
Dodatek
MAGMA Tutorial 1 (just for fun ,)

In this tutorial you will use MAGMA to
calculate the length of vectors and the inner
products and distances between vectors. In the
course of this you will be introduced to the
following MAGMA commands:

RealField VectorSpace print

func InnerProduct Sqrt

Arccos

For our purpose, we will use MAGMA calculator
from web page:
http://magma.maths.usyd.edu.au/calc/

1. Setting up the vector space. Use MAGMA to
create a vector space V of dimension 4 over the
real numbers R. Then define two vectors
(4, 3, 2, 1)> and (1,−2, 0,−3)> named a and b.
The commands are

R := RealField();

V := VectorSpace(R,4);

a := V![4,3,2,1];

b := V![1,-2,0,-3];

Points to note:

(a) Each statement ends with a semicolon (;).
If you press return before you type ; ,
simply type it on the next line.

(b) You use := to assign values.

(c) MAGMA treats vectors as row vectors.
Also, you need to tell MAGMA which
vector space will contain the vector. This
is why you use V!before each vector. If you
had another vector space, called mySpace

and of dimension 3, then you would use
the command z:=mySpace![1,2,3] to
create the vector (1, 2, 3)> named z in the
vector space mySpace.

Solution.

> R := RealField();

> V := VectorSpace(R,4);

> a := V![4,3,2,1];

> b := V![1,-2,0,-3];

2. Displaying values. To see the value of the
quantities you have defined, you can use the
print command. For example

print a, b;

print V;

In fact the word print can be omitted if you
wish.
Solution.

> a, b;

(4 3 2 1)

( 1 -2 0 -3)

> V;

Full Vector space of degree 4 over Real Field

3. Inner products and length. You can get these
with the following commands:

InnerProduct(a,b);

Sqrt(InnerProduct(a,a));

(or print InnerProduct(a,b) and print

Sqrt(InnerProduct(a,a)))
Solution.

> print InnerProduct(a,b);

-5

> print Sqrt(InnerProduct(a,a));

5.477225575051661134569697828006

4. Angles. You should be able to find the angle
between a and b using the commands from the
previous exercise together with the Arccos

function. Try this now. You will see that this
involves quite a lot of typing and very often you
will make typing mistakes. To make things
easier, first define an abbreviation for the
Length function

Length := func< v | Sqrt(InnerProduct(v,v)) >;

and then define the Angle function as

Angle := func< u,v | Arccos(InnerProduct(u,v)

/ (Length(u)* Length(v))) >;

Now you can print the angle between a and b
using

print Angle(a,b);

(Notice that * is used for multiplication.) The
answer will be in radians.

Remark. This is just part of tutorial that we
borrowed from following web page:
http://www.maths.usyd.edu.au/u/bobh/UoS/

MATH2008/ctut01.pdf. Please visit this page for
more about this topic.
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Dodatek – MAGMA
Tutorial1 2 (just for fun -)

The purpose of this tutorial is to introduce
subspaces of vector spaces, to demonstrate how
MAGMA can be used to solve matrix equations and
how to use matrices to calculate projections and
lines of best fit. The MAGMA commands you will
learn in this tutorial are:

sub KMatrixSpace Dimension

Transpose Solution

1. In MAGMA, create the subspace of R5 spanned
by the vectors (1, 1, 0, 1, 1)>, (0, 1, 0, 1,−1)> and
(3, 1, 0, 1, 5)>. Do this by carrying out the
following steps:

(i) Define the real field R := RealField(); .

(ii) Create a vector space V of dimension 5
over R and declare the vectors above as a1,
a2 and a3. For example,
a1:=V![1,1,0,1,1];.

(iii) Create the subspace W spanned by a1, a2
and a3 using the command
W:=sub<V|a1,a2,a3>;.

(iv) Find the dimension of W. (Magma has a
function Dimension)

(v) Are the vectors a1, a2 and a3 linearly
independent?

Solution.
> R := RealField();

> V := VectorSpace(R,5);

> a1 := V![1,1,0,1,1];

> a2 := V![0,1,0,1,-1]; a3 := V![3,1,0,1,5];

> W := sub< V | a1, a2, a3 >;

> Dimension(W);

2

Since they span a two-dimensional space rather
than a three-dimensional space, a1, a2 and a3

are linearly dependent.

2. Consider the following vectors in R5:
b1 = (1, 1, 0, 1, 1)>, b2 = (0, 1, 0, 1, 0)>,
b3 = (−1, 2,−3, 4,−5)>, v = (1, 5,−4, 3, 6)>. We
wish to calculate the projection of v onto the
subspace W of R5 with basis {b1, b2, b3}. Since
MAGMA uses row vectors rather than column
vectors, we will transpose everything.

(i) We have already (in Exercise 1) created
the field R and V, a 5-dimensional space
over R. Define b_1:=V![1,1,0,1,1]; and
similarly define b_2, b_3 and v to be the
transposes of b2, b3 and v above.

(ii) Create the vector space of 3× 5 matrices
using the command
M:=KMatrixSpace(R,3,5); .

(iii) Create the matrix B with rows b>1 , b>2 and
b>3 using the command B:=M![b1,b2,b3];.
(This is the transpose of the matrix A
whose columns are b1, b2 and b3).

(iv) Print B and v to check that you have
entered everything correctly, and then
define A:=Transpose(B);.

(v) According to the theory, the projection of
v onto W is the vector Ax, where
A>Ax = A>v. Taking transposes this
equation becomes x>A>A = v>A, since
transposing reverses multiplication. We
can obtain the vector x> via the command
x:=Solution(B*A,v*A);. (Explanation: if
M is a matrix and b a (row) vector then
Solution(M,b) is a vector x that is a
solution of the matrix equation xM = b.)

(vi) The projection is p = Ax. Transposing
(remembering that B = A> and that the
vector x that MAGMA has found is actually
x>), we see that x*B; will print out the
row vector that is the transpose of p.

Solution.

> b1 := V![1,1,0,1,1]; b2 := V![0,1,0,1,0];

> b3 := V![-1,2,-3,4,-5];

> M := KMatrixSpace(R,3,5);

> B := M![b1,b2,b3];

> v := V![1,5,-4,3,6]; B,v;

[1 1 0 1 1] [0 1 0 1 0]

[-1 2 -3 4 -5] (1 5 -4 3 6)

> A := Transpose(B);

> x := Solution( B*A,v*A ); x;

(7/2 1/2 0)

> x * B;

(7/2 4 0 4 7/2)

1This is just part of tutorial that we borrowed from following web page: http://www.maths.usyd.edu.au/u/bobh/
UoS/MATH2008/ctut02.pdf. Please visit this page for more about this topic.
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Dodatek – MAGMA Tutorial 3 (just for fun ,)

This tutorial is about the vector space of
polynomials over R. There is one new MAGMA
command you will need to use
(PolynomialAlgebra).

Remember that all MAGMA commands end
with a semicolon (;) (which can go on the next
line, if necessary). You should frequently get
MAGMA to print the values of the variables you
are working with, to see the results of your
actions. (e.g. if you define a subspace by a
command like

SS := sub< V | u, v >;

then you should type SS; (or print SS;)to find
out what MAGMA thinks SS is. To see what
variables the MAGMA system has defined, type
ShowIdentifiers();.

1. Use MAGMA to add and multiply the
polynomials f(x) = x7 − 5x4 + 2x− 1 and
g(x) = 3x3 − 2x2 + x− 1. To get started type

R := RealField();

P<x> := PolynomialAlgebra(R);

(Now MAGMA knows that P is the set of all
polynomials in the variable x.)

(i) The next step is to enter the polynomials
themselves. That is,

f := x^7 - 5*x^4 + 2*x - 1;

g := 3*x^3 - 2*x^2 + x - 1;

(ii) Print out the values of P, f and g.

(iii) Next, print the sum and product of f and
g.

(iv) MAGMA has a function Eltseq which
returns the sequence of coefficients of a
polynomial. To see how it works, type
Eltseq(f);. Note that the constant term
comes first, then the coefficient of x1, and
so on. You can also define a polynomial by
entering its sequence of coefficients, and
“coercing” this sequence into the
polynomial algebra. Test this by typing
h:=P![-1,1,-2,3]; and then print h;.

Solution.

> R := RealField();

> P<x> := PolynomialAlgebra(R);

> f := x^7 - 5*x^4 + 2*x - 1;

> g := 3*x^3 - 2*x^2 + x - 1;

> P,f,g;

Univariate Polynomial Ring in x

over Real Field

x^7 - 5*x^4 + 2*x - 1

3*x^3 - 2*x^2 + x - 1

> f+g, f*g;

x^7 - 5*x^4 + 3*x^3 - 2*x^2 + 3*x - 2

3*x^10 - 2*x^9 + x^8 - 16*x^7 + 10*x^6

- 5*x^5 + 11*x^4 - 7*x^3 + 4*x^2 - 3*x + 1

> Eltseq(f);

[ -1, 2, 0, 0, -5, 0, 0, 1 ]

> h:=P![-1,1,-2,3];

> h;

3*x^3 - 2*x^2 + x - 1

> h eq g;

true

2. If f(x) is a polynomial then the
mathematical notation for the number obtained
by putting x = 3 (say) is f(3). MAGMA has a
function Evaluate for this: in MAGMA, if f is a
polynomial then Evaluate(f,3) evaluates f at
x = 3. Evaluate f, g, f-g and f*g at x = 0, 1
and 10.
Solution.

