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Preface

This dissertation is a report of the research that I performed during my years
as a PhD student. The work can be seen as consisting of two main parts, which
can be read separately. The first part, the second chapter, treats the so-called
scattered subspaces with respect to a spread in a finite projective space. The
second part, the third chapter, is situated in the theory of finite generalized
quadrangles, in particular translation generalized quadrangles and the equiva-
lent so-called eggs in finite projective spaces.

However, the discussed subjects in both of these parts are substructures of
Galois spaces, and in this setting they are very much related. Galois geometry
started around 1950 with the work of the celebrated Italian mathematician Be-
niamino Segre who studied n-dimensional projective spaces over Galois fields
and substructures of these spaces. His research led to what in the past years has
been called the fundamental problems of finite geometry: (1) the determination
of the maximal and/or minimal number of points belonging to a substructure
satisfying specific geometric conditions, (2) the classification of those substruc-
tures having the optimal minimal or maximal number of elements, and (3) when
the minimal number or maximal number of elements of such a substructure is
known, the determination of the cardinality of the second smallest or second
largest such substructure. The problems treated in this thesis are of this kind.

In Chapter 1 an overview is given of the definitions and fundamental results con-
cerning incidence structures and projective spaces over finite fields. However,
it is not intended to be a first introduction to the theory of Galois geometry.
At the end of the chapter we turn our attention to spreads in finite projective
spaces and present a representation of spreads in the tensor product of two
vector spaces, which will be used in the next chapter.

With Chapter 2 we enter the world of scattered spaces. A subspace is called
scattered with respect to a spread in a finite projective space if it intersects every
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element of the spread in at most a point. This world is only recently created (or
discovered) and has its origin in the theory of blocking sets in finite projective
spaces. At first we consider scattered spaces with respect to arbitrary spreads,
yielding an upper bound on the dimension of a scattered space. If a scattered
subspace attains the upper bound, then it is called mazimum. An attempt to
construct such a maximum scattered subspace results in a lower bound on its
dimension. From then on we restrict ourselves to Desarguesian spreads, and
improve the upper and lower bounds on the dimension of a maximum scattered
subspace. In the case where the elements of the spread have even dimension and
the projective space has odd dimension the obtained bound is tight. Moreover,
it turns out that a maximum scattered subspace with respect to a Desargue-
sian spread in a projective space of odd dimension yields a two-intersection set
with respect to hyperplanes in a projective space of lower dimension over an
extension field, and we are able to prove that these two-intersection sets are
new. Next we apply the theory of scattered spaces to blocking sets and give
some constructions of linear blocking sets of various sizes. At the end of the
chapter we give two explicit constructions of a multiple blocking set in a pro-
jective plane, one using the technique of polynomials in finite geometry and one
using the representation of spreads in the tensor product of two vector spaces
introduced in Chapter 1. The obtained blocking sets are of importance when
compared to a theorem of Aart Blokhuis, Leo Storme and Tamés Szényi.

In the third chapter we allow ourselves a taste of the very popular subject
of finite generalized quadrangles. Generalized quadrangles were introduced by
Tits in 1959 in order to understand better the structure of the semisimple al-
gebraic groups (including the groups of Lie-type and the Chevalley groups) of
relative rank two. Since the book Finite Generalized Quadrangles by Payne
and Thas, this subject has received a lot of attention from many researchers
in geometry, not surprising considering the numerous connections with other
branches of geometry. Here, we restrict ourselves to translation generalized
quadrangles. After given the necessary introduction we delve into to theory of
eggs in finite projective spaces, which is equivalent to the theory of translation
generalized quadrangles. We present a new model for eggs, allowing a uniform
representation of good eggs, and their dual eggs, in projective spaces over a
finite field of odd order, i.e., the eggs corresponding with a semifield flock of
a quadratic cone in a three-dimensional projective space over a finite field of
odd order. Using this model we are able to give a short proof for an important
result of Joseph A. Thas (proved in a more general context). In the second
half of the chapter we turn our attention to ovoids of the classical generalized
quadrangle corresponding with a non-degenerate quadric in a four-dimensional
projective space over a finite field of odd order. The prove of the main result of
that section leads to an interesting new method of constructing the good egg



from the semifield flock, yielding a characterization of the eggs of Kantor type.
In the next section we give a very recent result of great significance in the clas-
sification of semifield flocks. We conclude the chapter with the classification of
eggs in seven-dimensional projective space over the field of order two.
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Chapter 1

Preliminaries

In this chapter we give the necessary definitions and results that provide a
background for the following chapters.

