly independent set. So for
any k — 1 where 0 < k — 1 < d the set {rg, 1, ...,7x—1} is basis for Ry_;[z] (Ry_1[x] is vector
space of all polynomials of degree at most k — 1). Now notice that arbitrary ¢ € Ry_;[x] can
be write like linear combination of {rg,71,...,7x_1}. So we have

(q,rk> = <040T0 +ayry + ...+ ozk_lrk_l,rk.> =0.

Example 13.02 will help us to easier understand Proposition 13.03.

(13.02) Example

In this example we work in space R[x]/(Z) where Z = (z — A\o)(x — A1) (x — Xo)(x — A3),
X =3, A\ =1, \y = —1, A3 = —3, and inner product is defined by (p,q) = Z?:o gip(A)g(N),
Go=01=g2=gs=1/4

It is not hard to check that family of polynomials {rg, ry, 72, 3} = {1, 2z, 2% — 5,52% — 41z}
is orthogonal system. From Lemma 13.01 every r; is orthogonal on arbitrary polynomial of
lower degree. Easy computation gives

To 0 1 0 0 To
2 T . 5 0 1 0 ™
ro | |0 16/5 0 144/720 Ty
rs 0 0 144/16 0 rs

Notice that zr; = Lry = 922 — 45 and ars = 52* — 4122 = 57 + 92% — 45 where
Z=(x-=3)(z—1)(z+1)(z+3)=2*—1022 4+ 9.

Given any k =0,1,2,3 let Z; = HZ:O#k(x — X\¢). For any k we have
Zr = H?:()’#k(a: — o) =23+ = Eors + &g + &y + &3, for some €'s, where & does not
depend on k (because {rg,ry,re,r3} is basis for Rs[z] and only r3 has degree 3). In our case

Zi=@—D+D)(z+3)=2*+32"-2-3, Zi=@@—-3)(z+1)(z+3)=23+22-92 -9,
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Zy=@x-3)(z—-1(z+3)=2"-2"-92+9, Z;j=@x—-3)(z—1(z+1)=2"-32>-1+3,
= (1/5)r3 + 3ry + (36/5)r1 + 18rg,  Z7 = (1/5)r3 + ro — (4/5)r1 — 4ry,
Z;( == (1/5)7"3 — To — (4/5)7’1 + 47”0, Z; == (1/5)7”3 — 37”2 + (36/5)7’1 — 12T0.
Next, we want to compute (rs, Z5), (rs, Z7), (rs, Z3) and (rs, Z3)
<’I"3, ZS) = 144, <T3, Zik> == 144, <’f’3, Z;> = 144, <’I“3, Z;) = 144.

Thus, for m, = (—1)* Hzl:o (k) (Al = o),
(rs, Zg) = Zgz r3(A = gers(M) Zi () = grrs (M) (=) my, =

= (r3, §ors + §ir2 + &or1 + §370) = &ollrs]|* = const.,
Zy,

that is
(rs, Zp) = 9/’c7’:3()\1c)(—1)k7ﬁC = §0||7"3H2 = const.

so if we, for example, in above equality set £ = 0, we have

(rs, Z3) = gors(ho) mo = &ollrs||* # 0,
and since
Eollrsl|? = (rs, Z)
we have
(_1)k9k7rk7"3()‘k) = 907T07“3(/\0),
r3(Ar) — (_1)kJoT0
73(o) kT

We have already seen that

3

Z; = H (x — Np) = &ors + &ira + o1 + E370,
0=0,04k

for some &;’s, where &, does not depend on k, and since

<Z;>T3> 5+ <Zl:’r2>r2 <Zl:77ﬂ1> . <ZI:>T0>
[r3][? [[r2[? [[r4][? [[rol[?

Z; =

(Fourier expansion) we have

£ = <Z7§>7"3> . 907”3()\0)7T0
0= = .
73] I75]]?

From Z;; = &ors + &ira + §or1 + €310, we see that

Eors = Zp — (&xra + Ear1 + &370),

- %Z; —5—0(517“2 + &1+ &),

so for any kK =0,1,2,3 we get
L

— 77 € Ry[x].
7”3()\0) 9goTo b 2[]
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Then, the equality xrs = ary + frs (for some «, € R, because (xr3, ro) = (13, x70) = 0,
(xrs3,m1) = (r3,xry) = 0), holding in R[z]/(Z), and the comparison of the degrees allows us to
establish the existence of ¢ € R such that xrs = ary + fr3 + ¥ Z in R[z]. In our example

ro 0 1 0 0 ro 0
A5 o 1 0 |, |0

ry 0 16/5 0  144/720 | | ry 0

rs 0 0 144/16 0 rs 52

Notice that 1 is the first coefficient of r3, we get, from fact that r3 — lrsll> 1 Z; € Ro[z]

r3(Xo) gomo

_ sl 1

Y =

7“3()\0)9070‘

(13.03) Proposition
Let Z := []0_y(x — \o) where M = {Xo, A1, ..., Aa}, Ao > A1 > ... > g, is a mesh of real
numbers. Every orthogonal system rq, r1, ..., rq satisfies the following properties:

(a) There ezists a tridiagonal matriz R (called the recurrence matrixz of the system) such

that, in Rlz]/(Z)):

T a ¢ 0 o
) bo a1 ca O T
T9 0 b1 as ... e 9
r = : = 0o : ... 0 : = Rr,
Td—2 C... Qg2 Cq-1 O T'd—2
Td—1 0 bd_g aq—1 Cq Td—1
Td 0 ba_1 aq Tq

and this equality, in R[z|, reads:

2 1 T
xr:Rr+<O o ... o —Z) .
rd(>\0>g()71'0

(b) All the entries by, ci, of matriz R are nonzero and satisfy bycxi1 > 0.

(¢c) The matriz R diagonalizes with eigenvalues the elements of M. An eigenvector
associated to N is (ro(Ak), T1(Ak)s ooy Ta—1 (M), Ta(Ae)) .
(d) For every k =1,...,d the polynomial ry, has real simple roots. If My, denotes the mesh

of the ordered roots of ry, then (the points of) the mesh My interlaces M and, for each
k=1,2,....,d—1, My interlaces M.

Proof: (a) Working in R[z]/(Z), we have (xrg, r,) = 0 provided that k < h — 1 (because ry, is
orthogonal to arbitrary polynomial of lower degree, and ry is of degree k) and, by symmetry
({(xrk, rn) = (rg, xry)), the result is also zero when h < k — 1. Therefore, for k = 0, we can
write,

d
PR AL R AU P e Nt LA
= lral [[oll ]| [ [[7al

(IT07T0> <$T0,7“1>

0 1
7ol Iz
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and for any k =1,...,d — 1,

d k+1
o (wry,mh) u (wry,rn)  AwTR,TE-1) (T 7p,78) (T 7%, Thg1)
=) I = ) S = 5 Tkt 2 Tkt
= Al Wy [y 7l 17k

One question that immediately jump up is: What for xr;? Since we work in R[z]/(Z) we have
that xr, is degree < d + 1 (in space R[x] polynomial xr, is of degree d + 1). Notice that

xrqg = Y7 + p(x) for some ¢ € R and some p(z) € Ry[z]| (of what degree is p(z) - is this
matter?). Next, we want to consider (xrq, 1), ....(xrq, T4_1):

(xrg,m1) = (re,211) =0,

(xrg,m9) = (rg, 212y =0,

<x7ﬁd77’d72> = (Td#b’?“dfz) =0,
(xrg,ra—1) = (ra, xr4-1) # 0,

SO

d
TTq,T TTd,Td— xry,T
MHIE:i_ith:0+m+0+< wroa) o @rara)

= lral? [ra-1? [7all?
_ <5C7ad770d71>7nd ) <$7’d77’d>rd
[ra—all®* [[rall?

Then, for any k£ = 0,1, ...,d the parameters by, a, ¢ are defined by:

b= T (g pcg 1) b=,
&l
(xTg, )
ap = ——+ (0 <k <d),
[[7x |2
(-737%71,7%)
=0, c=—-" (1<k<d),
[EeAl

from which we get
Tro = aoro + 171,
rrp = bp_1Tp—1 + Tk + Gk, k=1,2,..,d -1,

Irq = bd—lrd—l + aqry.

Given any k =0, 1,...,d let m, = (—1)* HZZO(#,C)()% —No), Zy, = H?:Q#k(x — ) =
=&orqg + &17g—1 + ..., and notice that & does not depend on k. We have

d
(ra, Zi) = > gira(N)Zip(N) = gira(M) (=1) 7,
=0
(ra, Zy) = (ra,&ora + &1ra—1 + ...) = (ra, §ora) = 50“7”51”2 = const.

thus,
gira(Me) (1) 7y, = &|lral|® = const. = gora(Xo)mo # 0,
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T’d(>\k) k9070
ra(AL) (=1 *me = gorg( o) — = (—1)"=——.
gk d( k)( ) E = 40 d( 0) 0 rd(/\()) ( ) IR

Moreover, since
< Zvrd> <ZZ7T1> <Z]:,’I“0>
Zr=—"trg+ ...+ r T
C P [ R Y R

(Fourier expansion) we have

(Zira) — gora(No) mo — Ta(Mo)

§o = = = 070
I7al[? [I7all? I7al[?
and for any £k = 0,1, ...,d we get
2 1 A

_ ”TdH Z* GRd 1[ ] Td( k) ( 1 kgOﬂ-O

ra(Xo) gomo " r4(Ao) ek
Then the first coefficient of 74 is

a1

Td()\o) 907T0.

Equality xry = bg_174_1 + aqrq, holding in R[x]/(Z), and the comparison of the degrees
allows us to establish the existence of a € R such that xry = bg_174-1 + aqgrq + aZ in R[z].
Indeed,

xryg = aZ + q(x)

for some o € R and some ¢(x) such that dgrq(z) < d (notice that dgr Z = d + 1 and that
dgr (zry) = d + 1). Since remainder ¢(z) is unique, and we had xry = by_174-1 + agrg in
Rlz]|/(Z), we can conclude that

q(x) = bg_174-1 + aarq.

Finaly, since rq — lIrall® ZF € Ry_1[z] we have that
Y ra(Xo )goﬂo k

a1

7“d(>\0) goTo B

(b) By looking again to the degrees of xr, (0 <k <d—1)

TTro = agro + €171,

T = bp_1Tp—1 + agrp + Cpaigr, K=1,..,d—1

we realize that cq, ¢o, ..., ¢q are nonzero. For k =0,1,...,d — 1, from the equality
d
-’Erk,rh (@, TRo) (w7, T8) (T 7%, Thg1)
Try = Z 3 = 5 Th—1 T 5 Tk 5 Tk+1
= |rall 751 17| [75+1]]
—_————
br—1 ag Chkt1
we have
b — (T Tpyr,Tr) _ (xrig1, ) |Tes1||? by definition of () ||Trat || (T 7h, Tht) _ HrkHHZCkH
712 [rrall® NIl 7kl (17 l? >
that the parameters by, by, ..., by_1 are also nonnull and, moreover, byci1 > 0 for any
+

k=0,1,...d—1.
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(c) Pick arbitrary Aj, for some h =0, 1,...,d. In proof of (a) we have seen that
Trg = agTo + c171,

rrp = bp_1Tp—1 + kT + Cp1Thrr, kK =1,.,d =1,
xrqg = bg_1m4—1 + aqrq.