> Evaluate(f,0); Evaluate(g,0);

-1

-1

> Evaluate(f+g,0); Evaluate(f*g,0);

-2

1

> Evaluate(f,1); Evaluate(g,1);

-3

1

> Evaluate(f+g,1); Evaluate(f*g,1);

-2

-3

> Evaluate(f,10); Evaluate(g,10);

9950019

2809

> Evaluate(f+g,10); Evaluate(f*g,10);

9952828

27949603371

Remark. This is just part of tutorial that we
borrowed from following web page:
http://www.maths.usyd.edu.au/u/bobh/UoS/

MATH2008/ctut04.pdf. Please visit this page for
more about this topic.

3



Dodatek – MAGMA Tutorial2 4 (just for fun -)

This week’s MAGMA tutorial explores the
symmetries of a square. Think of the vertices of
the square as occupying the positions labelled 1,
2, 3 and 4 in following diagram.

3

2 1

4

The symmetries of the square will be
represented by permutations of the set
{1, 2, 3, 4}. The reflection s in the vertical line
bisecting the square corresponds to the
permutation (1, 2)(3, 4); the reflection t in the
diagonal from 2 to 4 corresponds to (1, 3). (Note
that the numbers label positions on the paper,
and do not move. Think of (1, 3) as saying
“move the contents of Location 1 to Location 3,
and the contents of Location 3 to Location 1”.)

Our first aim is to find out how many
symmetries can be constructed just from s and t
alone. We can do this by computing things like
st, ts, s2, t2, (st)s, and so on, until we find that
we do not get anything new by multiplying
together any of the permutations we have
already obtained.

In addition to using MAGMA throughout this
tutorial you will need to write notes on paper to
keep track of the various permutations that
arise.

1. The collection of all permutations of
{1, 2, 3, 4} is a group, called the symmetric group
Sym(4). Let us call it S for short: S:=Sym(4);.
The number of elements in a group is called the
order of the group. Find order of S. (MAGMA
denotes it by #S.)

Solution.

> S := Sym(4);

> print #S;

24

2. Next, tell MAGMA about the permutations
s and t described above:

s := S!(1,2)(3,4);

t := S!(1,3);

Get MAGMA to print these out, to check that
you have typed them correctly.

3. Print out various products such as st, ts, s2,
sts, tst and so on. Do pen and paper
calculations for at least some of these, and check
that you get the same answer as MAGMA. Also,
keep track of the different permutations you
have created.

Solution.

> s := S!(1,2)(3,4);

> t := S!(1,3);

> s*s, s*t, t*s, t*t;

Id(S)

(1, 2, 3, 4)

(1, 4, 3, 2)

Id(S)

Because s2 = id and t2 = id, we need only
consider products in which s and t alternate:
consecutive s’s or t’s cancel out.

Remark. Note that in product st MAGMA
first compute s, and after that t. How is this
different from our initial settings?

> s*t*s, t*s*t, s*t*s*t, t*s*t*s;

(2, 3)

(1, 3)(2, 4)

(1, 4)(2, 3)

(1, 4)(2, 3)

Because stst = tsts, any alternating product of
length greater than 4 equals a product with two
consecutive s’s or t’s, and hence equals
something shorter. For example,
ststs = (stst)s = (tsts)s = (tst)s2 = tst. So in
fact the only permutations you can get from s
and t are id, s, t, st, ts, sts, tst and stst.

4. For each of the permutations you have just
created, describe them as symmetries of the
square. That is, are they rotations, reflections or
something else?

5. Has the identity element occurred in your list
yet? Keep going until it does.

6. Have you come across the inverse of st? How
would you recognize it?

2http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut05.pdf
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Dodatek – MAGMA
Tutorial3 5 (just for fun ,)

We will continue to explore the symmetries of a
square, from last time.

Let X be a set of permutations. We say that X
is closed under multiplication if it has the
property that the product of any two
permutations in X is also in X.

Closure: for all pairs (x, y) such that x, y ∈ X,
we have xy ∈ X.

(Note that if this property is not satisfied then
permutation multiplication does not give us a
binary operation on X, since the definition of
the term “binary operation” requires that each
pair of elements of X gives rise to an element of
X. So if X is to form a group under
permutation multiplication, it must be closed.)

1. Recall that we are trying to find the smallest
set that contains s and t and is closed under
multiplication. Start by defining X to be the set
containing just s and t:

> S := Sym(4); s := S!(1,2)(3,4);

> t := S!(1,3); X := {s,t};

Print X, to see how MAGMA describes it. Next,
use the command

print forall{ <x,y> : x in X, y in X

| x*y in X };

MAGMA will print true if it is true for all
ordered pairs (x, y) with x, y in X that xy is in
X, otherwise it will print false.

2. Experiment with various other sets, such as
X1 := {s, t, st, ts} and see if you can find one
that contains s and t and is closed. For example,
if X1 is not closed, try adding an extra element,
such as sts, and then testing it again. If it is still
not closed, add another, and so on.

Solution.

> X := {s,t};

> forall { < x,y> : x in X, y in X

| x*y in X };

false

> X1 := {s,t,s*t,t*s};

> forall { < x,y> : x in X, y in X1

| x*y in X };

false

> X2 := {id(S),s,t,s*t,t*s};

> forall { < x,y> : x in X, y in X2 | x*y in X };

false

> X3 := {id(S),s,t,s*t,t*s,s*t*s,t*s*t,s*t*s*t};

> forall { < x,y> : x in X, y in X3 | x*y in X };

true

Of course, it is clear that we could not hope to get a
multiplicatively closed set containing s and t
without including at least all of the eight elements
listed in the solution to Question 4 (from last time),
since these can all be expressed in terms of s and t.
It is nice to have MAGMA’s confirmation that these
eight elements do form a closed set.

3. Another way to test whether a set such as X is
closed is to form the set of all products of pairs of
elements of X and test whether it is a subset of X.

Y := { x*y : x,y in X };

print Y; print Y subset X;

4. Notice that Y does not contain s and t. So form
the union (also called “join”) of X and Y via the
command Z := X join Y; and then see whether Z is
closed. If it is not, form the join of Z with the set of
all products of pairs of elements of Z, and see if
that is closed. If not, repeat the process. Will you
eventually get to a closed set like this? Try it and
see!

Solution.
This must eventually give you a closed set. There
are only 24 permutations of {1, 2, 3, 4} altogether
(see Question 1 from last tutorial), and so the sets
cannot go on getting bigger indefinitely. When you
reach a situation where

ZZ join {x*y : x in ZZ, y in ZZ}

is no bigger than ZZ then the set ZZ must be
closed.

> Y:={ x*y : x,y in X};

> Y subset X;

false

> Z:= X join Y;

> {x*y : x,y in Z} subset Z;

false

> Z:= Z join {x*y : x,y in Z};

> {x*y : x,y in Z} subset Z;

true

> Z;

{(1, 3)(2, 4), Id(S), (1, 2, 3, 4),

(1, 4, 3, 2), (2, 4), (1, 3),

(1, 4)(2, 3), (1, 2)(3, 4)}

3http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut05.pdf
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Dodatek – MAGMA
Tutorial4 6 (just for fun -)

This week’s tutorial explores the idea of the
order of an element and how that relates to the
size of the subgroup it generates.

Remember that to print out the value of a
variable x you use the command print x;, or
simply x;. You should do this rather often.

1.(i) Start MAGMA, and enter the five
permutations below as elements of the
symmetric group Sym(6) (calling them a,
b, c, d and e respectively): (1, 2)(3, 4),
(1, 2, 3), (1, 2, 3, 4)(5, 6), (1, 2, 3, 4, 5, 6),
(1, 2, 3)(4, 5). (To get started, use
G:=Sym(6); a:=G!(1,2)(3,4);.)

(ii) For each of the elements x in (i), find all of
its powers x, x2, x3, x4, and so on. (Note
that you can stop when you get the
identity element, since after that the
powers will repeat.)

(iii) For each of the elements x in (i) find all of
its powers x−1, x−2, x−3, x−4, and so on.

(iv) What do you think that x0 should be? See
if MAGMA agrees.

(v) The order of x is the least positive integer
n such that xn is the identity. (This is
another usage of the word “orde”: recall
that the number of elements in a group is
called the order of the group.) What is the
order of each of the elements of (i)? Do
this by using your results from (ii), and
then check your answers using the
MAGMA function Order. (You can type
Order(a); to get the order of a.)

(vi) The subgroup generated by a single
element x is the set of all of its powers
(positive, negative and zero). If G is a
group and x an element of G then the
MAGMA command H:=sub<G|x>;

constructs the subgroup of G generated by
x. The order of H is given by #H. Use this
to print the orders of the subgroups
generated by the elements listed in (i).

Solution.