1.1 Incidence structures

An excellent reference on incidence geometry is the book Handbook of Incidence
Geometry, edited by Buekenhout [25]. An incidence structure or a geometry of
rank 2, S, is a triple (P, L,1), where P is a set of elements called points, L is a
set of elements called blocks or lines, and I C P x LUL x P, called the incidence
relation. If (P,¢) € 1, then we say that P is incident with ¢, or £ is incident
with P, denoted by P I £. If the blocks are sets of points, then we also say that
Pisond, lis on P, or ¢ contains P. An incident point-line pair is called a flag.
A non-incident point-line pair is called an antiflag. The (point-line) dual of an
incidence structure S = (P, L,1) is the incidence structure SP = (£, P,I). If
two points P and @) are on the same line ¢, then we say that they are collinear.
The line ¢ is called the line joining P and Q. If two lines m and n are on
the same point P then we say that they are concurrent. The point P is called
the intersection of m and n. A substructure S’ = (P’,L',1') of an incidence
structure S = (P, L,1I) is an incidence structure with P’ C P, £’ C £, and
I'=1N(P' x LU L xP'). If every point is incident with the same number
of lines, t 4+ 1, and if every line is incident with the same number of points,
s+ 1, then we say that the incidence structure has order (s,t). The incidence
structure is finite if P and L are finite sets.

An isomorphism or a collineation of an incidence structure S = (P, L,I) onto
an incidence structure S’ = (P’,L',T') is a pair of bijections (a« : P —
P38 : L — L) preserving incidence and non-incidence, i.e., (P,{) € I &
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(P, £%) € T'. If there exists such an isomorphism then we say that S and S’
are isomorphic, and we write S = S’. Here we will only consider incidence struc-
tures where the lines are completely determined by the set of points that they
contain, which implies that 8 is completely determined by «. An isomorphism
may then simply be defined by a bijection « : P — P’ preserving incidence
and non-incidence, inducing a bijection £ — L’. An anti-isomorphism of an
incidence structure S onto an incidence structure S’ is a collineation of S onto
the dual S’° of §. A duality of S is an anti-isomorphism of S onto itself. A
polarity is a duality of order 2. All isomorphisms of an incidence structure .S
onto itself form a group Aut .S, the automorphism group or collineation group
of S.

Let a be a collineation of the incidence structure S. If there exists a point
P of S, such that all lines on P are fixed by «, then P is called a center of
a and « is called a central collineation. Dually an azis of « is a line of S for
which all points are fixed by «, and in this case « is called an axial collineation.

At — (v,k,\) design is an incidence structure such that the set of points has
cardinality v, every block contains k£ points, and every set of ¢ points is con-
tained in exactly A blocks. A parallelism of a design S is an equivalence relation
among the blocks of the design, satisfying the following property. For any point
P and any block B there exists a unique block C such that P is incident with
C, and C' and B belong to the same equivalence class. In this case we say that
B is parallel with C' and S is called a design with parallelism.

1.2 Projective spaces over finite fields

Standard works on Finite Geometry are the books Finite Geometries by Dem-
bowski [32], Projective Geometries over Finite Fields by Hirschfeld [37], Finite
Projective Spaces of Three Dimensions by Hirschfeld [39], and General Galois
Geometries, by Hirschfeld and Thas [38]. A good introduction to the theory
of projective and polar spaces is Projective and Polar spaces by Cameron [26].
Projective spaces can be defined over arbitrary fields. Here we restrict ourselves
to finite fields.