On both sides we have polynomials, so
(z70)(An) = (aoro + c17m1)(An)

(@rk)(An) = (Or—1re—1 + awrs + cerare)(An), k=1,...d =1,
(xra)(An) = (ba—17d-1 + aqra)(An)-

and this is equivalent with
)\hTO()\h) = CLoTo()\h) + clrl()\h)

MTr(An) = be—17r—1(An) + arre(An) + crs1e41 (M), k=1,...,d — 1,
)\hrd<)\h> = bd,ﬂ”dfl()\h) + adrd(Ah).

If this, we write in matrix form we have

To(An) apg ¢ 0 7o(An)
() bo a1 ca 0 71(An)
ra(An) 0 by ay ... ... ro(An)
Ta—2(An) . ages ¢4 O Ta—2(An)
Tdfl()\h) 0 byg_s ag_1 cq Td*1<)‘h)
ra(An) 0 bg_1 ag ra(An)
%

Therefore, an eigenvector associated to Ay is (1o(An), 1(An);s s Ta—1(An), ra(An)) "

Now we want to show that the matrix R diagonalizes with eigenvalues the elements of M.
From above we have that {(Xg,70), (A1,71), ..., (Ag,7a)} is set of eigenpairs for R where
Tro = (7“0()\0), T’1<)\0), ceny ’I"d_l(/\o), Td(Ao))T, r, = (7“0(/\1), 7"1()\1), ceey Td—l()\l)a T‘d()\l))T, ceey
ra= (ro(Na),"1(Xa), -, Ta—1(Ag), 7a(Aa)) 7. If we use Proposition 2.11 we have that
{ro,r1,...,74} is a linearly independent set. Therefore, by Proposition 2.07, R is diagonalizes
with eigenvalues the elements of M.

(d) In proof of (a) we have obtained that

ra(Ar) = (-1 k 9070
Td(>\0) gkTk

for any k= 0,1, .., d. Since [Ty_q s M — Ae| = >0, gp > 0 for k=0,1,...,d and
ra(Ak) = (—1)’“7}1()\0)52—:2, we observe that r; takes alternating signs on the points of

M ={Xo, \1, ..., A\q}. Hence, this polynomial has d simple roots #; whose mesh
Mg = {00,0,,...,0,_1} interlaces M. Noticing that

d

Z =] - )

k=0

and \g >0y > Ay > 07 > ... > A\g_1 > 031 > Ay, so Z takes alternating signs over the elements
of My. From the equality by 174-1 = (x — aq)rq — ¥ Z, since r4(6;) =0 for i = 0,1,...,d — 1, it
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turns out that ry_; takes alternating signs on the elements of My; whence

Ma-1={%,7, ..., Va—2} interlaces My and ry has alternating signs on My_; (because

rqe(0;) =0 and 6y > vy > 01 >y > ... > 042 > Ya_o > 04_1). Recursively, suppose that, for
k=1,...,d — 2, the polynomials 7, and 7.5 have simple real roots «; and ;, respectly, and
that My, 1 = {ap, aq, ..., ai } interlaces My o = {50, 1, -, Brs1}, S0 that r, o takes
alternating signs on My, 1. Then, the result follows by just evaluating the equality

berk = (T — Qpy1)The1 — CraoTra2 at the points of My, . O

(13.04) Example

Consider space R[z]/(Z) where Z = (z —3)(x — 1)(x + 1)(z +3), Ao =3, A1 =1, Ao = —1,
A3 =—-31e M={3,1,-1,-3},and go = g1 = go = g3 = 1/4.

In Example 13.02 we have shown that ro = 1, 1 = x, 79 = 2% — 5, r3 = ba® — 41z,

7“3()%) —(—1 L 9070
r3(Ao) kT

and it is not hard to compute that 7y = 48, m; = 16, mo = 16 and 73 = 48. From last equation
we observe that r3 takes alternating signs on the points of M. Easy computation will give

that roots of rs are
41 0 41
V57 7 V 5°

Since 3 > \/% >1>0>-1> —,/% > —3 mesh M3 interlaces M. Next notice that in

same example we had zr; = %rg + 5Z. From the equality %TQ = xr3 — 57 it turns out that
o takes alternating signs on the elements of M3 (since Z takes alternating signs on the
elements of M3); whence My interlaces M3 and r3 has alternating signs on Ms. Indeed,

roots of ry are
V5 and — \/3,
andnoticethat1/%>\/5>0>—\/3>—@/45—1. O

(13.05) Problem

Let 7 .= Hzlzo(x — Ao) where M = { )Xo, A1, ..., Aa}, Ao > A1 > .. > Ay, is a mesh of real
numbers. If ro, 1, ..., T4 is orthogonal system associated to (M, g) in space R(zx]/{(Z), prove
or disprove that r;(Ng) >0, =0,1,...,d.

Hint: From Proposition 13.03(d) we see that every orthogonal system r¢, 71, ..., 74 satisfies
the following property: For every i = 1, ..., d the polynomial r; has real simple roots, and if M;
denotes the mesh (set of finite many distance real numbers) of the ordered roots of r;, then
(the points of) the mesh M, interlaces M = { Ao, A1, ..., Ay} and, for each i =1,2,....d — 1,
M, interlaces M. If elements of set M; we denote by M; = {6;1,0;2, ..., 0;;, } this mean
that every r; is of the form 7;(z) = ¢; [[_, (z — 0i;) for some ¢; € R.
(13.06) Proposition

Let rg, r1, ..., rq_1, rq be an orthogonal system with respect to the scalar product associated
to (M, g), let Z = [Ti_o(x — M), Ho = =TI, (@ = \o) and 7o = [[L_, (Ao — \i). Then the
following assertions are all equivalent:

(a) ro =1 and the entries of the tridiagonal matriz R associated to (rx)o<k<d, satisfy
ai + by + cx = No, for any k=0,1,....d;

(b) ro 4711+ ... +rg = Hy;
(c) lrxll? = ri(\o) for any k=0,1,....d.
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Proof: We will show that (a) = (b), (b) < (c) and that (¢) = (a). Let j := (1,1,...,1)T.

(a) = (b): Consider the tridiagonal matrix R (Proposition 13.03) associated to the
orthogonal system (7%)o<k<d

To ap C 0 To
T by ap c 0 T
To 0 b1 as ... R Ty
Iri=x : = 0o : ... 0 : = Rr.
Td—2 S ag—o Cq—1 O T'd—2
Td—1 0 bg_a ag-1 cq Td—1
Td 0 bd_1 aq Td

Then working in R[z]/(Z), since ar = Rr, we have:

d
0 :jT(xr — Rr) = q;(jTr) —jTRfr ok Fbrtcu=lo J,‘(jT'l"> — /\OjT’l" = (J} — )\o)jT’l‘ = (ZE — )\0) ZTk,
k=0

that is (z — \o) ZZ:O r, =0, so (x — Ao) ZZ:O r, = aZ for some a € R. Notice that

Ho(Mo) = o H()\O Ai) = —. Since we known that (x — \g)Hy = golﬂoZ we can conclude
i=1

o

that in R[z]/(Z) this mean
(I‘ — )\O)HQ = O,

so Hy, ZZ:O T € Ry[z] and there exists some £ such that ZZ:O r, = EHy. Since, also,

d

<7“0,Z7”k> = (ro, 7o) = 1
k=0
d
1
we have (ro, i Zrk> = % and
k=0
—Hp
(ro, Ho) = Zgﬂ’o = goro(Ao)Ho(ho) = r0(Xo) =

it turns out that &€ = 1. Consequently, S°¢_ . = H.
(b) & (c): Assume that ro +r; + ... + 74 = Hy. Then

I7kll? = (ri, i) = (resro + 71+ o 4 7a) = (i, Ho) = Zgﬂ“k = r(Ao)-

Conversely, assume that ||74]|* = rx(\o) for any k= 0,1, ...,d. By Fourier expansion
(Proposition 12.09) we have

H H H
H0:< 0’T20>T'0+< 0’r21>7”1+...+—< 07T;>Td.
[[7oll [l [[7all
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Notice that ri(Xg) = ||7%||* imply

(Ho, Tx) Zgﬂ“k (Ae) = Il

and result follow.

(¢) = (a): From ||rg||* = 7e(Xo) we have that (ry, ) = ri(A\o), and since degre of rq is 0
we can write rg = ¢, for some ¢ € R. But (¢, ¢) = ¢ imply ¢ = 1, and therefore ry = 1.
In second part of proof we had seen that ||r¢||* = 7x(\o) imply ro + 71 + ... + 74 = Hy. Then,
computing zHy in R[z]/(Z) in two different ways we get:

d

d
xHy = erk =2 r =35 Rr = (a,+bo,c1 + a1 +by,...,cq + ag)r = Z(ak + bi + ck)TE;
k=0 k=0

d
xHy = MoHy = Z A0Tks

(because (z — \g)Hy = 901 [x]/(Z) this mean that (z — A\g)Hy = 0) and, from the
linear independence of the polynomials 7, we get ap + bx + ¢ = Ao. O

(13.07) Proposition (the conjugate polynomials)

Let {po,p1, ..., pa} be some orthogonal system of polynomials with respect to some inner
product (x,%) in space R[x]/(Z). Then there exist the so-called conjugate polynomials p; of
degree i, for i =0,1,...,d with the property that

pa_i(z) = p;(x)pa(z) for i =0,1,...,d.
Proof: From Proposition 13.03 we have

Tpo = appo + C1P1,
Trp; = bi—lpi—l + a;P; + Cit1Pi+1, 1= 17 27 ceey d - 17
TPg = ba—1pi—1 + aqpa-

Notice that
Tpg = bg_1pa—1 + aapq,

TP4—j = ba—j—1Pd—j—1 + Qa—jDi—j + Ca—j41Pd—j+1, J=1,2,...,d—1,
TPpo = QoPo + C1P1,

and from this it is not hard to see that

bdl_l (z — aa)pa,

DPd—1 =

Pa-j1 = 5~ (¥ = @4-j)Pa—j — Ca-jiPa—js1), j=1,2,....d—1.

Now, we shall prove this proposition by induction.

BASIS OF INDUCTION
For i = 0 we have py(z) = 1- ps(z) so if we set py(z) = 1 the result follow. For i = 1, since

Pa_1 = bdl (x — aq)pa, if we set p,(z) = ﬁ(m — ag), the result follow.

INDUCTION STEP
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Assume that for any ¢ = 1,2, ..., k we have that there exist some polynomial p, of degree i
such that py_;(z) = p;,(x)pa(z) (this assumption include that pg_x(x) = Py (z)pa(z) and
Pd—(k-1)(2) = Pp_1(@)pa(z) for some p;, and p,_,). From equation

Pidj 1= m((ac — Qd—j)Pd—j — cd_j+1pd_j+1) that we had above, we have
1
pdf(kJrl)(x) = pd—k—l(if) = b ((517 - Cld—k)pd—k(x) - Cd—k+1pd—k+1(33)) =
d—k—1
1 _ _
= ((x = ag-i)Py(x)pa(x) — Ca—k 1P (2)pa(2)),
which provides the induction step. O

14 The canonical orthogonal system

(14.01) Observation (induced linear functional)

Each real number \ induces a linear functional on Ry[z], defined by [A](p) := p(A). To see
this, notice that [A] : Ry[z] — R and for arbitrary polynomials p(z), ¢(z) € Ry[x] and scalar
a € R we have

M +q) =+ =pA) +q(N) = [M(p) + [M(q)

and
[A(ap) = (ap)(A) = ap(\) = a[N(p).