> S:=Sym(6); a:=S!(1,2)(3,4);

> b:=S!(1,2,3); c:=S!(1,2,3,4)(5,6);

> d:=S!(1,2,3,4,5,6); e:=S!(1,2,3)(4,5);

> a^2; b^2; b^3; c^2; c^3; c^4;

Id(S) (1, 3, 2) Id(S) (1, 3)(2, 4)

(1, 4, 3, 2)(5, 6) Id(S)

Let’s use a “for” loop—it’s quicker:

> for i in [1..7] do d^i; end for;

(1, 2, 3, 4, 5, 6) (1, 3, 5)(2, 4, 6)

(1, 4)(2, 5)(3, 6) (1, 5, 3)(2, 6, 4)

(1, 6, 5, 4, 3, 2) Id(S)

(1, 2, 3, 4, 5, 6)

> for i in [1..7] do e^i;

> end for;

If xn is the identity, then xn−1 = x−1, and
xn−2 = (x2)−1 = x−2, and so on. So looping
through the negative powers gives the same
elements as obtained by looping through the
positive powers, but in the reverse order.

> for i in [1..7] do d^(-i);

> end for;

(1, 6, 5, 4, 3, 2) (1, 5, 3)(2, 6, 4)

(1, 4)(2, 5)(3, 6) (1, 3, 5)(2, 4, 6)

(1, 2, 3, 4, 5, 6) Id(S) (1, 6, 5, 4, 3, 2)

> for i in [1..7] do e^(-i);

> end for;

By definition, if G is a group and x ∈ G then x0

is the identity element of G.

> a^0, b^0, c^0, d^0, e^0;

Our calculations above showed that the least
positive integer n with an = id is n = 2. So the
order of a is 2. Similarly b has order 3, c has
order 4, and d and e both have order 6.

> Order(a), Order(b), Order(c),

Order(d), Order(e); 2 3 4 6 6

The order of the subgroup generated by x is the
same as the order of x, since if x has order n
then the subgroup generated by x consists of the
n elements x0 = id, x, x2, ..., xn−1.

> H:=sub< S | a >; #H; H:=sub< S | b >; #H;

> #sub< S | c>, #sub< S | d >, #sub< S | e >;

4http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut06.pdf
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Dodatek – MAGMA Tutorial5 7 (just for fun ,)

This week’s we will continue to explores the idea
of the order of an element and how that relates
to the size of the subgroup it generates.

2. If possible, find x so that x−1yx = z where:

(a) y = (1, 2)(3, 4), z = (1, 3)(2, 4).

(b) y = (1, 2, 3)(4, 5), z = (1, 2)(3, 4, 5).

(c) y = (1, 2, 3, 4), z = (1, 2)(3, 4).

The expression x−1yx occurs so frequently in
group theory that it is given a special name: it is
known as the conjugate of y by x. MAGMA has
a special abbreviation for it, namely yx.
Solution.
By the principle we have been using,
x−1(1, 2)(3, 4)x = (1x, 2x)(3x, 4x). We want this
to equal (1, 3)(2, 4). There is more than one
possible answer, but the most obvious is to put
2x = 3 and 3x = 2. So x = (2, 3) will do. For the
next part we want
(1x, 2x, 3x)(4x, 5x) = (1, 2)(3, 4, 5). If we write
this as (1x, 2x, 3x)(4x, 5x) = (3, 4, 5)(1, 2) then it
becomes clear that that there is a solution with
1x = 3, 2x = 4, 3x = 5, 4x = 1 and 5x = 2. That
is, x = (1, 3, 5, 2, 4). One can get MAGMA to
print all the solutions:

> S:=Sym(6);

> p:=S!(1,2,3)(4,5);

> q:=S!(3,4,5)(1,2);

> for x in S do

> if x^(-1)*p*x eq q then

> print x;

> end if;

> end for;

(1, 3, 5, 2, 4)

(1, 4)(2, 5)

(1, 5, 2, 3, 4)

(1, 3, 5)(2, 4)

(1, 4, 2, 5)

(1, 5)(2, 3, 4)

For the final part we require
(1x, 2x, 3x, 4x) = (1, 2)(3, 4). This is impossible
to solve, since the left hand side is a 4-cycle and
the right-hand side the product of two disjoint
2-cycles.

3. Let G be the symmetric group Sym(5).

(i) For each of the numbers n in the sequence
[1..8] find out how many elements of G
there are of order n. To get you started,
the MAGMA command

S2:={ x : x in G | Order(x) eq 2 };

will produce the set of elements of G of
order 2.

(ii) Is the set S2 given above a subgroup of G?

Solution.

> for i in [1..8] do

> "The number of elements of order",i,"is",

> #{ x : x in G | Order(x) eq i };

> end for;

The number of elements of order 1 is 1

The number of elements of order 2 is 25

The number of elements of order 3 is 20

The number of elements of order 4 is 30

The number of elements of order 5 is 24

The number of elements of order 6 is 20

The number of elements of order 7 is 0

The number of elements of order 8 is 0

The set S2 is not a subgroup of G. For one
thing, it does not contain the identity (which
has order 1). For another, it is not closed under
multiplication: (1, 2) and (1, 3) are in S2, but
(1, 2)(1, 3) = (1, 2, 3) is not.

4. What is the smallest symmetric group that
has an element of order 15?

Solution.
Sym(8) is the smallest symmetric group with an
element of order 15. For example, it contains
(1, 2, 3)(4, 5, 6, 7, 8). To check that there is no
smaller symmetric group containing an element
of order 15 we can run the code

> for n in [1..8] do

> print exists{ x : x in Sym(n)

| Order(x) eq 15 };

> end for;

(Magma replies false false false false false false
false true.)

5http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut06.pdf
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Dodatek – MAGMA
Tutorial6 8 (just for fun -)

The following commands will be used in today’s
8th and next one 9th tutorial: Sym, Alt, Order,
#, Set, Stabilizer, diff, meet, if ... then

... end if.

1. Let G be the group of all permutations of
{1, 2, 3, 4} and let H be the stabilizer of 2 in G.
That is, H consists of all permutations in G that
leave 2 fixed. These groups can be set up in
MAGMA with the commands G:=Sym(4);

H:=Stabilizer(G,2);

(i) What are the orders of H and G?

(ii) Print all the elements of H. (In MAGMA
the command Set(H) will produce the
elements of H.)

(iii) Choose any element y ∈ G and create the
set obtained by multiplying every element
of H by y (on the right). This is written as
Hy and called a right coset of H. The
MAGMA command to produce this set
and name it C is C:={h*y:h in H};

Print C and compare it with H. Is it the
same size? Is it the same as H? How many
permutations do they have in common?
Does y belong to C?

(iv) Choose x in C (with x 6= y) and form the
coset D:={h*x:h in H};

Compare D with C. How many elements
do they have in common?

(v) Is there a common property that the
elements of C share? (Hint. Examine 2x

for all x in C.)

(vi) Now let’s be a bit more systematic. We
shall create cosets C1, C2, ..., until every
element of G is in one of these cosets.
Begin by setting C1 equal to C. The
MAGMA command is C1:=C;

In MAGMA, if X and Y are sets then X

diff Y is the set of all elements of X that
are not in Y . (Think of “diff” as meaning
“different from”). Define

Z:=Set(G) diff C1;

and print the elements of Z. Now choose
any element of Z (call it y2) and form the
coset C2:={h*y2:h in H};

Now redefine Z:=Z diff C2, so that now Z
consists of the elements that are not in
either C1 or C2, choose some y3 in Z, and
form its coset C3. Keep going like this until
every element of G is in one of your cosets.

(a) How many cosets do you have?

(b) What is the size of each of your
cosets?

(c) How much overlap is there between
your cosets? (If X and Y are sets,
their intersection is given by X meet

Y.)

(d) Does the original subgroup H appear
in your list of cosets? Why is that?

Solution.

> G := Sym(4);

> H := Stabilizer(G,2);

> #G, #H;

24 6

> Set(H);

{

Id(H),

(1, 4, 3),

(3, 4),

(1, 3, 4),

(1, 3),

(1, 4)

}

> y:=G!(1,2);

> C:={ h*y : h in H };

> C;

{

(1, 3, 4, 2),

(1, 4, 3, 2),

(1, 2),

(1, 4, 2),

(1, 2)(3, 4),

(1, 3, 2)

}

> // C, H both have 6 elements

> // y is an element of C

Whatever choice you make for the element y, it
will always turn out that C has 6 elements, the

6http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut07.pdf
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same as H. If y happens to be in H then you
will find that C = H, otherwise C and H will
have no elements in common.

> x := G!(1,4,2);

> D := { h*x : h in H };

> D;

{

(1, 4, 3, 2),

...

(1, 2)(3, 4)

}

> D eq C;

true

> for z in C do

for> print 2^z;

for> end for;

1

...

1

It will always be the case that D = C, no matter
which element x in C you choose. This is a
general fact about cosets: if H is a subgroup and
C = Hy any right coset of H, then Hx = C for
all elements x ∈ C.

In this particular example (for the element y
that was chosen) the coset C consists of all
elements z in G such that 2z = 1. There are
three other cosets that could have been obtained
by choosing y differently:
(a) the set of all z with 2z = 2;
(b) the set of all z with 2z = 3;
(c) the set of all z with 2z = 4.

Observe that the first of these is equal to H (by
the definition of H).

> C1 := C;

> Z := Set(G) diff C1;

> Z;

{

(2, 3, 4),

(1, 4)(2, 3),

(2, 4),

(1, 3, 4),

(1, 3, 2, 4),

(1, 2, 4, 3),

...