Let V(n,q) be the n-dimensional vector space over the finite field of order
q, GF(q), where ¢ = p", p prime, h > 1. We define the (n — 1)-dimensional
Desarguesian projective space over GF(q) (PG(n — 1,q)) as follows. The 0-
dimensional subspaces of PG(n — 1,q) are the one-dimensional subspaces of
V(n, q), the one-dimensional subspaces of PG(n—1, q) are the two-dimensional
subspaces of V(n, q), ..., the (n — 2)-dimensional subspaces of PG(n — 1, q) are
the (n — 1)-dimensional subspaces of V(n,q). The dimension of PG(n — 1, q)
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is n — 1. To avoid confusion, we use the word rank (sometimes abbreviated as
k) for the dimension of a vector space and dimension (sometimes abbreviated
as dim) for the dimension of the corresponding projective space. So we say
that a subspace of PG(n — 1, ¢) has rank ¢ and dimension ¢ — 1. The codimen-
sion (sometimes abbreviated as codim) of a subspace of dimension n — k — 1
of PG(n — 1,q) is k. A subspace of PG(n — 1,¢q) of dimension 0, 1, 2, 3,
n — 2 is called a point, a line, a plane, a solid, and a hyperplane, respectively.
Sometimes we will use the term t-space or t-subspace of PG(n — 1, ¢q) instead
of t-dimensional subspace of PG(n — 1,¢q). We also say that PG(n — 1, ¢) is an
(n — 1)-dimensional projective space or short a projective space.

If H is a hyperplane of PG(n — 1,q), then AG(n —1,q) = PG(n—1,q) \ H is
an (n — 1)-dimensional Desarguesian affine space over GF(q). The subspaces
of AG(n —1,q) are U\ H where U is a subspace of PG(n — 1,¢q). We say that
H is the hyperplane at infinity of AG(n — 1, q).

Every non-zero vector v € V(n, ¢) determines a projective point P(v) of PG(n—
1,q). The vector v is called a coordinate vector of P(v) or v is a vector rep-
resenting the point P(v). If v has coordinates (z1,xa,...,x,) with respect
to a fixed basis, then we denote the point P(v) by (x1,22,...,2,). Hf U is a
subspace of V(n, g) then we denote the corresponding subspace of PG(n — 1, ¢q)
with P(U). If a subspace W is contained in a subspace U, then we say that W
is incident with U, U is incident with W, U is on W, or W is on U, denoted
by W C U. The intersection of two subspaces U and W, written U N W, is
the subspace containing the points common to U and W. The span of two
subspaces U and W, or the subspace spanned by U and W, written (U, W), is
the smallest subspace of PG(n — 1, ¢) containing the points of U and the points
of W.

If we denote the number of points of PG(n — 1,¢) by 6,_1(¢q) then

On-1(g) = =¢" " T g L

The Gaussian coefficient

[n} _ @ -D@"-q).. (" ")

k (¢* = 1)(gF —q)...(¢* — ¢*1)
(" —1)(¢" ' =1)...(¢" " -1
(" -1 1-1)...(¢g—1)

counts the number of subspaces of rank & in V(n,q). Let U be a subspace of
rank 7 in V(n,q). Then the number of subspaces of rank k containing U in
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V(n,q), with r < k, is equal to

i,

Let 2 < t < n—2, let P be the set of points of PG(n — 1,q), and let £
be the set of (¢ — 1)-dimensional subspaces of PG(n — 1,¢). If we define the
incidence relation I between elements of P and £ as symmetric containment,

then (P, L,1) is a
2= 01(0). 0010 | 25 |)

design, denoted by PG;_1(n — 1, ¢). In the same way the set of points and the
set of (¢ — 1)-dimensional subspaces of AG(n — 1, q) form a

n— _ n—2
2_((1 1aqt 1,|:t2:|)
q

design, with the following parallelism. Two blocks belong to the same equiva-
lence class of the parallelism, if they intersect the hyperplane at infinity in the
same (¢t — 2)-dimensional subspace. The design is denoted by AG;_1(n —1,q).

Let U and W be two (n — 1)-dimensional Desarguesian projective spaces over
GF(q), n > 3. A collineation of U onto W is a bijection « between the set of
points of U and the set of points of W, preserving incidence. We denote the
collineation induced by the bijection « also by «. Note that the definition of
a collineation between projective spaces is a special case of the definition of a
collineation between two incidence structures which we have already defined in
Section 1.1. A collineation between two lines L and M is a bijection between
the set of points of L and M, which can be extended to a collineation of a plane
containing L onto a plane containing M. A collineation of a projective space
U onto itself is called a collineation of U.