(14.02) Observation (basis for dual space R}j[z])

Let M = { )Xo, A1, ..oy Aa}, Ao > A1 > ... > Ay, be a mesh of real numbers, and let
g : M — R be weight function associated to (p,q) ((p,q) = Z?:o gep(Ne)q(Ne), where for short
we write g¢ = g(\¢)) in inner product space Ry[x]. From Proposition 12.06 ((Zn, Zx) = dnkgs)
we know that family {Zy, Z1, ..., Z4} of interpolating polynomials (with degree d)

(=DF
Zy, = — [T @-x), ©0<k<a),
£=0 (£#£k)

are orthogonal basis.
Now notice that linear functionals [Ag], [A1],..., [Aa] are the dual basis of the polynomials
Zy, Z1,...,44. Indeed, suppose that ay,...,aq are scalars so that

Oéo[/\g] + ...+ ozd[)\d} =0

(where 0 on the right denotes the zero functional, i.e. the functional which sends everything
in Ry[x] to 0 € R). The above equality above is an equality of maps, which should hold for
any p € Ry[x], we evaluate either side on. In particular, evaluating both sides on Z;, we have

(Oéo[/\o] + ...+ Oéd[)\d])(Zz) = Oéo[/\o](ZZ) + ...+ Otd[)\d](Zz) = O./ZZZ()\Z) =

on the left (by Proposition 12.06 (Zx(A\n) = 0nx)) and 0 on the right. Thus we see that a; =0
for each i, so {[Ao], .., [Aa]} is linearly independent.

Now we show that {[\¢], ..., [\a]} spans R}j[z]. Let [A\] € R} be arbitrary. For each i, let f3;
denote the scalar [A](Z;). We claim that

(Al = Bo[Ao] + .. + BalAd)-
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Again, this means that both sides should give the same result when evaluating on any p € R,.
By linearity, it suffices to check that this is true on the basis {Z, ..., Z;}. Indeed, for each i we
have

(Bo[Ao] + - + BalAa])(Zi) = BolAol(Zi) + - + Balhal(Za) = Bi = [N(Z),

again by the Proposition 12.06 (Z;(An) = dnx) and definition the §;. Thus, [A] and
Bo[Ao] + ... + Ba[Aa] agree on the basis, so we conclude that they are equal as elements of R}.
Hence {[Ao], ..., [Aa]} spans R} and therefore forms a basis of R}. o

Proof of next theorem can be find in almost any book of linear algebra (for example see
2], page 117).

(14.03) Theorem
Suppose  is a linear functional on V. Then there is a unique vector v € V such that
o(u) = (u,v) for every u € V.

(14.04) Observation (induced isomorphism between the space R,[z] and its dual)
The scalar product associated to (M, g) induces an isomorphism between the space Rg[x]

and its dual, where each polynomial p corresponds to the functional w,,, defined as

wy(q) == (p, q) and, conversely, each form w is associated to a polynomial p,, through

(¢,p0) = w(q).

Indeed, consider mapping w : Ry[x] — Rj[z]| defined by w(p) = w, where w,(x) = (x,p). To
show that w is bijection, pick arbitrary ¢ € R}[z]. From Theorem 14.03 we know that there is
a unique polynomial p € Ry[x] such that ¢(q) = (g, p) for every ¢ € Ry[z]. Since w,(x) = (x,p)
we have that

p(x) = (%, p) = wy(%)
that is there is polynomial p € Ry[z] such that ¢ = w,. Linearity of w is obvious.

From Theorem 14.03 we know that for arbitrary w € R}j[x] there exist unique polynomial
p € Ry[z] such that w(q) = (g, p) for every q € Ry[z]. In different notation w(*) = (x,p). Now
we can define mapping P : R}j[z] — R,[z] with P(w) = p, where p,, is unique polynomial,
from Theorem 14.03, such that w(q) = (g, p,,) for every q € Ry[z]. Now it is not hard to see
that P is isomorphism. o

(14.05) Observation (expressions for w, and p,)
By observing how the isomorphism acts on the bases {[A¢]}o<s<da, {Z¢}o<i<a, We get the

expressions:
d d

Wp = Zg(/\€>p<)\€)[/\é]7 Dw = Z ! w(Ze) Zs.

=0 =0 9

Indeed, consider isomorphism w : Ry[z] — R}[z] defined by w(p) = w, where w,(x) = (x, p).
Pick arbitrary p € Ry[z]. Since {[\¢]}o<r<d, is basis for R}j[z] there exist unique scalars Sy, ...,
Bq such that

w(p) = wp = Bo[Ao] + ... + Ba[Ad].

For short we set g, = g(\;). For every ¢ € Ry[x] we have

wp(q Zgzp (Ae)g(Ae) = dep (Ae)[Ad] (g
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From last two equations we can conclude that Sy = gop(Xo), .-, Ba = gap(Aa), that is

= gp(M) -
/=0

Now consider isomorphism P : R}j[z] — Ry[z] defined with P(w) = p,, where p,, is unique
polynomial (see Theorem 14.03) such that w(q) = (¢, p.) for every ¢ € Ry[z|. Pick arbitrary
w € Rj[x]. Since {Z,}o<p<q is basis for Ry[z] there exist unique scalars 7, ..., 74 such that

P(w) = puw = Y20 + ... + YiZa.

We know that w(q) = (q, p,,) for every q € Ry[x]. If, for ¢ we pick up Z, we have
w(Zy) = (Ze,pw) = (Ze, Y0 %0 + - + VaZa), and since (Zy,, Z,) = Onkgr we obtain w(Zp) = geve.
We see that v, = iw(Zg) and therefore

d

Po= Loz 2.

=

(14.06) Observation (polynomial corresponding to [\;] and their scalar products)
In particular, for short we set g, = g(\;), the polynomial corresponding to [\g] is

d

1
Hy :=ppg = >, — (2020 = Z Ous =
—o It
1 —1)* —
= —/Jp = —Xo)e(@ — Ag)en (@ — A
P (@ = Ao)-o(@ = Ag)o.(z = Aa),

(where (x — A\x) denotes that this factor is not present in the product) and their scalar
products are

d
1 1 1
<HhaHk deHh )\e)Hk()\e) = ghg_Zh()\h)Hk()\h) Hk()\h) = g—th(Ah) = g—5hk-

=0 h

Moreover, property

d
Z (0 <¢<d-— 1)

T
k=0
—(_Wi)k [\x] annihilates on the
space Ry_1[x]. Indeed, for arbitrary polynomial p(z) = aq_12971 + ... + a17 + ag of degree
d — 1 we have

(see Proposition 12.08) is equivalent to stating that the form ), _,

k=0 'k k=0 'k
d d d
—1)k —1) —1)
= Ad—1 Z ( ) [)\k]l’d_l + + a; Z ( ) [)\k]l' + ag Z ( ) [)\k]xo =0
ko 'k b—o 'k b—o 'k
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(14.07) Comment (some notation from linear algebra)

The sum of two subspaces X and ) of a vector space V is defined to be the set
X+Y={r+y|x e X and y € Y}, and it is not hard to establish that X + ) is another
subspace of V. Subspaces X', Y of a space V are said to be complementary whenever

YV=X+)Y and XN)Y=0,

in which case V is said to be the direct sum of X and ), and this is denoted by writing
V=X

For a subset £ of an inner-product space V, the orthogonal complement £ (pronounced
"L perp”) of L is defined to be the set of all vectors in V that are orthogonal to every vector
in £. That is,

Lt ={xcV|{m,z) =0 for all m € L}.

If £ is a subspace of a finite-dimensional inner-product space V, then
V=L®L

For v € V, let v = m + n, where m € £ and n € L. Vector m is called the
orthogonal projection of v onto L.

If £ is a subspace of an n-dimensional inner-product space, then it is not hard to show
that dimLt = n — dimC and £ = £ (proof see in [37], page 404). If £, and L, are
subspaces of an n-dimensional inner-product space, then the following statements are true:

(i) (L1 + Lo)* = L1 N Ly

(131) (L1 N Lo)* = L+ L7 O

(14.08) Observation (the functional [)\;] is represented by the polynomial H)
Consider the space Ry[z] with the scalar product associated to (M, g)
((p,q) :== Z?:o gep(ANe)q(Ne)). From the identification of such space with its dual (see
Observation 14.04) by contraction of the scalar product, the functional [Ag] : p — p(XAo) is
represented by the polynomial Hy = —— L (z — \))...(x — \g) through (Hy,p) = p(Ao).
Indeed, from Theorem 14.03 we know that for arbitrary w € R}j[z] there exist unique
polynomial p,, € Ry[x] such that w(q) = (¢, p,,) for every ¢ € Ry[z]. In different notation
() = ().
For functional [Ao] : p — p(Ao) on R, there exist unique polynomial ppy, such that
[Mol(q) = (@, pprg) for every q € Ry[z]. We want to evaluate pp,j. From Observation 14.05 and
Proposition 12.06 we have

4 d
Pl = Z 900 [Mo](Ze)Z Z

=0 :0

Zg (No)Ze =

1 1 1 1 1
—Zo()\o)Zo + —Z1<)\0)Z1 + —|— —Zd()\())Zd = —Z()()\())ZO == —Z() == H().
90 9 9d 90 90

(14.09) Definition (orthogonal projection of H, onto Ry[z]))
For any given 0 < k < d — 1, let g, € Ry[x] denote the orthogonal projection of Hy onto
Rg[z]. With another words

Ry[z] = Rolz] & ROL[x], Hy = qo + to where gy € Ry[z], to € R(ﬂx],

Ry[z] = Ry[z] & Rf[x], Ho = q1 +t, where ¢, € Ry[z], t; € Rll[:x],
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Ry[z] = Ry_1[z] @ Ry ,[z], Ho = qa_1 + t4—1 where qg_1 € Ry_1[x], t4_1 € Ry | [7]
(see Figure 46). o

-
-
-
R

Ro[x]
Ri[x]

FIGURE 46
Obtaining the g by projecting Hy onto Ry[x].

We know that we can think of flat surfaces passing through the origin whenever we
encounter the term “subspace” in higher dimensions. Alternatively, the polynomial g, can be
defined on following way:.

(14.10) Theorem (closest point theorem)

The unique vector in Ry|x] that is closest to Hy is qx, the orthogonal projection of Hy onto
Ry[z]. In other words,

[Ho — gl = min ||Hy — |
gER [z]

(see Figure 47).

R.[x]
RN

H,

qggkg]IIHo- all
5 R.x]

-
="
-
.

i S~——

Ri[x]

FIGURE 47
Obtaining the ¢’s as closes points to Hy.

Proof: If q; is orthogonal projection of Hy onto Ri[z], then g, — m € Ri[z] for all m € Ry[z],
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and Hy = g, + t;, (for unique g € Ry[x] and t, € Ry-[2]) so
HO — gk € R?[‘ﬂ?

and (g, —m) L (Hy — qi). The Pythagorean theorem says |z + y||*> = ||z||* + ||y||* whenever
xly, and hence

[Ho — ml* = | Ho — qx + qx — ml|* = | Ho — qil|* + g — m|I* > [|Ho — gx*

In other words, min | Hy—m| = |[[Ho — ql|-
meER[z]

Now argue that there is not another point in Ri[z] that is as close to Hy as g is. If
m € Ry[x] such that ||Hy — m|| = ||Ho — gk, then by using the Pythagorean theorem again we
see

[Ho —m|* = |[Ho — qx + g — m|* = [[Ho — @l|* + g = m]* = lax — 7 =0,
and thus m = g. H

Let S denote the sphere in R,[z] such that 0 and Hy are antipodal points on it; that is,
the sphere with center 1 Hy and radius || Ho||

S = {p € Rylz] : |lp — %H0H2 = <%HH0H) }

(if x and y are points on sphere and distance between them is equal to the diameter of sphere,
then y is called an antipodal point of x, x is called an antipodal point of y, and the points x
and y are said to be antipodal to each other).