(1, 2, 3),

Id(G),

(1, 4, 3),

(2, 3),

(1, 4)

}

> y2 := G!(2,3,4);

> C2 := { h*y2 : h in H };

> Z := Z diff C2;

> Z;

{

(1, 3)(2, 4),

(1, 2, 4, 3),

(1, 3, 4),

(1, 4, 3),

(1, 3),

(3, 4),

(1, 2, 4),

(2, 4),

(1, 4),

(1, 3, 2, 4),

Id(G),

(2, 4, 3)

}

> y3 := G!(1,3)(2,4);

> C3 := { h*y3 : h in H };

> Z := Z diff C3;

> Z;

{

Id(G),

(1, 4, 3),

(3, 4),

(1, 3, 4),

(1, 3),

(1, 4)

}

> y4 := Id(G);

> C4 := { h*y4 : h in H };

> Z := Z diff C4;

> Z;

{}

> C1 meet C2, C1 meet C3,

> C1 meet C4;

{}

{}

{}

> C2 meet C3, C2 meet C4,

> C3 meet C4;

{}

{}

{}

> C4 eq Set(H);

true

There are four cosets, they have six elements
each, and they do not overlap at all. A subgroup
is always a right coset of itself: indeed Hh = H
whenever h is an element of the subgroup H. In
our example the coset C4 is equal to H.

9



Dodatek – MAGMA
Tutorial7 9 (just for fun ,)

We will continue where we left last time.

2. Let G be a cyclic group generated by an
element of order 12. For example, G :=

PermutationGroup< 12 |

(1,2,3,4,5,6,7,8,9,10,11,12) >; (This is
the same as G := sub< Sym(12) |

(1,2,3,4,5,6,7,8,9,10,11,12)>).

(i) Print the elements of G and determine the
order of each element.

(ii) Check that in this group two elements that
have the same order always generate the
same cyclic subgroup of G.

(iii) Which elements of G generate all of G?
Hint: Try the MAGMA code

for x in G do

if sub< G | x > eq G then print x;

end if;

end for;

Solution.

> G:=PermutationGroup<12|(1,2,3,4,5,6,7,

8,9,10,11,12)>;

> for g in G do

> print g,"has order",Order(g);

> end for;

Id(G)

has order 1

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

has order 12

(1, 3, 5, 7, 9, 11)(2, 4, 6, 8, 10, 12)

has order 6

..... 10 lines omitted .....

(1, 9, 5)(2, 10, 6)(3, 11, 7)(4, 12, 8)

has order 3

(1, 10, 7, 4)(2, 11, 8, 5)(3, 12, 9, 6)

has order 4

(1, 11, 9, 7, 5, 3)(2, 12, 10, 8, 6, 4)

has order 6

(1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)

has order 12

> for x in G do

> for y in G do

> if Order(y) eq Order(x) then

> print sub <G|x> eq sub <G|y>;

> end if;

> end for;

> end for;

true

. . . 27 similar lines omitted . . .

true

Since the order of an element is always the same
as the order of the cyclic subgroup it generates,
an element x in G will generate the whole of G if
and only if the order of x is 12. We have already
seen that there are exactly four such elements.
(They happen to all be 12 cycles.)

> for x in G do

> if sub< G | x > eq G then print x;

> end if; end for;

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

(1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8)

(1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6)

(1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)

3. The alternating group Alt(n) consists of all
even permutations of {1, 2, ..., n}. (A
permutation is even if its diagram has an even
number of line crossings. An equivalent
condition is that the permutation can be
expressed as a product of an even number of
transpositions (i, j).) Alt(n) is a subgroup of
Sym(n) and contains exactly half the elements of
Sym(n).

(i) Check that for n = 5 the alternating group
is half the size of the symmetric group.
The MAGMA command to create it is
A:=Alt(5);.

(ii) For each n ∈ {1, 2, 3, 4, 5, 6}, find the
number of elements of A of order n.

(iii) Find two elements of A of order 2 whose
product has order 3, and find the order of
the subgroup they generate.

(iv) Find two elements of A of order 2 whose
product has order 5, and find the order of
the subgroup they generate.

(v) Find two elements of A of order 2 whose
product has order 2, and find the order of
the subgroup they generate.

7http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut07.pdf
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Dodatek – MAGMA
Tutorial8 10 (just for fun -)

The following commands have been introduced
in previous tutorials: Sym, Alt, Order, #,
forall, exists, sub<G|...>,
PermutationGroup<n|...>, Set, Stabilizer,
diff, meet, join, for ... do ... end for, if
... then ... end if.

1. (i) The MAGMA command

F:=PermutationGroup<5|(1,2,3,4,5),(1,2)>;

creates the smallest group of permutations
of the set {1, 2, 3, 4, 5} that contains
(1, 2, 3, 4, 5) and (1, 2). How many
permutations are there in F? And how
many permutations of {1, 2, 3, 4, 5} exist
that are not in F?

(ii) Suppose that the vertices of a regular
pentagon are numbered 1, 2, 3, 4, 5. Draw
a diagram, and use it to find a
permutation a that corresponds to a
rotation symmetry of the pentagon, and a
permutation b that corresponds to a
reflection symmetry. In MAGMA, define D
to be the smallest group of permutations
containing your permutations a and b.
Check that D has order 10. (It is called
the dihedral group of order 10.)

(iii) The alternating group of degree n consists
of all even permutations of the numbers
1, 2, ..., n. The MAGMA command
A:=Alt(5) creates the alternating group of
degree 5. After doing this, use the
command print D subset A; to find out
whether all the elements of D are even.

(iv) Find all the cosets of D in A. Label them
D1, D2, .... How many do you expect?
(Make sure that your list D1, D2, ... does
not contain any repetitions.)

(v) For each pair of distinct cosets, find out
how many elements they have in common.
(If X and Y are sets, their intersection is
given by X meet Y.)

(vi) To see the elements of A use the command
print Set(A); Choose any element of A
and call it y. Now create some new sets

E1 := { d*y : d in D1 };

E2 := { d*y : d in D2 };

...

and then check that the sets E1, E2 etc.
are just the cosets D1, D2, etc. in some
order.

(vii) Choose two of your cosets – say D2 and
D3 – and create the set

E:={x*y:x in D2,y in D3};

Do you expect E to be a coset of D?
(First check its size.) Try this again with
other cosets in place of D2 and D3.

Solution.
The group F contains all 120 permutations of 1,
2, 3, 4, 5.

> F:= PermutationGroup< 5 | (1,2,3,4,5),

(1,2) >;

> #F, #Sym(5);

120 120

> F eq Sym(5);

true

If the vertices of the regular pentagon are
labelled 1, 2, 3, 4, 5 (cyclically) then
a = (1, 2, 3, 4, 5) is a rotation symmetry and
b = (2, 5)(3, 4) a reflection symmetry. (Other
choices are possible: for example, (1, 3, 5, 2, 4) is
a rotation and (1, 4)(2, 3) a reflection.) The
permutation group generated by a and b has
order 10. Its elements correspond to the five
rotation symmetries and five reflection
symmetries of the pentagon.
The 10 elements of D all lie in the group
A = Alt(5), which has order 60. So D is a
subgroup of A, and the index of D in A is
60/10 = 6. That is, there are 6 cosets of D in A.

> A:=Alt(5);

> D:=PermutationGroup

<5|(1,2,3,4,5),(1,4)(2,3)>;

> #A,#D;

60 10

> D subset A;

true

> D1:=Set(D);

> Others:=Set(A) diff D1;

> c:=Random(Others);

8http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut08.pdf
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> c;

(1, 4, 3)

> D2:={x*c : x in D};

> Others:=Others diff D2;

> d:=Random(Others);

> d;

(2, 4, 5)

> D3:={x*d : x in D};

> Others:=Others diff D3;

> e:=Random(Others);

> e;

(1, 3, 4, 5, 2)

> D4:={x*e : x in D};

> Others:=Others diff D4;

> f:=Random(Others);

> f;

(1, 4, 3, 5, 2)

> D5:={x*f : x in D};

> Others:=Others diff D5;

> g:=Random(Others);

> g;

(1, 2, 5, 4, 3)

> D6:={x*g : x in D};

> D6 eq Others;

true

> #D1,#D2,#D3,#D4,#D5,#D6;

10 10 10 10 10 10

> Set(A) eq (D1 join D2 join D3

> join D4 join D5 join D6);

true

According to MAGMA, the six sets D1...D6
each have 10 elements, and their union is the
whole Set(A), which has 60 elements. So they
must be disjoint from each other. But rather
than simply trusting MAGMA, the student
should do at least some calculations by hand and
check that the answers agree with MAGMA’s.
We can get MAGMA to choose elements of A
randomly, form the corresponding right cosets of
D, and check that the result is always one of
D1, D2, ..., D6.