Let A be a non-singular (n x n)-matrix over GF(q). The bijection between
the points of U and the points of W induced by the map (with respect to a
fixed basis)

T ail a2 ... Qin T1

€2 az1 a2 ... QA2n €2
= . — Ax =

Tn anl aAn2 CIE Ann Tn

induces a collineation of U onto W, called a projectivity of U onto W. The
collineation induced by A is also denoted by A. If ¢ : x +— z7 is an auto-
morphism of GF(q), then the map (x1,xo,...,z,) — (],25,...,27) defines a
collineation of PG(n—1, q), called an automorphic collineation of PG(n—1,q).
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Theorem 1.2.1 (The Fundamental Theorem of Projective Geometry)

1. The set of projectivities of PG(n — 1,q) and the set of collineations of
PG(n —1,q), form a group with the composition as operator.

2. If a is a collineation of PG(n — 1,q), then « is the composition of an
automorphic collineation o and a projectivity A. We write « = (A, o).

3. If{P1, Pa,..., Py} and {Q1,Q2,...,Qn}, are sets of points of PG(n—1, q)
such that the subspace spanned by each of these sets is PG(n—1,q), then
there exists a unique projectivity « such that P = Q;, i =1,2,...,n.

The group PT'L(n, q) of collineations of PG(n — 1, ¢) is called the collineation
group of PG(n —1,q). The group PGL(n, q) of projectivities of PG(n — 1, q) is
called the projective general linear group of PG(n —1,q).

The definitions for the dual of an incidence structure, and for dualities and
polarities, can be specialised in the case of projective spaces. Given a finite
projective space S, the dual space SP, is the incidence structure whose points
and hyperplanes are respectively the hyperplanes and points of S. Consider a
function 6 : S — SP. If § is a collineation, then it is called a duality of S. If
¢ is a projectivity then it is called a correlation of S. In either case, if § has
order 2, then it is called a polarity of S. Let § be a polarity of PG(n — 1, q).
If U is a subspace of PG(n — 1, q) then we say that U° is the polar space of U
(with respect to the polarity §). If a point P is contained in its polar space, then
we say that P is an absolute point (with respect to 6). By Theorem 1.2.1, there
exists a non-singular matrix A = (a;;); ; and an automorphism o of GF(g) such
that § = (A,0) € PT'L(n, q). We list the five types of polarities.

e If o =1, g odd, A = AT, the polarity ¢ is called an ordinary polarity, or
orthogonal polarity, or also a polarity with respect to a quadric.

o Ifo =1, A= —AT and all a;; = 0, then every point is an absolute point
and n should be even (since A is non-singular and skew-symmetric). We
call the polarity § a symplectic polarity, a null polarity, or a polarity with
respect to a linear complex.

e Ifo=1,qeven, A= AT and a;; # 0 for some i, then the polarity ¢ is
called a pseudo-polarity.

e If 0 # 1, then ¢ must be a square and ° = zV4. In this case the polarity
0 is called a unitary polarity, or a Hermitian polarity.

A projective plane PG(2,¢) is an example of an incidence structure, where a
point P is incident with a line L if P C L. Remember that an incidence struc-
ture is also called a geometry of rank 2. The reason for this is that there are two
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types of elements, which we called points and lines. One can define a geometry
of rank n in a similar way. Then we have n types of elements of the geometry.
We do not want to go in detail here. For more on this subject we refer to [25].
An example of such a geometry of rank n — 1 is induced by the subspaces of
PG(n —1,q). One can define sets S1,Sa,...,S,—1, as follows. S is the set of
points of PG(n — 1,¢), S2 is the set of lines of PG(n — 1,¢), ..., Sp—1 is the
set of hyperplanes of PG(n — 1,¢). An element x is incident with an element
y if x is contained in y or y is contained in z. The definitions of a collineation
between incidence structures and of isomorphic incidence structures can easily
be extended to geometries of rank n.

Let U be a subspace of PG(n — 1,¢) of dimension £ —1 (0 > k > n). We
define the following geometry G. The elements of type (1), called points, of G
are the k-dimensional subspaces of PG(n — 1,¢) containing U; the elements of
type (2) of G are the (k + 1)-dimensional subspaces of PG(n — 1, ¢) containing
U; ...; the elements of type (n — k) are the hyperplanes of PG(n — 1,¢) con-
taining U. This defines a geometry of rank n — k, with the incidence relation
induced by symmetric containment. One can prove that this geometry G is iso-
morphic with the geometry of rank n— k& induced by the (n —k—1)-dimensional
projective space PG(n — k — 1,¢q). It is called the quotient geometry of U in
PG(n—1,q).