(14.11) Lemma
Sphere S in Ry[z] such that 0 and Hy are antipodal points on it can also be written as

S = {p € Ralz] : [IpllI* = p(X0)} = {p € Ralz] : (Ho — p,p) = 0}

Proof: We have

1 1 2
— —Hy||* = | =||H,
||P 5 0|| (2” o||),

1 1 1
— —Hy,p— =Hy) = ~||Ho|)?
(p sHop =5 0) 4|| ol
1 1 1 1 )
(p,p) — 5(]07 Hy) + <§H07P> + Z<HO’ Hy) = ZHHOH ;

1 1
(b, ) = {Ho, ) + {1 Holl* = {1 Fol

||pH2 = <H07p>7
and in Observation 14.08 we had (Hy, p) = p(\g), so

1P]* = p(Xo)-

Since (Hy, p) — (p,p) = 0 we have
<H0 - p7p> = 0.
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(14.12) Problem
Prove that the projection gy is on the sphere Sy = S N Ri[z].

Solution: From Lemma 14.11
S ={peRyfz]: (Ho—p,p) =0}.
Since Hy — qr € R [z] and g € Ry[z] we have

(Ho — qx, qrx) = 0.

O
(14.13) Problem
Prove that Sy = {0,1}.
Solution: We have § = {p € Ry[z] : ||p|]| = p(Xo)} and Sy := S N Ry[z]. Notice that
Ro[z] = {a : a € R}, and pick arbitrary p € Sg. Then we have p = « for some a € R.
Equation [|p|| = p(X\o) imply (p,p) = p(Xo), so
d
> gep(M) p(Ae) = p(Mo),
=0
g0a2 + gloz2 + ...+ gdoz2 = «,
o = aq,
o —a=0,
ala—1)=0 = a=0 or a=1.

Therefore Sp = {0, 1}. O

(14.14) Problem
Let R,,[x] represent the vector space of polynomials (with coefficients in R) whose degree is
at most n. For every a € R let U, = {p € R[z] : p(a) = 0}.

(a) Find a basis of M =U, NR,[z] for all a € R;
(b) Show that (Us +U4) NR,[z] = R, [x].

Solution: (a) Since U, is space of all polynimials whose root is a, and R,[z] is space of all
polynomials with degree at most n, we have that M = U, N R,[z] is space of all polynomials
with degree at most n, whose root is a. Elements from M are in form

(x —a)(ap_12" P+ ... + a1 + ) for some ay,_1, ..., a1, a9 € R. Now it is not hard to prove
that {z — a, (r — a)x, (x — a)2?, ..., (x — a)z"'} is basis of M (this basis we have obtained by
multiplying the standard basis {1, z, 2% ...,2" "'} of R,,_1[z] by = — a).

(b) Notice that U3 is space of all polynomials whose root is 3, and U, is space of all
polynomials whose root is 4, and elements of U3 + U, are in the form
(x —3)q1(x) + (x — 4)g2(z) where ¢;(x), g2(x) are some polynomials (of arbitrary degree). For
arbitrary polynomial p € R, [z] we have

p(z) =1-p(x) = ((x = 3) = (z = 4)p(z) = (v = 3)p(x) + (& — 4)(=p(2)) € Us + U,.

The result follow. O
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(14.15) Problem
Let p € R, _1[x] be a polynomial of degreen —1 (n—12>10).

(a) Let R,,_1[z] be the vector space of polynomials with degree < n — 1 over R. Show that
{p(),p(x+1),...,p(x +n—1)} is a basis of R,_1|x].

p(x) plx +1) plx+2) ... plr+n)
(b) Let M, = p@fl) p<x:+2) p(x:—i—?)) o p<x+:n+1) . Show that
plx+n) pla+n+1) plx+n+2) ... p(z+2n)

det M,, = 0 for every x € R.

Solution: (a) We will prove this using mathematical induction.

BASIS OF INDUCTION

Consider case when n = 2. We then have that p € R;[z] and degree of p is 1, for example
let p(x) = ax + b for some a,b € R (a # 0). We want to show that {p(z),p(z + 1)} is basis of
Rl [lL‘] .

First notice that p(z +1) = a(x + 1) + b = p(x) 4+ a. Consider equation
ap(z) + Bp(x + 1) = 0. From this we have (o + )p(x) + Sa = 0, from which it follow that
a = =0. That is {p(z), p(z + 1)} is linear independent set. Now pick arbitrary r(x) € R;[z]
(for example let r(z) = cx + d for some c¢,d € R). We want to find o and § such that
r(z) = ap(x) + Bp(x + 1). This imply

cx+d=(a+ B)(ax +b) + Sa,

c d be
Oé:——B7 B:_ "9
a

that is r(z) € span{p(z), p(z + 1)}. Therefore, {p(z), p(xz + 1)} is basis of R, |[x].

INDUCTION STEP

Assume that the result holds for n — 2 > 1 that is assume that for arbitrary polynomial
p € R, _o[z] of degree n — 2 set {p(x),p(x + 1),...,p(x +n — 2)} is a basis of R,,_s[z], and use
this assumption to show that {p(z),p(z +1),...,p(x +n — 1)} is a basis of R,,_;[z].

Let g(x) = p(x + 1) — p(x). Then dgrq = dgrp — 1. Indeed, if
p(x) = ap 12"+ a, 02" + ... + a1 + ag, then

px+1) = p@) = (ap_r(x+ )" +apolx+1)"2+ . +ay(z+1)+ay)—

(12" Ay 4 L arr Fag) = (n— Dap_ 12" 4
By induction hypothesis {g(x), ..., q(x +n — 2)} generate R, _»[x]. Thus for any polynomial
r(x) =b, 12" '+ ...+ bz + by € R,,_1[z], we can express r[z] — znjp(x) as linear
combination of ¢(z),...,q(x +n — 2), hence of p(x), ..., p(zr + n — 1) and finally also r(z) as
such linear combination.

(b) An easy approach will be to use the idea of Method of Finite Differences for a
polynomial. For p(z) these polynomials are p(x), pi(z) = p(z + 1) — p(x),
pa(z) =pi(x+1) —pi(z) = p(x + 2) — 2p(xz + 1) + p(x),... (each of them have a different
degree). The rows (and columns) satisfy the condition that their nth method of difference is
equal to 0. This gives as coefficients, which shows that the columns (rows) are not linearly
independent, so the matrix has determinant 0.

For clarity, the nth difference tells us that for any j,

0= <g>p(x+j+n)—<Tll>p(m+j+n—1)+(T)p(x+j+n—2)—...+
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(=) (n ﬁ 1) ple+ji+1)+ (=1)"p(x +1).

So we will take (8) as the coefficients for the linear combination that is 0. O

(14.16) Problem
Prove that space Ry[x] N Ry_1[x]* has dimension one.

Solution: The dimensions of the orthogonal complement of Ry[z] is d — k

(dim(Ri[z]) = d — k), and the dimensions of the orthogonal complement of Ry_i[z]* is k — 1
(dim(Ry_[z]) = k — 1). Notice that dim(Ry[2] " Ry_1[z]) = 0 (for illustration see Figure 48).
The linear subspace generated by the orthogonal complements has dimension exactly
d—k+k—1=d—1 (dim(R;[z] + Ry ;[z]) = d — 1). On the end, notice that

(Re[z] N Ry_y[z]1)F = Ry [2] + Ry_y[z] (see Comment 14.07)). The result follow.

R[]
Ro.l] .
o, R.[x]
Rx]
AN
<
R [x]

FIGURE 48
Vector space Ry[z] = Ri[z] ® Rit[z] = Ri_1]x] ® Rib [x]. O

(14.17) Proposition
The polynomial qy, which is the orthogonal projection of Hy on Ry[x], can be defined as the
unique polynomial of Ry|x] satisfying

(Ho, qr) = qr(Ao) = max{q(Xo) : for all ¢ € Sy},

where Sy, 1s the sphere {q € R[] : ||q]|> = ¢(No)}. Equivalently, g, is the antipodal point of
the origin in Sy.

Proof: First notice that
Si = 8 NRyfa] = {g € Rafe] : g2 = a000)} N Rele] = {q € Ryfa] : g]> = g(Ao)} and since
qr € S from Theorem 14.10 we have

1o = ail* = min | Ho — qll.

Since gy, is orthogonal to Hy — q, we have (Hy — qi, qr) = 0 (= (Ho, &) = |lqx||* = qx(No)) and
gl + [1Ho — gxlI* = | Holl* = (Ho, Ho) = (5520, 5sZ0) = 4;- Then, as g € Sy we get

1 1
Ao) = 2= — —||Hy — q|* = — — min||Hy, — q||*.
r(Ao) = [l n [Ho — gi| o i [Ho — 4l
Next, since || Hp|? = +
90
L suin | Hy — gl = ||l — min || Hy — ] = max gl = max g(%o)
do qESK qESy qESyK qESK
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(for illustration see Figure 49).

1o | | Ho-q, |l

..................
~

I gl

Rx]

FIGURE 49
Orthogonal projection of Hy on Ry|[x], sphere Sy, and illustration for || Ho|l, ||gx|| and || Ho — qx|.

From the above equations we have
lgi |l = max[q]],

and the proof is complete. O

With the notation ¢4 := Hj, we obtain the family of polynomials qq, q1, ..., qa—_1, qa- Let us
remark some of their properties.

(14.18) Corollary
The polynomials qo, q1, ---, Qa—1, qa, satisfy the following:

(a) Each gy has degree exactly k.
(b) 1= qO(AO) < qO()\l) < ... < Qd—l(AO) < qd()\0> =1

go®
(c) The polynomials qo, q1, ..., qa—1 constitute an orthogonal system with respect to the

scalar product associated to the mesh {1 > Xy > ... > A\q} and the weight function
>\k — ()\0 — )\k)gk, k= 1, ,d

Proof: (a) Notice that Sy = {0, 1} (see Problem 14.13). Consequently, go = 1. Assume that
qr—1 has degree k — 1, but ¢ has degree lesser than k. Because of the uniqueness of the
projection and since

[Ho — qr—1ll = min ||Ho—qll, [[Ho—qll = min [|Ho—ql,
qER,_1[z] qER [x]

we would have ¢ = qi_1, and this imply that Hy — ¢x_; would be orthogonal to Ry[z]. In
particular,

0= <H0 — qk-1, (117 - )\O)qu) = <(37 - )\O>HO - (SC - )\O)Qkfla qu) =

= ((z — Xo)Ho, gk—1) — (& — Xo) @1, Qk—1)-
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By definition of inner product

((z = Xo)Ho, qr—1) = Zgz()\z — Xo)Ho(Ae)qr—1(Ne) = 0.

(because Hy(A¢) =0 for £ =1,2,....d). So

0= (Hy— qr—1, (T — Xo)qr-1) = {( — Ao)Qk—1, Q1) = Z ge(he = M) g1 (No).