> z:=Random(A);

> z;

(1, 4, 3, 2, 5)

> E:={x*z : x in D};

> E;

{(2, 3)(4, 5), (1, 2, 3), (2, 4)(3, 5),

(1, 5, 4), (1, 3, 5), (1, 4, 2),

(1, 5, 2, 4, 3), (1, 4, 3, 2, 5),

(1, 3, 4, 5, 2), (1, 2, 5, 3, 4)}

> E in {D1,D2,D3,D4,D5,D6};

true

> z:=Random(A);

> z;

(1, 3, 4, 2, 5)

> E:={x*z : x in D};

> E in {D1,D2,D3,D4,D5,D6};

true

> z:=Random(A);

> z;

(2, 5, 4)

> E:={x*z : x in D};

> E;

{(1, 3, 4), (1, 4, 5), (1, 2, 4, 5, 3),

(1, 2, 3, 5, 4), (2, 4, 3), (1, 3)(2, 5),

(1, 5)(2, 3), (2, 5, 4),

(1, 4, 3, 5, 2), (1, 5, 3, 4, 2)}

> E in {D1,D2,D3,D4,D5,D6};

true

If X, Y are subsets of a group G then we define
XY = xy|x ∈ X, y ∈ Y . If X = Hg1 and
Y = Hg2 are cosets of the subgroup H then it
may or may not happen that (Hg1)(Hg2) is also
a subgroup of H. Note that since g1 ∈ Hg1 and
g2 ∈ Hg2 it is always true that g1g2 ∈ (Hg1)(Hg2).
So if (Hg1)(Hg2) is a coset of H then it must be
the coset that contains g1g2, namely Hg1g2. It is
reasonably easy to show that
(Hg1)(Hg2) = Hg1g2 if and only if Hg1 = g1H.
Certain subgroups, known as normal subgroups,
satisfy this for all elements g1 ∈ G. However, the
group D in our current MAGMA example is not
a normal subgroup, and in fact Dx is not equal
to xD unless x happens to be in D. So it turns
out that D1Di = Di, for each possible value of i,
but if j 6= 1 then DjDi is not one of the cosets.
In fact, all these products turn out to have 50
elements.

> E:={x*y : x in D2, y in D3};

> #E;

50

> E:={x*y : x in D2, y in D2};

> #E;

50

> E:={x*y : x in D4, y in D6};

> #E;

50

> E:={x*y : x in D1, y in D6}; #E;

10

> E eq D6;

true

> E:={x*y : x in D5, y in D5}; #E;

50

12



Dodatek – MAGMA
Tutorial9 11 (just for fun ,)

We will continue from point where we left last
time.

2. Create the permutation group G as follows:

G<x,y,z> := PermutationGroup< 9 | (4,

7, 8)(5, 9, 6), (3, 6, 9, 4, 5, 7,

8), (1, 3, 2)(4, 7, 8)(5, 6, 9) >;

The variables x, y and z will become the given
generators. To see this, type

print x,y,z;

(i) Is G a subgroup of the alternating group
Alt(9)? You should be able to answer this
without using MAGMA. Or you could use
the command print IsEven(x) to check
each of the generators. Or, then again, you
could use the command print G subset

Alt(9);.

(ii) What is the order of G?

(iii) Does the order of G divide #Alt(9)?
What is the reason for this?

(iv) How many cosets of G are there in Alt(9)?

(v) Let K be the stabilizer in G of the set
X = {1, 2, 3}. That is, K consists of the
elements g ∈ G such that 1g, 2g and 3g are
1, 2 and 3 in some order. Use MAGMA to
find K by typing

K := Stabilizer(G,{1,2,3});

What is the order of K?

(vi) Find the stabilizers of a few other subsets
of {1, 2, ..., 9}. Check that the order of
every subgroup you find divides the order
of G.

(vii) Does G have a subgroup of order 5? If
there is one, find an example; if not,
explain why.

(viii) Does G have a subgroup of order 4? If
there is one, find an example; if not,
explain why.

(ix) Does G have a subgroup of order 16? If
there is one, find an example; if not,
explain why.

Solution.
Cycles of odd length are even permutations. In
general, a permutation is odd if and only if it
has an odd number of cycles of even length. The
generators of G do not involve an even length
cycles; so they are all even. So G is contained in
the alternating group.

> G<x,y,z> := PermutationGroup< 9 | (4, 7,

8)(5, 9, 6), (3, 6, 9, 4, 5, 7, 8), (1, 3,

2)(4, 7, 8)(5, 6, 9) >;

> G;

Permutation group G acting on a set

of cardinality 9

(4, 7, 8)(5, 9, 6)

(3, 6, 9, 4, 5, 7, 8)

(1, 3, 2)(4, 7, 8)(5, 6, 9)

> G subset Alt(9);

true

> #G;

1512

> #Alt(9)/#G;

120

> K:=Stabilizer(G,{1,2,3});

> #K;

18

> #G/#K;

84

> #{{1,2,3}^g : g in G};

84

> (9*8*7)/(3*2*1);

84

> L:=Stabilizer(G,{1,2});

> #L;

42

> #G/#L;

36

> #{{1,2}^g : g in G};

36

> (9*8)/(2*1);

36

> M:=Stabilizer(G,{1,2,3,4});

> #M;

12

> #G/#M;

126

9http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut08.pdf
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> #{{1,2,3,4}^g : g in G};

126

> (9*8*7*6)/(4*3*2*1);

126

> Stabilizer(G,{5,6,7,8,9}) eq M;

true

> Stabilizer(G,{4,5,6,7,8,9}) eq K;

true

> Stabilizer(G,{3,4,5,6,7,8,9}) eq L;

true

There are some general facts to note. The
stabilizer of a set is always a subgroup. The
order of a subgroup of a group is always a divisor
of the order of the group: the ratio is called the
index of the subgroup. The index of the
stabilizer of a set S is equal to the total number
of distinct sets you can get by acting on S by
elements of the group. Thus, since the stabilizer
of {1, 2, 3} has index 84 there are 84 distinct sets
of the form {1g, 2g, 3g}, for g in the group G.
Each one of these sets occurs for 18 different
values of g; this accounts for all elements of G,
since 84 · 18 = 1512. As it happens, the number
of 3-element subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9} is
84, since

(
9
3

)
= 9·8·7

3·2·1 = 84; so in fact you can get
all of these subsets by applying elements of G to
{1, 2, 3}. And so if S1 and S2 are any 3-element
subsets then there exists an element x ∈ G with
Sx
1 = S2: indeed, if g, h ∈ G are such that

S1 = {1g, 2g, 3g} and S2 = {1h, 2h, 3h}, then
x = g−1h has the desired property.

Similarly, the index of the stabilizer of {1, 2} is
36; so there are 36 distinct sets of the form
{1g, 2g} with g ∈ G. Each set occurs for 42
different values of g, in agreement with the fact
that 36 · 42 = 1512. By chance it is again true
that the 36 sets of the form {1g, 2g} are all the
2-element subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9}, since(
9
2

)
= 36.

Similarly again, the index of the stabilizer of
{1, 2, 3, 4} is 126; so there are 126 distinct sets of
the form {1g, 2g, 3g, 4g}, with g ∈ G. Each set
occurs for 12 different values of g, in agreement
with the fact that 126 · 12 = 1512. Remarkably,
it is again true that all 4-element subsets of
{1, 2, 3, 4, 5, 6, 7, 8, 9} are obtained like this,

(
9
4

)
happens to equal 126.

The number of 5-element subsets of
{1, 2, 3, 4, 5, 6, 7, 8, 9} is the same as the number
of 4-element subsets, because the complement of
a 5-element subset is a 4-element subset.

Because you can get any 4-element subset from
any other 4-element set by applying a suitable
element of G, you can get any 5-element set
from any other by applying a suitable element of
G (since if x takes S1 to S2 then it also takes the
complement of S1 to the complement of S2.

Similarly, the fact that you can get any
3-element set from any other by an element of G
means that you can get any 6-element set from
any other by an element of G. And you can get
any 7-element set from any other by an element
of G, for the same kind of reason.

Since #G is not divisible by 5 or by 16, G does
not have any subgroup of order 5 or 16. It could
have a subgroup of order 4, though. In fact
there is a theorem that says that if the order of
a group G is divisible by some number that is a
power of a prime, then that number is the order
of some subgroup of G. Since 4 is a divisor of
1512 and also a power of the prime number 2,
there must be a subgroup of order 4. We have
already found a subgroup of order 12, and that
subgroup will have to have a subgroup of order
4. So let us start by printing out the elements of
a subgroup of order 12.

> Set(M);

{...

> N:=sub<M | {g: g in M | Order(g) eq 2}>;

> N;

Permutation group N acting on a set

of cardinality 9

(1, 2)(3, 4)(5, 8)(6, 9)

(1, 4)(2, 3)(5, 9)(6, 8)

(1, 3)(2, 4)(5, 6)(8, 9)

> Set(N);

{

Id(N),

(1, 2)(3, 4)(5, 8)(6, 9),

(1, 4)(2, 3)(5, 9)(6, 8),

(1, 3)(2, 4)(5, 6)(8, 9)

}

You can tell the order of a permutation quickly
by looking at the lengths of its cycles. In fact,
the order is the least common multiple of the
lengths of the cycles. So it is easy to see that 8
of the elements of the 12-element group M have
order 3. No element of order 3 can belong to a
subgroup of order 4; so the subgroup of order 4
that we are looking for must consist of exactly
the elements of M that do not have order 3.
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Dodatek – MAGMA
Tutorial10 12 (just for fun -)

1. If G is a group and a ∈ G then the
centralizer of a it the set of all elements g ∈ G
that commute with a (meaning that ag = ga).
Centralizer of an element a is always a subgroup
of G.

Let G = Sym(11), and let a ∈ G be the 9-cycle
(1, 2, 3, 4, 5, 6, 7, 8, 9).

(i) Use MAGMA to construct the centralizer
of a in G. (Define G first, then define the
element a, and then use
C:=Centralizer(G,a) to define the
centralizer.)