If we restrict the coordinates of the points of PG(n — 1, ¢) with respect to a
fixed basis to a subfield of GF(q), then we obtain a subgeometry of PG(n—1, q).
With respect to a fixed basis this subgeometry is called canonical. If ¢ = ¢3,
then a subgeometry isomorphic to PG(n — 1, ¢q;) is called a Baer subgeometry.

We say that a projective space P, is an embedding of a projective space P;
in a projective space Pjs if

e P is isomorphic to P,
e the pointset of P, is a subset of the pointset of P3 and

e the lines of P, are the lines of P35 induced by the points of Ps.

1.3 The projective plane

Consider the Desarguesian projective plane PG(2, ¢). Then the following prop-
erties are satisfied.

1. Any two distinct lines are incident with exactly one point.

2. Any two distinct points are incident with exactly one line.
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3. There exists a set of 4 points, no three of which are collinear.

An incidence structure (P, L,1) is called a projective plane if it satisfies the
conditions 1, 2, and 3. A projective plane 7 is Desarguesian if the plane satis-
fies the theorem of Desargues, see [32], or equivalently, if there exists a prime
power ¢ such that the plane 7 is isomorphic with PG(2,¢). A collineation of a
projective plane 7 has an axis ¢ if and only if it has a center P, see [32]. If the
center of a central collineation is incident with the axis then the collineation
is called an elation. If the center and the axis of a central collineation are not
incident, then the collineation is called a homology.

An affine plane is an incidence structure that is obtained by deleting a line
¢ and the points incident with ¢ of a projective plane. The line /¢ is called the
line at infinity of the affine plane. Consider an affine plane my with correspond-
ing projective plane 7 and line at infinity £. A collineation of m, is called a
dilatation if it has axis £ when regarded as a collineation of w. A translation of
mp is either the identity or a dilatation without fixed points. The translations
of an affine plane form a group, called the translation group of my. We say that
g is a translation plane if its translation group acts transitively on the points
of .

1.4 Subsets of projective spaces

Let A and B be two sets of subspaces of PG(n — 1,q). We say that A is iso-
morphic to B, denoted A = B, if there exists a collineation of PG(n — 1,q)
mapping A onto B.

Let Q = EZJ':LKJ' a;; X;X; be a quadratic form over GF(q). A quadric Q
in PG(n — 1,q) is a set of points whose coordinates, with respect to a fixed
basis, satisfy @ = 0. We denote such a quadric with Q(n — 1,¢). Let g be a

square and let H = 223:1 ainiX]?/a, with a;; = a}{a, a Hermitian form over
GF(q). A Hermitian variety in PG(n — 1,q), denoted by H(n — 1,q), is a set
of points whose coordinates, with respect to a fixed basis, satisfy H = 0. A
quadric or Hermitian variety of PG(n — 1, ¢) is called degenerate if there exists
a coordinate transformation which reduces the form to one in fewer variables;

otherwise, the quadric or Hermitian variety is called non-degenerate.

Theorem 1.4.1 (Projective classification of quadrics)

The number of orbits on the set of non-degenerate quadrics in PG(n — 1,q)
under the action of PGL(n,q) is one if n is odd and two if n is even. They
have canonical forms as follows.
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e n is odd:
X4+ Xo X5+ 4+ Xno1Xn, (1.1)
e 1 is even:
X1 Xo+ X3 X4+ + X021 X0, (1.2)
or
F(X1, Xo)+ X3 Xy + -+ X1 X0, (1.3)

where [ is an irreducible binary quadratic form.