Hence, gi_1(A¢) = 0 for any 1 < ¢ < d and gx_; would be null (because polynomial g;_; of
degree k — 1 have d roots), a contradiction. The result follows.

(b) Each ¢ has degree exactly k and since qx(M\o) = ||qx||* we have gr_1(Ao) < qr(No). If
qk—1(No) = qx(No), from Proposition 14.17 we would get g1 = qx, which is not possible
because of (a). The result follows.

(¢c) Let 0 < h <k <d-—1. Since Hy — g, is orthogonal to Ry[x] we have, in particular, that

0= (Ho — g, (x — Xo)qn) = ((x — Xo)Ho — ( — o)k, qn) = (Mo — )k, qn) =

d d
> 9eho = A)a(A)an(Ae) =D (Ao = A)geaqe(Ae)an(Ae),
=0 =0

establishing the claimed orthogonality. O]

The polynomial ¢, as the orthogonal projection of Hy onto Ry[x], can also be seen as the
orthogonal projection of g1 onto Ry[z], as qxy1 — qx = Ho — qx — (Ho — qr+1) is orthogonal to
Ry[z] (with another words for arbitrary g, there exist unique g € Ry[z] and ¢, € R;[z] such
that gx11 = g + tx). Consider the family of polynomials defined as

Do = qo = 1,
b1 = q1 — qo,

b2 = q2 — 1,

Pd—1 = 4d—1 — 4d—2,
Pd = qd — Ga—1 = Ho — qq—1.

Note that, then, ¢z = po+ p1 + ... + pr. (0 < k < d), and, in particular, po + p1 + ... + pg = Hp.
Let us now begin the study of the polynomials (px)o<k<a-

(14.19) Proposition
The polynomials py, p1, ..., Pa—1, Pa constitute an orthogonal system with respect to the
scalar product associated to (M, g).

Proof: From p, = g — qx—1 we see that py has degree k. Moreover, for arbitrary u € Ry_1[x]
(P, ) = (@ — qr—1,u) = (Ho — qr—1 — (Ho — qr), u) = (Ho — qr—1,u) — (Ho — g, u) =0—-0=10

SO Pk = Qr — qx—1 is orthogonal to Ry_1[z]|, whence the polynomials py form an orthogonal
system. O
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(14.20) Example
Consider space R[z], let \g =3, Ay =1, Ag = =1, \3 = =3, go = g1 = g2 = g3 = 1/4, and
let (p,q) = 3", gip(Ai)g(\i) denote inner product in Ry[z], p,q € Rs[z]. Then

T = (—1)0()\0 - )\1)()\0 - )\2)()\0 - /\3) = 487

1 1 4 2
HO = Todo (SE )\1)<I /\2)(3? )\3) = 12($ + 3z T 3)

We want to compute polynomials pg, p1, p2, and ps from Proposition 14.19.

First we will compute polynomials qg, ¢1, ¢2, and g3. We know that ¢y = 1. Polynomial ¢
is orthogonal projection of Hy onto R [z] so firs we must find Ry [z] and then express Hy as
linear combination of polynomials from R;[z] and Ry [z].

Basis for Ry[z] is {1, z, 2%, 2°}. Since R,[z] = span{1, z}, dim(R; [z]) = 2,

Ri[z] = {r € Rs[x] : LR, [2]} we want to find scalars «, 3, v and § such that
(ax® + Ba® + vz + 4,1) = 0 and (az?® + Bz* + vz + 6, 2) = 0. We have

(az® + Ba* +yx +6,1) =58 + 6,
(az® + B2 + yx + 6, 7) = 4la + 5.

Now it is not hard to compute that Ry [2] = span{z® — £z, 2% — 5}, and

3 1 41 1
Ho=1-1+=. (3= = Z . (2 =5
b=+ at o (P = S b (6 )
therefore 5
ql(x)zl—i—g:c.

Next, polynomial ¢, is orthogonal projection of Hy onto Ry[z] so firs we want to find Ry []
and then expres Hy as linear combination of polynomials from Ry[x] and Ry [z]. Since
Ry[z] = span{1, z, 2%}, dim(Ry [z]) = 1, Ry[z] = {r € Rs[x] : r LRy[z]} we will find scalars «,
B, v and § such that {(ax® + Ba? + yo +4,1) =0, (ax® + Bz? + vz + §,2) = 0 and
(ax® + Ba* + vz + §,2%) = 0. We have

(ax® + Bx® +yx +6,1) = 568 + 6,

(az® + Br® +yo +6,2) = 4la + 5,
(az® + Bx® + yo + 6,2%) = 415 + 50.

Now it is not hard to compute that Ry [2] = span{z® — £z, }, and

HO:—i-l—i—g-x—l—i-xz—%l—z-(fg—%x)
therefore
1 3 1,
q2($):—1+5$+1$.
Since ¢3(z) = Hy we have
po =1,
3
pl—gl’;
5 1,
p2=—1+1$7
41 5
D3 = ——=T+ -
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On the end notice that we have following properties
(1) po +p1 + p2 + p3 = Ho;

(1) [lpoll* = 1 = po(3), [lp1lI* = 9/5 = p1(3), [[p2l* = 1 = p2(3), [Ips)l* = 1/5 = ps(3);
(7i1) In space R[z|/(Z) where Z = (x — X\g)(z — A\1)(z — A2)(z — A3) we have

Po 053 0 0 Po
. P1 - 3 O 12/5 0 P1 .
P2 o 0 4/3 0 3 P2 '
D3 0 0 3/5 0/ \ps
“R

(iv) The entries of the recurrence matrix R associated to (px)o<k<s, satisfy
ap + by + ¢ = Ao, for any k£ =0,1,2,3. O

(14.21) Definition (canonical orthogonal system)
The sequence of polynomials (p)o<k<a, defined as

Dbo ‘= q0:17 P1:=4q1 —qo, P2:=4Gq2 — (41,

Pd—1 = qd—1 — qd—2, DPd = Gqd — Ga—1 = Ho — qq—1.

will be called the canonical orthogonal system associated to (M, g). o

(14.22) Proposition
Let rg, r1, ..., rq_1, rq be an orthogonal system with respect to the scalar product associated
to (M, g). Then the following assertions are all equivalent:

(a) (rr)o<k<a s the canonical orthogonal system associated to (M, g);

(b) 1o = 1 and the entries of the recurrence matriz R associated to (ry)o<k<a, Satisfy
ap + by + cx = No, for any k=0,1,....d;

(c)ro+ri+...+rq= Hy;
() ||rill> = ri(Xo) for any k=0,1,....d.

Proof: Let (px)o<k<a be the canonical orthogonal system associated to (M, g). Notice that
Pk, Tk € Re[z] N Ry [x]. The space Ri[z] N R;[2] has dimension one (see Problem 14.16),
and hence the polynomials 74, py are proportional: r, = &pg. Let j:= (1,1,...,1)7".

(a) = (b): We have ry = py = 1. Consider the recurrence matrix R (Proposition 13.03)
associated to the canonical orthogonal system (r4)o<k<d = (Pk)o<k<d

Po ap ¢ 0 Po
pl bQ a]_ CQ O pl
D2 0 bl as ... R Do
p=ux| = o : = ... 0 : = Rp.
Pa—2 ... Qg—2 Cq—1 0 Pd—2
Pd—1 0 bd_2 aq—1 Cq Pd—1
Pa 0 ba—1 aq Pa

Then, computing zqq in R[z]/(Z) in two different ways we get:

d d
vqa=1Y ppr==2j'p=3 Rp=(a+bo,c1 + a1 +bi,...catas) p=Y (ar+ b+ ce)pi;
k=0 k=0
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d
vqq = vHy = XoHy = Y Aops
5=0

(because (z — \g)Hy = QOLWOZ and in Rlz|/(Z) this mean that (x — \g)Hy = 0) and, from the
linear independence of the polynomials pi, we get ax + bi + ¢ = Ao.
(b) = (c¢): Working in R[z|/(Z) and from zr = Rr, we have:

d
O:ij—Rﬂ:ng%jU%:ﬂfﬂ—&f%:@—Mﬁ%z@%ﬁwzyk

k=0

Therefore (notice that (z — o) S0_, 7 = 0, (z — A)Ho = 0 and Hy, Y2¢_, 7 € Ry[z]) there
exists & such that ZZ:O r, =E&Hy = ZZ:O Epr. Since, also, ZZ:O re = ZZ:O &epr, where &g =1
(since by assumption we have ro = 1), it turns out that {g =& = ... =& =¢§ = 1.
Consequently, ZZ:O rr = Hy.

(C) = (d) H’f‘k”z = <7‘k, Tk> = <7’k,7‘0 +r+...+ Td> = <7’k, H0> = Tk()\o).

(d) = (a): From ry, = &px, we have &[[pil|* = |7l = 7 (ho) = &pr(Xo) = &llpxl*.
Whence & =1 and r, = py. O

15 Characterizations involving the spectrum

Of course, it would be nice to have characterizations of distance-regularity involving only
the spectrum. The first question is: Can we see from the spectrum of a graph whether it is
distance-regular? In this context, it has been known for a long time that the answer is 'yes’
when D < 2 and 'not’ if D > 4. Indeed, a graph with diameter D = 2 is strongly regular iff it
is regular (a property that can be identified from the spectrum) and has three distinct
eigenvalues (d = 2). Some time, the only undecided case has been D = 3, but Haemers gave
also a negative answer constructing many Hoffman-like counterexamples for this diameter.
Thus, in general the spectrum is not sufficient to ensure distance-regularity and, if we want to
go further, we must require the graph to satisfy some additional conditions.

To make characterization of DRG which involve the spectrum we first introduce a local
version of the predistance polynomials and enunciate a key result involving them: Namely, an
upper bound for their value at Ag and the characterization of the case when the bound is
attained. To construct such polynomials we use diagonal entries of idempotents F; defined
earlier, that is the crossed uv-local multiplicities when u = v.

(15.01) Proposition
Let X and Y be complementary subspaces of a vector space V. Projector P onto X along
Y, is orthogonal if and only if

(Pu,v) = (u, Pv) for all u,v € V.

Proof: First recall some basic definitions from Linear algebra. Subspaces X, ) of a space V
are said to be complementary whenever

V=X+Y and XnNnY ={0}

in which case V is said to be the direct sum of X and ), and this is denoted by writing

Y =X @Y. This is equivalent to saying that for each v € V there are unique vectors x € X
and y € Y such that v = z +y. The vector x is called the projection of v onto X along ). The
vector y is called the projection of v onto ) along X. Operator P defined by Pv = z is unique
linear operator and is called the projector onto X along ). Vector m is called the
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orthogonal projection of v onto M if and only if v = m 4+ n where m € M, n € M+ and

M C V. The projector Pry onto M along M is called the orthogonal projector onto M.

(=) Suppose first that projector P onto X along ), is orthogonal, that is X 1). In
another words
(x,y) = 0 for every choice of x € X and y € Y.

Then, since Pu € X and (I — P)u € Y for every vector u € V,
(Pu,(I—P)v)=0 and (({—P)u,Pv)=0 for every choice of u,v € V.
Finally
(Pu,v) = (Pu, Pv+ (I — P)v) = (Pu, Pv) + (Pu, (I — P)v) = (Pu, Pv)

and
(u, Pvy = (Pu+ (I — P)u, Pv) = (Pu, Pv) + ((I — P)u, Pv) = (Pu, Pv)

for every choice of u,v € V. Therefore
(Pu,v) = (u, Pv) Yu,v € V.
(<) Conversely, if
(Pu,v) = (u, Pv) for every choice of u,v € V
is in force and x € X and y € ), then
(r,y) = (Pz,y) = (z, Py) = (z,0) = 0.