(ii) Get MAGMA to print C and the set of
elements of C. (MAGMA distinguishes
between the group and its set of elements,
although mathematicians often do not.
Use Set(C) to obtain the set.)

(iii) Define p to be (2, 4, 5, 10, 11)(3, 6) (an
element of G), and C1 to be the coset Cp.
Print out the elements of C1.

(You can use C1:={x*p:x in C}.)

(iv) Use a for loop to print out the values of
x−1ax for all x ∈ C1.

(You can use for x in C1 do x^(-1)*a*x;

end for;.)

(v) You should have noticed something. Can
you explain it?

(vi) Redefine p to be some other element of G -
choose any one you like - and repeat the
above three parts. Do it for at least 4
different values of p. Have you found an
example for which x−1ax is not a 9-cycle?
Can you?

Solution.

> G:=Sym(11);

> a:=G!(1,2,3,4,5,6,7,8,9);

> C:=Centralizer(G,a);

> C;

Permutation group C acting on a set of

cardinality 11 Order = 18 = 2 * 3^2

(10, 11)

(1, 2, 3, 4, 5, 6, 7, 8, 9)

> Set(C);

...output omitted... please use MAGMA...

> p:=G!(2,4,5,10,11)(3,6);

> C1:={ c*p : c in C };

> C1;

...output omitted... please use MAGMA...

> for x in C1 do

> x^(-1)*a*x;

> end for;

...output omitted... please use MAGMA...

> p:=Random(G);

> p;

(1, 9, 5, 3)(2, 7, 10, 11, 6, 4)

> C1:={ c*p : c in C };

> for x in C1 do

> x^(-1)*a*x;

> end for;

(1, 2, 3, 4, 10, 8, 5, 9, 7)

(1, 2, 3, 4, 10, 8, 5, 9, 7)

. . . 15 lines omitted . . .

(1, 2, 3, 4, 10, 8, 5, 9, 7)

> p:=Random(G);

> p;

(1, 2, 6, 5, 9, 7)(3, 10, 8, 4)

> C1:={ c*p : c in C };

> for x in C1 do

> x^(-1)*a*x;

> end for;

(1, 4, 7, 2, 6, 10, 3, 9, 5)

(1, 4, 7, 2, 6, 10, 3, 9, 5)

. . . 15 lines omitted . . .

(1, 4, 7, 2, 6, 10, 3, 9, 5)

> p:=Random(G);

> p;

(3, 8, 9)(4, 11, 6, 10)(5, 7)

> C1:={ c*p : c in C };

> for x in C1 do

> x^(-1)*a*x;

> end for;

(1, 2, 8, 11, 7, 10, 5, 9, 3)

(1, 2, 8, 11, 7, 10, 5, 9, 3)

. . . 15 lines omitted . . .

(1, 2, 8, 11, 7, 10, 5, 9, 3)

Observe that when asked to print C MAGMA
returned brief but useful information about the
group, notably its order and a set of generators.
In this case the generators chosen by MAGMA

10http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut09.pdf
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consist of a 9-cycle and a 2-cycle, which act on
disjoint sets: the two fixed points of the second
generator are transposed by the first generator,
and the nine fixed points of the first generator
are cyclically permuted by the second. It follows
from this that these generators commute with
one another. If we denote the generators by u
and t then the 18 elements of C are the 18
elements uicj , where 0 ≤ i < 2 and 0 ≤ j < 9.

If p is a fixed element of G then the coset Cp
consists of the 18 elements of the form cp, where
c ∈ C. By the definition of C, each c ∈ C
satisfies ac = ca, or (equivalently) c−1ac = a. If
x ∈ Cp then x = cp for some c ∈ C, and so
x−1ax = (cp)−1a(cp) = p−1c−1acp = p−1ap. So
all 18 elements x ∈ Cp give the same value for
x−1ax.

If x ∈ G then x−1(1, 2, 3, 4, 5, 6, 7, 8, 9)x =
(1x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x). So x−1ax is
always a 9-cycle. The total number of 9-cycles in
G is

(
11
9

)
8! = 11!

18
, the same as [G : C], the

number of distinct right cosets of C in G. Each
coset corresponds to a 9-cycle, which is the value
of x−1ax for all x in the coset.

2. Set up the following group and find its order.

G:= PermutationGroup< 9 | (1,2,3)(7,8,9),

(1,2)(3,4)(5,6)(7,8) >;

Define x=(1,2,3)(7,8,9) and
y=(1,2)(3,4)(5,6)(7,8), the generators of G.

There is an equivalence relation on
{1, 2, 3, 4, 5, 6, 7, 8, 9} such that numbers a and b
are equivalent if and only if there is an element
g ∈ G such that ag = b. The equivalence classes
are called orbits. Two numbers are in the same
orbit if you can get from one number to the
other in a in a finite sequence of steps, where
each step is to apply either x or y or their
inverses. Thus 4y = 3 and 3x−1

= 2; so 4 and 2
are in the same orbit.

(i) Determine whether the following pairs of
numbers are in the same orbit of G: 1 and
2; 1 and 5; 2 and 4; 4 and 1; 5 and 8; 8 and
9.

(ii) The notation aG is often used for the orbit
containing a. Thus, by definition,
aG = {ag : g ∈ G}. To use MAGMA to
find the orbit of 3 (for example), you can
either type {3^g:g in G} or 3^G. In either
case you will see the orbit of 3. Try both

commands and then use this method to
check your answers to (i) above.

(iii) For each number i from 1 to 9 find the
order of the stabilizer of i in G. Recall
that the MAGMA code to produce the
stabilizer of 4 in G is Stabilizer(G,4).

(iv) Can you see any relationship between the
order of G, the order of the stabilizer of i
and the number of elements in the same
orbit as i?

(v) Let H be the stabilizer of 7 in G.

(a) What is the order of H?

(b) How many right cosets of H are there
in G?

(c) Let g1 be an element of G which takes
7 to 8 and let g2 be an element of G
which takes 7 to 9. Use MAGMA to
construct the cosets C0 := H,
C1 := Hg1 and C2 := Hg2. For
example,

> C2 := { h * g2 : h in H };

(d) Find out where each element of C1
takes 7. Do the same for C2.

(e) You already have the answers to the
following points in previous parts of
this question.

(1) What is the orbit of 7?

(2) How many cosets does H have in
G?

(3) What is the relationship (if any)
between the cosets of H and the
elements in the orbit of 7?

Solution.
1x = 2; so 1 and 2 are in the same orbit. Since
5y = 6 and 6y = 5,and x fixes both 5 and 6, you
cannot get from 5 to anywhere else but 5 and 6.
The orbit containing 5 is {5, 6}; 1 and 5 are not
in the same orbit. Since 4y = 3 and 3x−1

= 2, 4
and 2 are in the same orbit. Since 1 and 2 are in
the same orbit, and 2 and 4 are in the same
orbit, there is no doubt that 1 and 4 are in the
same orbit. We have already seen that the orbit
containing 5 is {5, 6}; so 5 and 8 are not in the
same orbit. And 8x = 9; so 8 and 9 are in the
same orbit. (...for exercise type MAGMA code,
or visit given link...)
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Dodatek – MAGMA
Tutorial11 13 (just for fun ,)

1. This question is about the group of
symmetries of the tetrahedron with vertices
labelled 1, 2, 3 and 4 as shown below. Use
MAGMA to set up the group G:=Sym(4) of all
permutations of {1, 2, 3, 4}.

Every rotational symmetry of the tetrahedron
corresponds to a permutation of {1, 2, 3, 4}.

(i) Find a (nontrivial) rotational symmetry
that fixes the vertex 1 and another that
fixes the vertex 2, and find the
corresponding permutations.

(ii) Let H be the subgroup of G generated by
the permutations you found in Part (i).
Get MAGMA to print out all the elements
of H, and show that the order of H is 12.

(iii) Describe each element of H geometrically
(e.g. as a rotation about an axis).

(iv) List the order of each element of H.

(v) Find a subgroup of H of order 4.

Solution.
Let `1 be the line through vertex 1 and the
central point of the face 234. The rotations
about the axis `1 through 120◦ and 240◦ are
symmetries of the tetrahedron fixing vertex 1.
The corresponding permutations are (2, 3, 4) and
(2, 4, 3). Similarly, if `2 is the line through vertex
2 and the centroid of the face 134 then rotations
about `2 through 120◦ and 240◦ are symmetries
of the tetrahedron fixing vertex 2. The
corresponding permutations are (1, 3, 4) and
(1, 4, 3). For Part (i) of the question I chose
(2, 3, 4) and (1, 3, 4). There are three other
possible choices that would be equally valid.