Quadrics with form (1.1), (1.2), and (1.3), are called parabolic, hyperbolic,
and elliptic, respectively, and are denoted by Q(n — 1,¢q), QT (n — 1,q), and
Q (n—1,q). A quadric of PG(2,q) is called a conic of PG(2,q). The projec-
tive index of a quadric is the maximum dimension of subspaces contained in
the quadric. The Witt index of a quadric is the rank of the maximal subspace,
i.e., the projective index plus one. If ¢ is odd, respectively ¢ is even, then
the absolute points of an orthogonal polarity, respectively of a pseudo-polarity,
form a quadric Q in PG(n — 1, ¢q). If ¢ is a square, then the absolute points of
a Hermitian polarity form a Hermitian variety H in PG(n — 1,¢). If the polar
space of a point P on the quadric Q, respectively on the Hermitian variety H,
intersects the quadric Q, respectively the Hermitian variety H, in P, then it is
called the tangent space of Q, respectively H, at the point P.

Consider the projective plane PG(2,q). A set of k points with the property
that no three points are collinear is called a k-arc. A k-arc is complete if it is
not contained in a (k + 1)-arc.

Theorem 1.4.2 (Bose [20])
Let K be a k-arc in PG(2,q). If q is odd then k < g+ 1. If q is even then
kE<qg+2.

A (q + 1)-arc is called an oval, a (¢ + 2)-arc is called a hyperoval. A line
intersecting K in exactly one point is called a tangent or a tangent line. A
line intersecting K in two points is called a secant or a secant line. A line not
meeting K is called an external line. The ¢ + 1 tangent lines of an oval in
PG(2,q), q even, are concurrent. The intersection point is called the nucleus
of the oval. Adding the nucleus to the oval we get a hyperoval of PG(2, ¢). For
q odd, ovals are classified by the following theorem.

Theorem 1.4.3 (Segre [68], [69])
In PG(2,q), q odd, every oval is a conic.
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Dually a set of ¢ + 1 lines no three concurrent is called a dual oval. If g is
odd, then the tangents to an oval of PG(2, q) form a dual oval. As we already
mentioned the tangents to an oval of PG(2, q), ¢ even, all contain the nucleus.
Hence they do not form a dual oval. If ¢ is odd then every point P not on a
conic C is either on no tangent line to C, in which case P is called an internal
point, or on exactly two tangent lines to C, in which case P is called an external
point. For more on ovals and hyperovals we refer to the lecture notes of Brown
[24]. A lot of information on hyperovals can also be found on Bill Cherowitzo’s
Hyperovals page [30].

Consider the projective 3-dimensional space PG(3,q). Let P be a point of
PG(3,¢) and C a conic in a plane of PG(3,¢) not containing P. A quadratic
cone K of PG(3,q) is the set of points on the lines (P,Q), Q € C. P is called
the vertex of K and C is called the base of K.

A E-cap of PG(3,q) is a set of k points of PG(3, ¢) no three collinear.

Theorem 1.4.4 (Bose [20] for ¢ odd, Seiden [71] for ¢ = 4, Qvist [66] for ¢
even)
If O is a k-cap in PG(3,q) and ¢ > 2 then k < ¢* + 1.

When ¢ = 2, then the affine points of PG(3,2) with respect to a hyperplane
form an 8-cap. An ovoid of PG(3,q) is a (¢* + 1)-cap of PG(3, q).

Theorem 1.4.5 (Barlotti [10])
If O is an ovoid of PG(3,q), q odd, then O is an elliptic quadric of PG(3,q).

If ¢ is an odd power of 2, then there is one more example of an ovoid of PG(3, q)
known, the so-called Tits ovoid, Tits [85]. Ovoids in PG(3, q) are classified for
g < 32. In 1990 O’Keefe and Penttila [53] have shown that all ovoids of
PG(3, 16) are elliptic quadrics (a computer search). A computer-free proof was
given in 1992 [54]. In 1994 O’Keefe, Penttila and Royle [55] have shown that
all ovoids of PG(3, 32) are elliptic quadrics or Tits ovoids. For more on ovoids
in PG(3, q) we refer to the lecture notes of Brown [24], for a published survey
we refer to O’Keefe [52].