(15.02) Proposition
Let z,; represents the orthogonal projection of the u-canonical vector

123

ey = (0,0,...,0,1,0,...,0) " on & = ker(A — \ji), that is z,; == E;e,. Then (u,v) entry of the

principal idempotent E; correspond to the scalar products (zy;, zy;) that is

(Ez)uv = <Zm‘, Zm‘> (u, (S V)

Proof: First we will notice that, from Proposition 5.02(i)

E:=E,, (30)
from Theorem 11.06 that
E;’s are orthogonal projectors onto &; (31)
and from Proposition 15.01
(Eu,v) = (u, E;v) for all u,v € F". (32)
ezll 6212 e:in
Entries of E;’s, just this time, we will denote by e'jw that is B, = 6?1 6?2 e?n . For
ey ey . e

arbitrary u,v € V we have

= e, Eie, = (ey, Eie,) i (e, Eje,) =
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32

= (e0, Ei(Eie,)) D (Eien, Biey) = (zui, 201).

(15.03) Example

Let I' = (V, E) denote regular graph with ¢ as his largest eigenvalue. Then multiplicity of
Xois 1and j = (1,1,...,1)T is appropriate eigenvalue for \o (see Proposition 4.18). So
Uy = \/Lﬁj , and

07
T 1 1 1 1
EO@U = U()UO €y = U() [\/_ﬁ \/_ﬁ} 1| = %Uo = -7
10,

From this it follow (Eq)u, = (1], %]) = n%n = 1/n for any u,v € V, and hence

n

1
E,=—J.
n

(15.04) Proposition (spectral decomposition)

LetT'= (V,E) (V| =n) be a graph with eigenvalues A\o(= A) > Ay > ... > Ay, A be the
adjacency matriz of T, {e1, e, ..., } be the canonical base of R"™ and let (\,v) be the eigenpair
from Perron-Frobenius theorem such that v = (vq,va, ..., v,) is normalize in such a way that

mgl v; = 1. Then for a given vertex v € V we have the spectral decomposition
1€

d
U.
e, = ZZZ'[ = ||vﬁ‘L|2'U + z;
=0
where zy € ker(A — \I) and z; € v+.

Proof: Let & denote the eigenspace & = ker(A — \;I), and let dim(&;) = m;, for 0 <1 < d.
Since A is real symmetric matrix, it is diagonalizable (Lemma 2.09), and for diagonalizable
matrices we have

mo—+my+..+mg=mn (33)

(Lemma 4.02).

Matrix A is symmetric n X n matrix, so A have n distinct eigenvectors B = {uy, ug, ..., u, }
which form orthonormal basis for R” (Lemma 2.06). Notice that for every vector u; € B there
exist & such that u; € &;. Since & NE; = () for i # j, it is not possible that eigenvector u;

(1 < i <n) belongs to different eigenspace. So, by Equation (33), we can divide set B to sets
By, B, ...,B4 such that

B, is a basis for &, B=ByUB,U..UB; and B;,NB;=0.

Let U; (1 <i < d) be a matrices which columns are orthonormal basis for ker(A — \; 1) i.e.
which columns are vectors from B;, and consider matrix P = [Up|Uy|...|Uq]. We have

P'P=PPT =1,
Uy

T+
1

I =PP" = [U|Uy]...1Uy) || = UoUy + U U, + ... +UU} = Ey+E; + ... + Ey,
Ul
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that is
Eo+FE,+..+E;=1.

From Definition 4.03 we have that matrices E; (1 <i < d) are known by name principal
idempotents. Every of E; (1 <1i <d) is n x n matrix, and if we columns of E}, denote by 24,
29k, -y Znk We have

210 220 --- Znol| + |2Z11 %21 - Zpi| *t oo+ 214 224 - Znad|l = €1 €2 ... e,

From this it follow that
d
e, = Z Zil -
=0

Let ug1, uga, ..., ug; be columns of U, . Since

T
21k  R2k .- Rnk ZEkZUkUk :Uk Ukl Uk2 ... Vij| = Ukukl Ukukg Ukukj

we have z;, = Ugug; € ker(A — \gI) and first equalities follow.
For second equation firs notice that A have geometric multiplicity equal to 1, so
E = span{”g—”}. From this notice that

Uy v vy .. VU,
1 1 |w 1 |viva v .. v,
E() = U()Uv—r = va = V1 V2 ... Up| = i
TR [v]|? [ d [v][? :
U VU, VoUp ... U2
Since
U1
1 ()
ei:Zi0+zi1+---+Zid:WUi + 21+ ..o+ Zig
—_——
=z;
Un,
we have
e, =——=vV+ z;
' ||v||2 "

(15.05) Definition (uv-local multiplicities, u-local multiplicity of \;)
The entries of the idempotents my,(\;) = (E;)., are called crossed uv-local multiplicities.
In particular, when u = v, m,(\;) = my,(A;) are the local multiplicities of vertex w. o

(15.06) Lemma
Let m, (N\;) be u-local multiplicity of A; and mu,(N;) be uwv-local multiplicities. Then

(i) ( Ak Z MNemo(Ni) (the number of closed walks of length k going through vertex u,

can be computed m a similar way as the whole number of such rooted walks in T" is computed
by using the “global” multiplicities);



126CHAPTER III. CHARACTERIZATION OF DRG WHICH INVOLVE THE SPECTRUM

d
(i1) Zmu()\i) =1 (for each vertex u, the u-local multiplicities of all the eigenvalues add
i=0
up to 1);
(1i1) Zmu()\i) =m; fori=0,1,...,d (the multiplicity of each eigenvalue \; is the sum,

ueV
extended to all vertices, of its local multiplicities).

Proof: From Proposition 5.02(i7i) we have

d

1=0

and result for (i) follow.
From (iv) of the same proposition we have

and result for (iz) follow.
From Proposition 4.06 we have

trace(E;) =m(\;) (i=0,1,...,d)
and the result for (iii) follow. O

Using the local multiplicities as the values of the weight function, we can now define the
(u-)local scalar product and (u-local) predistance polynomials.

(15.07) Definition ((u-)local scalar product, (u-local) predistance polynomials)
Let I' = (V, E) be a simple connected graph with |V| = n and with spectrum
spec(I") = spec(A) = {A\"°, AT, ..., Ay }. We define the (u-)local scalar product

(P @)u = (P(A)q(A))uu = Zmu(&)p(&)q(&)-

with normalized weight function p; := m,(\;), 0 < i < d, since Z?:o pi = 1. Associated to this
product, we define a new orthogonal sequence of polynomials {p}}o<r<a, (where d, is the
number of eigenvalues \; # A\ such that m,(\;) # 0) with dgrp} = k, called the

(u-local) predistance polynomials normalized in such a way that ||p%||2 = p¥()o). o

(15.08) Lemma
The scalar product defined in Definition 11.07

d
(p.0) = trace(p(A)a(A)) = = > mip(A)a(n)
k=0

T
1s simply the average, over all vertices, of the local scalar products

(p.q) = % > @)

ueV
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Proof: We have
%Z(p, Qu = %((}% Ou+ P @)v+ -+ (p.q):) =

ueV
A d d
= — u(Ai)p(Ai)g(Ai o(A)p(Ai)a(Ai) + ... 2(A)p(Ai)g(Ni) | =
- (Zom (Aa)p(Ad)a( )+;m (Ao)p(Ai)a(Xi) + +;m (Aa)p(Ad)a( ))
1
== D (mau(N) + my(A) + -+ ma(A))p(A)g(N) =
=0
1< 1<
= Z (Z mu()‘i)> p(Ai)a(Xi) = " Zmip(Ai>Q<>‘i> = (p,q)-
=0 \ueV =0
=trace(E;)=m(\;)
m
(15.09) Observation
Because of Proposition 13.06 (u-local) predistance polynomials, satisfying the same
properties as the predistance polynomials. For instance,
(P, DY )w = Oapit(No). O

Before presenting the main property of these polynomials, we need to introduce a little
more notation. Let Ni(u) be the set of vertices that are at distance not greater than k from wu,
the so-called k-neighborhood of u (that is Ny (u) = To(u) UT (u) U ... UTk(u) =
= {v:9(u,v) < k}). For any vertex subset U, let pU be the characteristic vector of U; that is
pU =3 e, (mapping p we had define in Definition 8.03).

(15.10) Lemma
Let Ni(u) be k-neighborhood of vertex u and let pU be the characteristic vector of U. Then
(i) pNi(u) is just the u column (or row) of the sum matrix [ + A+ ... + Ay;

(it) loNe(W)[|* = si(u) == [Ny (u)].

Proof: (i) It is not hard to see that pU'o(u) = >, cr (€0 = (Dsu, pL1(w) = 32, ., €0 = (A)sa,
pla(u) = ZUEFQ(U) e, = (A2)suy vy pLr(u) = EveFk(u) e, = (Ag)+u, and the result follow.
(i4) pNe(w)|* = (pNi(w), pN(0) = (I + At .+ AT, (I + At o+ Ay)uy = [Ny(w)]. O

(15.11) Lemma
Let uw be an arbitrary vertex of a simple graph ', and let p € Ri[z]. Then
(i) there exists scalars o, v € Ny(u), such that p(A)e, = 3 ey, () Cw€o;

(i) [plle = lIp(A)ew]l

Proof: Just this time elements of p(A) we will denote by s11, $12, ..., Sp, that is

S11 S12 ... Sin S1u

S91 S92 ... 89 52
p(A) = : : :n . From this it follow that p(A)e, = !

Spl1 Sp2 .-+ Snpn Snu

(i) By Lemma 3.01, (u, v)-entry of the matrix A’ is the number of walks of length ¢ joining
u to v, and because of this, if v is vertex such that d(u,v) > k we have (p(A)e,), = 0. The
result follows.
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(7i) We have

S1u S1u S1u

Sou, Sou S2u
||p(A)CU||2 = <p(A)euap(A)eu> = < . ) . > = (Slu’ S2u; "'78nU>T . =

Snu Snu Snu

= (p(A)p(A))uu = [|Pl|-

(15.12) Lemma
Let u be a fived vertex of a reqular graph U'. Then, for any polynomial q € Ry[z],

q(A
D) < o (w)]
4]l
and equality holds if and only if
1 1
T d(A)ey = 7——rpNi(u),
lallu N3 ()|

where Ni(u) is k-neighborhood of vertex u (Ng(u) = {v: d(u,v) < k}).

Proof: Let q € Ry[z] and if we set p = i~ we have [|p[|, = 1. By Lemma 15.11(i) there
exists scalars o, j € Ni(u), such that p(A)e, = ZjENk(u) aje;. Then

L=lpll% = Ip(A)eull; = (p(A)ew p(Ae) = ( Y ajej, Y ae)= Y o
JENL(u) vEN (u) JENL(u)
that is ey, () oF = 1. Next, we want to make projection of p(A)e, = > jeN, (u) ©j€j onto

ker(A — A\oI). By Proposition 2.15, (Ao, J) is an eigenpair, so if we use Proposition 15.04 we get

plAes = pA) (3 + 20 = <p(A)] + ()= = Zp(a)] + ()2,

and

Z aje; = Z a](quLz] Z a;j + Z a;z;.