> G:=Sym(4);

> x:=G!(1,3,4);

> y:=G!(2,3,4);

> H:=sub< G | x,y >;

> H;

Permutation group H acting on a set

of cardinality 4

(1, 3, 4)

(2, 3, 4)

> Set(H);

{

(1, 2)(3, 4),

(1, 3, 2),

(1, 3)(2, 4),

(1, 2, 4),

(1, 4, 3),

(1, 3, 4),

(1, 4, 2),

Id(H),

(1, 4)(2, 3),

(2, 4, 3),

(1, 2, 3),

(2, 3, 4)

}

> for t in H do

for> "the order of",t,"is",Order(t);

for> end for;

the order of Id(H) is 1

the order of (1, 3, 4) is 3

the order of (1, 4, 3) is 3

the order of (1, 2, 3) is 3

the order of (2, 3, 4) is 3

the order of (1, 3)(2, 4) is 2

the order of (1, 4, 2) is 3

the order of (1, 2)(3, 4) is 2

the order of (2, 4, 3) is 3

the order of (1, 3, 2) is 3

the order of (1, 4)(2, 3) is 2

the order of (1, 2, 4) is 3

Sure enough, H has 12 elements. Four of them
have been described above. The permutations
(1, 2, 4) and (1, 4, 2) correspond to rotations
through 120◦ and 240◦ about `3, the line joining
vertex 3 to the centroid of 124. Similarly,
(1, 2, 3) and (1, 3, 2) correspond to rotations
through 120◦ and 240◦ about `4, the line joining
vertex 4 to the centroid of 123. The identity is a
rotation through 0◦ (about any axis). The
remaining three elements of H are all halfturns:

11http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut10.pdf
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rotations through 180◦. For the permutation
(1, 2)(3, 4) the axis is the line joining the
mid-point of 12 to the midpoint of 34. Similarly,
for (1, 3)(2, 4) the axis is the line joining the
mid-point of 13 to the midpoint of 24, and for
(1, 4)(2, 3) the axis is the line joining the
mid-point of 14 to the midpoint of 23.

By Sylow’s Theorem H must have a subgroup of
order 4, since 4 is the largest power of the prime
2 that is a divisor of 12, the order of H. An
element of order k generates a cyclic subgroup of
order k, and by Lagrange’s Theorem the order of
a subgroup has to be a divisor of the order of
the group. So the order of any element of a
group of order 4 must be a divisor of 4. Now in
H there are only four elements whose orders are
divisors of 4: the three elements of order 2 and
the identity (of order 1). So these four elements
are the only ones that can possibly be contained
in a group of order 4. But H does have a
subgroup of order 4, which certainly contains
four elements of H. So it must be these four. So

{id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
is a subgroup of H of order 4.

2. In MAGMA, define G to be the group
Sym(4), and define p1:={{1,4},{2,3}};.

(i) How many elements does the set p1 have?
Check your answer with MAGMA. (Use
#p1;)

(ii) Define P:=p1^G;, and then get MAGMA
to print P. (Here p1^G means the set of
everything that p1 can be changed into by
applying a permutation of {1, 2, 3, 4}.

(iii) How many elements does P have? Check
your answer with MAGMA (via the
command #P;).

(iv) Each element of P corresponds to a
partitioning of the set {1, 2, 3, 4} into two
subsets of size 2. (Each such partitioning
corresponds to a way of pairing up four
tennis players for a game of doubles. Thus
p1 above corresponds to players 1 and 4
teaming up against players 2 and 3.)
Define now p2:={{2,4},{1,3}}; and
p3:={{3,4},{1,2}};, so that P is
{p1, p2, p3}. Observe that p1 is a set with
two elements, both of which are themselves
sets. And P is a set whose elements are
sets whose elements are sets.

(v) Put x:=G!(1,4,3,2);, and get MAGMA
to print p1^x,p2^x and p3^x. Hence find
the permutation of {p1, p2, p3} derived
from the permutation x of {1, 2, 3, 4}.

(vi) Each permutation of {1, 2, 3, 4} gives rise
to a permutation of {p1, p2, p3}; so we
have a function f from the group of all
permutations of {1, 2, 3, 4} to the group of
all permutations of {p1, p2, p3}. This
function is, in fact, a homomorphism. The
MAGMA command

f,L,K:=Action(G,P);

defines f to be this homomorphism, L to
be the image of f , and K to be the kernel
of f . After typing this command, get
MAGMA to print f , L and K.

(vii) Type the MAGMA command f(x);. The
response should agree with your answer to
Part (v).

(viii) Find the permutations of {p1, p2, p3}
corresponding to each of the permutations
(1, 4), (1, 3, 2), (1, 2, 3, 4), (1, 3), (2, 4, 3),
by using commands such as f(G!(1,4)).

(ix) Find the permutations of {p1, p2, p3}
corresponding to each of the permutations
(1, 2)(3, 4), (1, 3)(2, 4) and (1, 3)(4, 2).
Note that these three permutations are all
in the group K. Print Set(K) to confirm
this.

(x) Put A:={x*k: k in K}, and then do the
following loop:

for t in A do

f(t);

end for;

What do you notice about the answer?
Put B:={G!(1,4)*k:k in K}, and do a
similar for loop. Observe that you again
get the same answer four times. Do some
more similar loops.

Hints.

> p1:={{1,4},{2,3}}; #p1; P:=p1^G; P; #P;

> p2:={{2,4},{1,3}}; p3:={{3,4},{1,2}};

> P eq {p1,p2,p3}; x:=G!(1,4,3,2);

> p1^x,p2^x,p3^x;

> p1^x eq p3, p3^x eq p1, p2^x eq p2; ...
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Dodatek – MAGMA
Tutorial12 14 (just for fun -)

1. Define G:=Sym(9), and choose any
permutations x and y that move only one
number in common. For example
x:=G!(1,4,5,6) and y:=G!(5,7,8,9) would
do.

(i) Use MAGMA to compute the permutation
x−1y−1xy. (You may either type this as it
stands or use the MAGMA abbreviation
(x,y) for the element
x^(-1)*y^(-1)*x*y.)

(i) Repeat this for several other choices of x
and y. What do you observe about the
result? Try calculating some of the
products by hand to see if you can find a
reason for what you observe.

Solution.

> G:=Sym(9);

> x:=G!(1,2,3)(5,7);

> y:=G!(4,5,8,9);

> (x,y);

(5, 8, 7)

> z:=G!(3,4,6)(8,9);

> (x,z);

(1, 3, 4)

> (z,x);

(1, 4, 3)

> w:=G!(5,8,1,7,2);

> (z,w);

(1, 9, 8)

> (w,z);

(1, 8, 9)

The result is always a 3-cycle. Let i be the
number that is moved by both x and y, and let
j = ix

−1
and k = ix. Thus j and k are the

numbers that appear on either side of i in the
expression for x. For example, if x = (1, 4, 5, 6)
and y = (5, 7, 8, 9) then j = 4, i = 5 and k = 6.
Similarly, let l = iy

−1
and m = iy. In our

example we would have l = 9 and m = 7. It
turns out that x−1y−1xy is actually the 3-cycle
(i,m, k).
As a first step to seeing this, observe that as i is
the only number that both x and y move, y fixes

j and k (since x does not fix these two) and x
fixes l and m (since y does not). Now consider
what x−1y−1xy does to i. Starting from i, apply
successively x−1, y−1, x and y:

i
x−1

−→ j
y−1

−→ j
x−→ i

y−→ m.

Now consider what x−1y−1xy does to m:

m
x−1

−→ m
y−1

−→ i
x−→ k

y−→ k.

Finally, consider what x−1y−1xy does to k:

k
x−1

−→ i
y−1

−→ l
x−→ l

y−→ i.

So (i,m, k) is one of the cycles appearing in
x−1y−1xy. It remains to show that x−1y−1xy
fixes everything else.
Choose any number n that is not one of i, m or
k. If x and y both fix n then it is clear that
x−1y−1xy also fixes n. Now suppose that x
moves n, and put p = nx−1

. Since n 6= k, we
know that p 6= kx−1

= i. So neither p nor n is
equal to i, and since x moves both p and n it
follows that y does not move either p or n. So,
on applying x−1y−1xy, we find that

n
x−1

−→ p
y−1

−→ p
x−→ n

y−→ n.

That is, n is fixed by x−1y−1xy. Finally, suppose
that y moves n, and put p = ny−1

. Since n 6= m,
we know that p 6= my−1

= i. So neither p nor n
is equal to i, and since y moves both p and n it
follows that x does not move either p or n. So,
on applying x−1y−1xy, we find that

n
x−1

−→ n
y−1

−→ p
x−→ p

y−→ n.

So n is fixed by x−1y−1xy in this case too, and
therefore i, m and k are the only things moved
by x−1y−1xy.

2. Use the following commands to set up
subgroups H, K and L of Alt(5).

G := Alt(5);

H := Stabilizer(G,3);

K := Stabilizer(G,4);

L := Stabilizer(G,{3,4});

(i) Find the subgroup M which is the
intersection of H and K. Is M a subgroup
of L? (Use the MAGMA command meet

to get the intersection.)

12http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut11.pdf
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(ii) Is M equal to L? If not, explain why they
differ, and how they are related.

Solution.

> G := Alt(5);

> H := Stabilizer(G,3);

> K := Stabilizer(G,4);

> L := Stabilizer(G,{3,4});

> L;

Permutation group L acting on a set

of cardinality 5

Order = 6 = 2 * 3

(1, 2)(3, 4)

(2, 5)(3, 4)

> M := H meet K;

> print M subset L;

true

This shows that M is a subgroup of L.

> Index(L,M);

2

This shows that M has just two cosets in L.
The number of elements in M is exactly half the
number in L. The elements of L that are not in
M interchange 3 and 4, rather than fixing them.
Of course, MAGMA can also tell us the order of
M and elements that generate M .

> M;

Permutation group M acting on a set

of cardinality 5

Order = 3

(1, 5, 2)

3.(i) Find a set of 3-cycles that generate the
alternating group Alt(5). To do this you
can set A:=Alt(5) and then check various
subgroups of the form

sub< A | (1,2,3), . . . >

Find a generating set which is as small as
possible.