JENL(u) JENL(u) JENk u) JEN (u)

Thus, projecting onto ker(A — \gI) we get
1
Z a;  whence Z a;.
]ENk u) ]ENk )

With Ny = {j1, 2, ..., js } notice that problem of maximize value p(\g), is equivalent to the
following constrained optimization problem:

e maximize f(ji,J2, - Js) = D_jen, u) Y

e subject to ZjENk(u) a? =1.

The absolute maximum turns out to be , /> ]GNk(u) 1 = /|Ng(u)| = ||pNe(u)||, and it is
attained at a; =
N> JeNk(u)l \/|Nk (u)] \/Sku
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If we set a; = \/ﬁ in equation p(A)e, = ey, ) @j€; we get

A 1 emma 1
CI( )Cu _ ejL 15.10 N ka(u)
]l iev Vsk(u) [Nk (u)

and the result follows. O

(15.13) Lemma

Let {p}Yo<r<a, be sequence of (u-local) predistance polynomials, let g :== S r_,p and let
sk(u) := | Ng(uw)|. Then

(i) g (M) = llgll%:

(11) qi(No) = sk(u) if and only if ¢ (A)e, = pNi(u).

Proof: (i) We have

k 2

> o

h=0

= llaklls

u

def {p®} {p¥} orthog.
i (Mo) = th Ao) : ZH il ==

A
(77) By Lemma 15.12, for arbitrary ¢ € Ri[z| we have 4(%o) = ||pNk(u)|| if and only if

gl

1 1
——q(A)e, = —————pNi(u). If we ¢ replace by ¢} we get
]l Nk (u)| *
a (o) , 1 1
= [lpNe(w)|| - iff g (A)ew = P Ni(u).
gkl gl ™ Nk ()]

Since ¢¥(Ao) = [|g¥||> we have ||¢¥|l. = ||oNk(u)|| and from this it follow
g (M) = llaplls iff  gi(A)es = pNi(u)

thus
a1 (M) = si(u) iff  gy(A)e, = pNi(u)

(15.14) Proposition

Let ' denote a simple connected graph with predistance polynomials {px}o<k<a- If I is
distance-reqular then pp(A) = Ay for any 0 < k < d (predistance polynomials are, in this case,
distance polynomials).

Proof: Since I is distance-regular we have d = D (Corollary 8.10) and there exists
polynomials 7, of degree k, 0 < k < D, such that Ay = r,(A) (Proposition 8.05). Polynomials
1 are distance polynomials of regular graph, and they are orthogonal (Proposition 10.07). By
Problem 14.16, R;[z] N R;_1[z]* has dimension 1 and since py, rj, € Ry[x] and

Pr, Tk € Ry_q[2]h it follow py, 7 € Ry[z] N Ry 1 [z]t, that is 3¢, such that r, = &py. for every
k=0,1,..,d. We know that ||¢||* = r:(Xo) and ||px||* = pr(No) so

Ellpll* = lIrll* = re(Xo) = &xpr(No) = &ellpxl®

and we may conclude & = 1. Therefore {ps }o<k<q are distance polynomials. O



130CHAPTER III. CHARACTERIZATION OF DRG WHICH INVOLVE THE SPECTRUM

(15.15) Theorem (characterization J)
A regular graph T' with n vertices and predistance polynomials {pg fo<k<a s
distance-regular if and only if

@ (No) = —— 0<k<d),

T
Zuevm
where qx = po + ... + Pr, sk(w) = |Np(u)| = [To(uw)| + |T1(u)| + ... + [Tr(u)].

Proof: (=) Assume that I' is distance-regular. Then predistance polynomials {px to<k<a are
in fact distance polynomials (Proposition 15.14) and by Proposition 10.07 we have

|pnll? = |Th(u)|. Now, the number of vertices at distance not greater than k from any given
vertex u is a constant since

k

si(w) =Y ITu(w) =Y pa(ro) = a(Xo).

h=0

We have
11
se(u)  qe(Xo)

that is

and the result follows.

(<) In order to show that the converse also holds, let I' be a regular graph with
predistance polynomials {py }o<k<a, and consider, for some fixed k, the sum polynomial
qr = ZLO pr, which also satisfies qz(\o) = ||gx||*>. Then, by Lemma 15.12, we have

4k (X0)/ gk llu < [[oNi(w)ll, or

ol L
0P = ToN@P ~ s V)

Then, by adding over all vertices we get

n

1 1 n
< 2 - 2 ,
2w S oo Z lawlls = o llaell = 55

ueV

where we have used relationship (p, q) = %Zue‘/(p, ¢)w from Lemma 15.08 between the scalar
products involved. Thus, we conclude that g;(\g) never exceeds the harmonic mean of the
numbers s (u):

n
ZUGV ]‘/Sk(u) .
llg 12 1

What is more, equality can only hold if and only if inequality 200 = 5 above, is also
equality, that is (Lemma 15.12)

qr(Ao) <

= [|pNp(v)| <= ——q(Ae,=——pNi(u) =
Taell, — NPNk(w)] ol e = DR

laelle
— Ae, = 0 _HN, (u).

But for (u-local) predistance polynomials we have (Lemma 15.13(7))
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u u u n
e, = pNitn) (= ai0n) = nln) = a0~ e ).
and, hence, g, = a,q} for every vertex u € V and some constants «,,. Let us see that all these
constants are equal to 1. Let u,v be two adjacent vertices and assume k£ > 1. Using the
second equality in Lemma 15.13(¢7) we have that
(¢ (A))uw = (g} (A)en)y = (pPNg(u))y = (I + A+ ... + Ag)uo = 1 that is
(¢ (A))uw = (g7 (A))pu = 1, and, therefore, (since gx = ,q}')

L (A = L (e(A)) =1

Oy Oy

Hence o, = «, and, since I' is supposed to be connected, g, = g}’ for some constant o and
any vertex u. Moreover, using these equalities and Lemma 15.08,

- @k(ho) = —ar(Mo) D= gt () =D llgrlli = pe) > sl =

ueV ueV ueV ueV

1 n n
a2 Z(CM,QHU = ?H%Hz = ?CII@()\O),

ueV

whence o = 1 and ¢ = ¢} for any u € V. Consequently, by Lemma 15.13(i7),
qr(A)e, = pNi(u) for every vertex u € V. Since pNi(u) is the uth column of the sum matrix
I+A+ ..+ A we have

Then, if we assume that " has d + 1 eigenvalues and the above holds for any 1 < k < d (the
case k = 0 being trivial since gy = po = 1), we have that py(A) = qx(A) — qx—1(A) = Ay, for
any 1 < k < d and, by Theorem 10.08 (characterization D), I' is a distance-regular graph. [J

Alternatively, considering the "base vertices” one by one, we may give a characterization
which does not use the sum polynomials g, or the harmonic means of the si(u)’s:

(15.16) Theorem (characterization K)
A graph T = (V, E) with predistance polynomials {px }o<k<a is distance-reqular if and only
if the number of vertices at distance k from every vertex uw € V is

Pe(Xo) = [Tr(u)] (0 <k <d).

Proof: (<) If pr(No) = |I'x(u)| holds for every 0 < k < d, we have
q(A0) = Po(Ao) +p1(Ao) + .+ pe(Xo) = [To(w)| + [T1(w)] + ... + [T(u)] = si(u) for every
vertex u, so
1 1 1 n
pu— é -
se(w)  gr(Xo) Z se(w)  gr(Ao)

ueV

and Theorem 15.15 (characterization J) trivially applies.

Notice also that, in this case, we do not need to assume the regularity of the graph, since
it is guaranteed by considering k = 1 in pg(Ng) = |Tk(u)|: 04 = |T1(w)| = p1(Xo) for any v € V'
(Whence p1(>\0) = )\0)

(=) If T is distance-regular then predistance polynomial {py }o<r<a are in fact distance
polynomials (Proposition 15.14), and from this it follow that pg(Ag) = |I'k(u)| for 0 < k <d
(Proposition 10.07). O
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But, once more, not all the conditions in Characterization J or Characterization K are
necessary to ensure distance-regularity. In fact, if the graph is regular (which guarantees the
case k = 1 since then p; = x), only the case k = d — 1 matters. First we need Lemma 15.17
and Lemma 15.18.

(15.17) Lemma
Let ' = (V, E) be simple connected graph with predistance polynomials {px }o<k<a and
spectrum spec(I") = {AJ", A", ..., A"}, Then

. | Popa(Ao) 1
i) m(\) YN (0<i<a),
(ii) pa(Ao) = <J¥O m()\])wf) ’

Proof: Let us consider polynomials Z* =[] (x — X)), ¢ <i<dso that

j=1j#i
d
Z:o) =[] (o—=X) == A)(No—A2)-(ho = Xi)..(Xo — Aa) =
j=1j#i

(Mo = Ao = Aa)o o = Ao — M) o
Mo — N "o -\

—

where (x — \;) denotes that this factor is not present in the product, and

d
Zr) =TT o=X) == M)A = X)X = X)oee(Xi = M) =
j=1j#i

(N — A0) i — A1) (Ao = A2) oo — A eee Oy — M) &;

Ai — Ao N — Ao
Hence, since dgr ZF =d — 1
d
0= (pa Z7) = Y m(N)pa(X) Z; (A;) = m(Ao)pa(ho) Z; (No) + m(N)pa(\) Z; (Ai) =
=0

o pa(Xo)do  pa(Ni)di
IS W v

(Ai)

and first result follows.

In order to prove (i7), we use the property ps(Ao) = ||pa4l|* and the fact that, from (i),
$opa(Ao) :
N = 2PAR0) < g We b
pa(Ai) - i e have
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1
Ipall* = (pa,pa) = - > m\)pa(h)?,
=0
d 2 d
1 ®opa )) 2 ¢(%
== m(A = —pa(Mo) ;
n ; ((bjm()‘j) Zo (b?m()‘J)
d
n = pa(Ao) Z mO\ j ‘
J=0 J
which yields (7). O
(15.18) Lemma
For a regular graph T with n vertices and spectrum spec(I') = {Ag", A\|", ..., \j"“} we have

v n— kq(u d n
2uev 1/ ( Z

= i) = =1
> e Falu >/<n—kd m( 3 D DI

where kq(u) = [Ta(uw)|, g = po + ... + pr, sk(u) = | Ni(u)].
Proof: Since qg = Y0 p; = Hy= 2~ HZ ((x — X;) (Proposition 13.06, I' is regular, so
go = %), we have gq_1(Xo) = qd()\o) pd()\o) =n — pa(No). By Lemma 15.17(4i) the value of

-1
pa(Xo) is n (Z;l:o m&f’)wf_> . Notice equivalence that follow

n n n
Qd71(>\0) = Z—l < n— pd(Ao) = 2—1 <~ n-— 2—1 = pd(>\0)
ueV sq_1(u) ueV sy_1(u) ueV sy_1(u)
ZUEV s " w) n ZUEV s " w) ZUGV 1
Z d—l( 1) — pd()\[)) N Zal—l( ) T — pd()\O)
ueV sq_1(u) ueV sq_1(u)
_ -1
ZuGV - ;d;(l()U) ( d ) ZuEV I7‘l d 7T2
sa—1(u )\0 —n Z PN n—|Ca(uw)| _ Z 0
1 T'y(u N2
ZueV sq—1(u) §=0 m ZuEV n|—\%(d()11)\ §=0 m(/\ﬂ)ﬁj
and the result follow. O

(15.19) Theorem (characterization J”)
A regular graph T with n vertices and spectrum spec(T) = {A7'O) AT AmOaly g
distance-regular if and only if

Douey n/(n—ka(uw)) d 2
o bal) 1= Katu) ~ 2 O

d
where T, = [ (A — Ai) and kq(u) = [Tg(u)].

i=0
i#h

Proof: 1If qi(\) = is satisfied for k = d — 1, we infer that ¢;_1(A) = ZZ:O A,

n
ZuEV ﬁ(u)
(from prove of Theorem 15.15 (characterlzatlon J)) and so

pa(A) =H(A) —qs1(A)=J — Z ' A; = Ay, where H is the Hoffman polynomial. Thus,

from Theorem 11.15 (characterlzatlon D’), the result follow. ]
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(15.20) Theorem (characterization K”)
A regular graph T' = (V, E') with n vertices and spectrum spec(I') = {)\gl()“)), ey )\ZL(A"Z)} is
distance-reqular if and only if the number of vertices at (spectrally maximum) distance d from

each vertex u € V 1is
d 2 -1
k — 0
a(u) =n (Z:; _m(Ai)W2>
d

where T, = H()\h — i) and kq(u) = [Ty(u)].

iZh
Proof: We will left this proof like intersting exercise (challenge). Proof can be found in [20]
Theorem 4.4. O

Theorem 15.20 was proved by Fiol and Garriga [20], generalizing some previous results.
Finally, notice that, since Ay = px(A) implies kp,(u) = pn(Ag) for every u € V' - see Proposition
10.07 - both characterizations (D’) and (K’) are closely related.



Conclusion

Algebraic graph theory is a branch of mathematics in which algebraic methods are applied
to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic
approaches. There are several branches of algebraic graph theory, involving the use of linear
algebra, the use of group theory, and the study of graph invariants.

In this thesis we had try to show this connection with linear algebra. We had shown how
from given graph obtain adjacency matrices, principal idempotent matrices, distance matrices
and predistance polynomials. There are many questions that raise from this, as example:
what are the connections between the spectra of these matrices and the properties of the
graphs, what we can say about graph from its distance matrices, are there some connection
between orthogonal polynomials and properties of the graphs. This question we had tried to
answer in Chapter II and III, in case when we have distance-regular graphs.

Further study that would be interesting to explore is use some of this results and make
connection with group theory, or to be more precisely with Coding theory (Coding theory is
the study of the properties of codes and their fitness for a specific application. Codes are used
for data compression, cryptography, error-correction and more recently also for network
coding). If we have some distance-regular graph is it possible to make some code that would
be, for example, efficient and reliable for data transmission methods.
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p(A), 9 function
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F(A), 21 Gram-Schmidt sequence, 98
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ki, 38 k-regular, 7
ma(\i), 125 connected, 8
M (N), 125 distance-polynomial, 64
si(u), 127 distance-regular, 35
weo v T distance-regular around y, 39
’ generalized Petersen graph, 63
algebra Hamming, 55
. Johnson, 59
adjacency, 24
Bose-Mesner, 24 path, 74
regular, 7

distance o-algebra, 47

algebra over F, 47 vertex-transitive, 57

algebraic Hoffman polynomial, 32
multiplicity, 10

antipodal point, 114 ideal

automorphism two-sided, 92
of I', 57 inner product, 66
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inner-product

space, 66
intersection

array, 50

array around vertex y, 39

numbers around y, 39
intersection

numbers, 40
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graphs, 57

of two graphs, 57

Lagrange interpolation polynomial, 76
local multiplicities, 125

matrix
adjacency, 8
distance-i, 43
irreducible, 10
reducible, 10

mesh of real numbers, 92

multiplicity
algebraic, 16
geometric, 16

neighbors, 7

orthogonal
complement, 112
projection, 77, 112, 123
projector, 77
system, 100

path, 8

cycle, 8

simple, 8

uv-path, 8
path graph, 74
point

antipodal, 114

fixed, 57
polynomial

Lagrange interpolation, 76, 96
polynomials

(u-local) predistance, 126

predistance, 78
predistance polynomials, 78
principal

idempotents, 22
projection, 76, 122
projector, 77, 122

scalar product

INDEX

associated to (M, g), 94
u-local, 126
similar
matrices, 28
vertices, 57
simple eigenvalue, 10
spectral radius, 9
spectrum, 9
subspaces
complementary, 76, 112, 122
symmetric permutation, 10
System
orthogonal, 100

trace, 9

u-local predistance polynomials, 126
u-local scalar product, 126

vector space, 93
vertex
degree, 7
eccentricity, 9
valency, 7
vertices
adjacent, 7
distance, 9
internal, 8

walk, 8
between, 8
closed, 8
length, 8
of length n, 8
weight function, 94



Bibliography

1]
2]
3]
[4]

[5]

[6]

[11]

[12]

M. Artin: "Algebra”, Prentice Hall, 1991.

S. Axler: “Linear Algebra Done Right”, 2nd Edition., Springer, 2004

G. Bachman, L. Narici, E. Beckenstein: “Fourier and Wavelet Analysis”, Springer, 2000.
N. Biggs: "Algebraic Graph Theory”, Cambridge tracts in Mathematics, 1974.

G. Birkhoft, S. M. Lane: "A Survey of Modern Algebra”, MacmfHan Publishing, 4th
edition, 1977.

R. E. Blahut: "Algebraic Codes for Data Transmission”, Cambridge University Press,
2003

J. G. Broida, S. G. Williamson: “Comprehensive Introduction to Linear Algebra”,
Creative Commons, 2012.

A. E. Brouwer, A. M. Cohen, A. Neumaier: "Distance-Reqular Graphs”, Springer-Verlag,
1989.

M. Camara, J. Fabrega, M. A. Fiol, E. Garriga: “Some Families of Orthogonal
Polynomials of a Discrete Variable and their Applications to Graphs and Codes”, The
electronic journal of combinatorics 16 (#R83), 2009

S. Canez: “Notes on dual spaces”, Lecture notes from Math 110 - Linear Algebra
download from
http://math.berkeley.edu/~scanez/courses/math110/Home/Home._files/dual-spaces.pdf

W. Chen: Lecture notes from Linear algebra download from
http://rutherglen.science.mq.edu.au/wchen /Inlafolder /Inla.html

C. Dalfo, E. R. van Dam, M. A. Fiol, E. Garriga, B. L. Gorissen: “On Almost
Distance-Regular Graphs”, Journal of Combinatorial Theory, Series A 118, 1094-1113,
2011.

E. R. van Dam: “The spectral excess theorem for distance-regular graphs: a global
(over)view”, The electronic journal of combinatorics 15 (#R129), 2008

L. Debnath, P. Mikusinski: “Hilbert Spaces with Applications”, Elsevier Academic Press,
2005.

R. Diestel: "Graph Theory”, Springer, 4th Electronic Edition, 2010.
H. Dym: 7Linear Algebra in Action”, American Mathematical Society, 2000.

D. S. Dummit, R. M. Foote: "Abstract Algebra”, John Wiley & Sons Inc, third edition,
2004.

139



140

[18]

[19]

[20]

[21]

[39]

BIBLIOGRAPHY

D. S. Jackson: "Fourier series and orthogonal polynomials”, The mathematical
association of America, third impression, 1948.

M. A. Fiol, E. Garriga, J.L.A. Yebra: "Locally pseudo-distance-regular graphs”, J.Combin.
Theory Ser. B68 (1996), 179-205.

M. A. Fiol, E. Garriga: "From Local Adjacency Polynomials to Locally
Pseudo-Distance-Reqular Graphs”, Journal of Combinatorial Theory, Series B 71,
162-183., (1997)

M. A. Fiol, S. Gago, E. Garriga: A New Approach to the Spectral Excess Theorem for
Distance-Regular Graphs”, Linear Algebra and its Applications, 2009.

M. A. Fiol: "On pseudo-distance-reqularity”, Linear Algebra Appl. 323 (2001) 145-165.

M. A. Fiol: "Algebraic characterizations of distance-reqular graphs”, Discrete
Mathematics 246(1-3), page 111-129, 2002.

M. A. Fiol: "Algebraic characterizations of bipartite distance-reqular graphs” 3rd
International Workshop on Optimal Networks Topologies, IWONT 2010

C. Godsil, G. Royle: "Algebraic Graph Theory”, Springer, 2001.
C. D. Godsil: "Algebraic Combinatorics”, Chapman Hall, 1993.

B. L. Gorissen: "Almost distance-reqular graphs (master thesis)”, Tilburg University,
2009.

J. I. Hall: "Polynomial Algebra over Fields”, lecture notes downloaded from
http://www.mth.msu.edu/~jhall/classes/codenotes/PolyAlg.pdf

F. Harary: "Graph Theory”, Addison-Wesley Publishing Company, 1969.
. Hewitt, K. Stromberg: "Real and Abstract Analysis”, Springer-Verlag, 1975.
. J. Hoffman: "On the polynomial of a graph”, Amer. Math. Monthly 70 (1963), 30-36.
. A. Horn, C.R. Johnson: "Matriz analysis”, Cambridge University Press, 1990.

E
A
R
T. W. Judson: “Abstract Algebra: Theory and Applications”, Thomas W. Judson, 1997.
A. D. Keedwell: “Surveys in combinatorics”, Cambridge University Press, 1991.

D

. L. Kreher and D. R. Stinson: “Combinatorial Algorithms: Generation, Enumeration,
and Search”, CRC Press, 1999.

J. L. Massey: "Applied Digital Information Theory II”, Lecture Notes, script was used for
a lecture hold by prof. dr. James L. Massey from 1981 until 1997 at the ETH Zurich.
downloaded from http://www.isiweb.ee.ethz.ch /archive /massey_scr/

C. D. Meyer: "Matrixz analysis and applied linear algebra”, SIAM, 2000.

S. Miklavi¢: Part of Lectures from "PhD Course Algebraic Combinatorics, Computability
and Complexity” in TEMPUS project SEE Doctoral Studies in Mathematical Sciences,
2011

L. Mirsky: "An introduction to linear algebra”, Oxford University Press, 1955.



BIBLIOGRAPHY 141

[40]
[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

P. J. Olver and C. Shakiban: “Applied linear algebra”, Pearson Prentice Hall, 2006.

A. C. Paauwe: "Distance-Regular Graphs (Simply Ezplained)”, 2007, downloaded from
http://buzzard.ups.edu/courses/2007spring/projects/paauwe-paper-revised. pdf

V. Peri¢: "Algebra I (prsteni i moduli, linearna algebra)”, Svijetlost, 1987.

V. V. Prasolov: "Problems and theorems in Linear Algebra”, American Mathematical
Society, 2000

I. K. Rana: "From geometry to algebra - An introduction to linear algebra”, downloaded
from www.mathresource.iitb.ac.in/linear algebra/index.html

K. H. Rosen: "Discrete Mathematics and Its Applications”, McGraw-Hill, Fifth Edition,
2003.

K. A. Ross and C. R. B. Wright: “Discrete Mathematics”, Prentice Hall, Fifth Edition,
2003.

R. Ross: "A Questionable Distance-Regular Graph”, downloaded from
http://web.pdx.edu/~caughman/june6.pdf

P. M. Weichsel: "On Distance-Regularity in Graphs”, Journal of Combinatorial Theory,
Series B 32, 156-161, 1982.