(ii) Repeat Part (i) for Alt(6).

Solution.

> A:=Alt(5);

> #A;

60

> x:=A!(1,2,3);

> y:=A!(1,2,4);

> z:=A!(1,2,5);

> u:=A!(1,3,4);

> v:=A!(1,3,5);

> w:=A!(1,4,5);

> #sub<A|x,y,z,u,v,w>;

60

> #sub<A|x,y>;

12

> #sub<A|x,z>;

12

> #sub<A|x,u>;

12

> #sub<A|x,v>;

12

> #sub<A|x,w>;

60

Why do x and w generate Alt(5) while x and y
do not? The point is that x and y both fix 5,
and so the subgroup generated by x and y is
contained in the stabilizer of 5 (which is a
subgroup of order 12, isomorphic to Alt(4)).
Similarly, x and z both fix 4, and hence cannot
generate Alt(5). Similar observations hold for
the pairs x, u and x, v. But there is no number
that is fixed by both x and w.
In view of the above remarks, if we want a set of
3-cycles that generates Alt(6), we had better
make sure that between them they move all the
numbers 1, 2, 3, 4, 5 and 6. So let us try
(1, 2, 3), (4, 5, 6):

> A:=Alt(6);

> #A;

360

> #sub<A|A!(1,2,3),A!(4,5,6)>;

9

That failed. It failed because (1, 2, 3) and
(4, 5, 6) both in the setwise stabilizer of {1, 2, 3}
(as well as the setwise stabilizer of {4, 5, 6}). So
we will need at least three 3-cycles to generate
Alt(6):

> #sub<A|A!(1,2,3),A!(4,5,6),A!(1,2,4)>;

360

4. Let G be the symmetric group Sym(5) and
use MAGMA to construct the following subsets

K1:= {G | (1,2),(1,3),(2,3),(2,4),

(2,5),(3,5),(4,5)};

D := { x*G!(1,3,4) : x in

Stabilizer(G,1)};

K2:= Set(G) diff {x*y : x,y in D};

K3:= K1 join K2;...
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Dodatek – MAGMA
Tutorial13 15 (just for fun ,)

This tutorial explores the groups of rotations of
the Platonic solids. The Platonic solids are the
five regular polytopes in three dimensions: the
tetrahedron, the cube, the octahedron, the
icosahedron and the dodecahedron. We shall
represent the rotations of these solids as
permutations of the vertices. In each case the
full group of symmetries is twice as big as the
group of rotations (and includes reflections and
other kinds of transformations.)

1. The tetrahedron: Set up the group as

> T := PermutationGroup< 4 | (1,2,3),

(1,3,4) >;

Check that T has order 12 and is equal to the
alternating group Alt(4). Convince yourself (by
looking at the diagram) that the elements of T
give all possible rotations of the tetrahedron.

2. The cube: Set up the group as

> C:=PermutationGroup< 8 | (1,2,3,4)(8,7,

6,5), (2,4,6)(7,5,3)>;

(i) Print the elements of C and use the
diagram of the cube to work out the
correspondence between rotations and
permutations. Convince yourself that C
contains all possible rotations of the cube.

(ii) As well as acting on the vertices of the
cube the group acts on the four lines
through opposite pairs of vertices. To see
that the group just permutes these
amongst themselves, type the following

> pairs := {1,8}^C;

> pairs;

To find the effect of the elements of C on
these four pairs of vertices you can type
the following:

> f,G,K := Action(C,pairs);

In carrying out this command MAGMA
will construct a homomorphism f from C
to the group of permutations of the set

pairs. For each g ∈ C, f(g) is the
corresponding permutation. The group G
is the image of f and the group K is its
kernel.

(iii) Check that the image of f consists of all
permutations of the four pairs and that the
kernel contains only the identity element of
C. It can be shown that a homomorphism
whose kernel consists of the identity
element only must be one-to-one.
Conclude that the group of rotations of the
cube is isomorphic to Sym(4).

(iv) If you look at the cube and think hard you
should be able to see that there are three
pairs of opposite faces and that the
rotations of the cube permute these
amongst themselves. In this part of the
question you will construct a
homomorphism from C to the group of
permutations of these three pairs of faces.
Here is the MAGMA code.

> faces := {{1,2,3,4},{5,6,7,8}}^C;

> print faces;

> f1,G1,K1 := Action(C,faces);

Check that the image of the
homomorphism f1 is the group of all
permutations of the three pairs of faces,
and conclude that it is isomorphic to
Sym(3). Do you recognize the kernel?

3. The group of the tetrahedron is isomorphic
to Alt(4) and the group of the cube is
isomorphic to Sym(4). In fact it is possible to
place two tetrahedra inside the cube in such a
way that the even permutations in Sym(4) fix
the tetrahedra setwise and the odd permutations
in Sym(4) interchange the two tetrahedra. The
two tetrahedra are t1 = {2, 4, 6, 8} and
t2 = {1, 3, 5, 7}.

(i) Check that every element of C either
leaves t1 in place or sends it to t2. Do this
with the following MAGMA code.

> t1 := {2,4,6,8};

> for g in C do

> t1^g;

> end for;

13http://www.maths.usyd.edu.au/u/bobh/UoS/MATH2008/ctut12.pdf
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(ii) Use MAGMA to find the stabilizer of t1.
That is, >H:=Stabilizer(C,t1); What is
the order of H? Is this one of the groups
you have seen before? Which one?

4. The Octahedron:

> O:=PermutationGroup< 6 | (1,2,3)(4,6,

5), (2,3,5,4)>;

(i) Print out the elements of O and convince
yourself that all rotations of the
octahedron are accounted for.

(ii) What is the order of O?

(iii) Observe that if you put a vertex at the
centre of each face, these eight new vertices
will describe a cube. Thus the group O
must be isomorphic to C, the group of
rotations of the cube. Use MAGMA to
construct the action of O on its faces:

> triples := {1,2,3}^O;

> print triples;

> g, H, L := Action(O,triples);

Solutions.
1.

> T:=PermutationGroup<4 | (1,2,3),(1,3,4)>;

> #T;

12

It is clear that (1, 2, 3) and (1, 3, 4) are rotational
symmetries of the tetrahedron, and MAGMA tells
us that the group T they generate has order 12.
Since (1, 2, 3) and (1, 3, 4) are both even
permutations, the group they generate must be a
subgroup of the group of all even permutations,
Alt(4). But Alt(4) has order 12 (since half the 24
permutations of {1, 2, 3, 4} are even) and MAGMA
tells us that T has order 12; so T = Alt(4). You can
get MAGMA to confirm this: type T eq Alt(4);

MAGMA will respond true.

> T eq Alt(4);

true

> Set(T);

For each vertex of the tetrahedron there are two
rotational symmetries that fix that vertex: the line
joining the vertex to the centroid of the opposite
face is the axis of rotation, and you can rotate
through either 120◦ or 240◦. These rotations all
have order 3, and correspond to the eight 3-cycles in

Alt(4). For each edge of the tetrahedron there is a
unique opposite edge (joining the two vertices that
are not on the given edge). The rotation through
180◦ about the line joining the midpoints of a pair of
opposite edges is a symmetry. This gives three more
rotational symmetries. The identity is the 12th.

How do we know that there are no more rotational
symmetries? Certainly the tetrahedron has some
reflection symmetries (six, in fact). For example,
the transposition (1, 2) corresponds to the reflection
in the plane that is the perpendicular bisector of the
edge joining vertices 1 and 2. (Note that vertices 3
and 4 lie in this plane.) Similarly, the other five
transpositions in Sym(4) correspond to reflections in
the planes that are the perpendicular bisectors of
the other edges. Since every symmetry of the
tetrahedron must correspond to some permutation
of the vertices, the group of all symmetries must be
some subgroup of Sym(4). So the order of the group
of all symmetries must be a divisor of 24. Since we
have already geometrically identified 18 symmetries,
it follows that the symmetry group of the
tetrahedron is the whole of Sym(4). The six
symmetries that we have not yet geometrically
identified correspond to the 4-cycles in Sym(4)
(such as (1, 2, 3, 4)). If ` is the line joining the
midpoint of the edge 1-3 with the midpoint of the
edge 2-4 then a rotation of 90◦ about the axis `
followed by the reflection in the plane that is the
perpendicular bisector of ` is a symmetry of the
tretrahedron corresponding to a 4-cycle. The other
4-cycles arise similarly.

It is not quite clear that these 4-cycles cannot also
be described as rotations in some obscure way. To
prove that they are definitely not rotations we need
to use some linear algebra. Any rotation of R3 fixes
all the points on some onedimensional subspace `
(the axis of rotation). Let P be the plane through
the origin perpendicular to the line `. Then the
rotation acts on P like a rotation of R2. If we now
choose an orthonormal basis of R3 made up of one
vector on ` and two in P then the matrix of the

rotation has the form

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (where θ

is the angle of rotation). Since this matrix has
determinant 1, we conclude that every rotation of
R3 has determinant 1. A similar analysis can be
used to show that reflections have determinant -1.
And the transformations that correspond to the
4-cycles also have determinant -1, since they can
each be described as the product of one reflection
and one rotation. To sum all this up, the 12 even
permutations in Sym(4) (i.e. the elements of Alt(4))
correspond to rotational symmetries, and ...
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