A plane meeting an ovoid in one point is called a tangent plane. If a plane
of PG(3, ¢) meets an ovoid in more than one point then it meets the ovoid in
an oval. Hence any plane of PG(3, ¢) meets an ovoid in 1 or ¢ 4+ 1 points. Such
a set is called a two-intersection set with respect to planes of PG(3,q). More
generally, a two-intersection set with respect to hyperplanes in PG(n — 1, q) is
a set T of points for which there exist integers m; and ms, such that every
hyperplane of PG(n — 1, ¢) meets T' in my or mg points. The numbers m; and
mg are called the intersection numbers of T.
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1.5 Spreads

A partial spread (partial (t — 1)-spread) of PG(n — 1,¢) is a set of mutually
disjoint subspaces of the same dimension (¢ —1). Let S be a set of (¢ — 1)-
dimensional subspaces of PG(n—1, ¢). Then S is called a spread or (t—1)-spread
of PG(n — 1,q) if every point of PG(n — 1,q) is contained in exactly one el-
ement of S. Let S be a (t — 1)-spread of PG(n — 1,q). The deficiency of a
partial (t — 1)-spread S, of PG(n — 1,¢) equals |S| — |S,|. If t = 1 then S is
just the set of points of PG(n — 1,¢q). If t = 2 then S is called a line spread
or a spread of lines. If t = 3 then S is called a plane spread or a spread of planes.

If S is a set of subspaces of V(n,q) of rank ¢, then S is called a t-spread of
V(n,q) if every vector of V(n,q) — {0} is contained in exactly one element of
S. Note that spreads of V(n, ¢) are in one-to-one correspondence with spreads
of PG(n — 1,¢), and from now on we will consider these two spreads as one
object S.

Lemma 1.5.1 If there exists a (t — 1)-spread in PG(n — 1,q), then t divides
n.

Proof. Suppose there exists a (t — 1)-spread S of PG(n — 1,¢). Since every
point of PG(n — 1, ¢) is contained in exactly one element of S, the number of
points of a (¢t — 1)-space has to divide the number of points of PG(n —1,¢). So
01-1(q)|0n-1(q) or

¢ -1, ¢"—1

qg—1 | g—1"~
This implies that ¢ divides n. |

The converse is also true. If ¢ divides n then there exists a (¢ — 1)-spread
of PG(n—1,q). We delay the proof of this statement until we introduced some
more theory. From now on we put n = rt for some r > 1.

Let S be a (t — 1)-spread of PG(rt — 1,q). Consider PG(rt — 1,q) as a hy-
perplane of PG(rt,q). We define an incidence structure (P, L,I) as follows.
The set P consist of all points of PG(rt, q) \PG(rt —1, ¢) and the set £ consists
of all t-spaces of PG(rt, q) intersecting PG(rt — 1, ¢) in an element of S. The
incidence relation I is symmetric containment. Then the incidence structure
(P,L,1) is a 2 — (¢"t,¢*,1) design with parallelism, see [11]. If 7 = 2 then
(P, L,]1) is a translation plane of order ¢'. This construction is sometimes re-
ferred to as the André-Bruck-Bose construction.

Remark. Let 7 be a translation plane with translation group 7', let B de-
note the set of parallel classes of 7, and let T'(P) denote the subgroup of T
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which fixes every line of the parallel class P € 3. The kernel of 7 is the set of
all endomorphisms « of T' with T'(P)* C T'(P), for all parallel classes P € .
With this definition of the kernel, we also have the converse of the above rela-
tion between spreads and translation planes, namely: every translation plane
with dimension at least two over its kernel can be constructed via the André-
Bruck-Bose construction from a spread. Hence every translation plane with
dimension at least two over its kernel induces a spread. For more on transla-
tion planes we refer to [25], [32].

For any r > 2, we say that the spread is Desarguesian if the design is iso-
morphic to AG1(r,¢"). The spread S is called normal or geometric if and only
if the space generated by two spread elements is partitioned by a subset of
S. From this it follows that the space generated by any number of elements
from a normal spread is partitioned by elements of S. If » = 1,2 then every
(t — 1)-spread of PG(rt — 1,q) is normal. If r > 2 then § is normal if and only
if § is Desarguesian, see [49].

As promised we will now construct a (¢t — 1)-spread of PG(rt — 1,¢q). Em-
bed PG(rt — 1,q) as a subgeometry of PG(rt — 1,¢"). Since all extensions of
the same degree are isomorphic we may assume that this extension is canon-
ical with respect to a fixed basis. Let ¢ be the automorphic collineation of
PG(rt — 1,¢%) induced by the field automorphism z +— x¢ of GF(q?), i.e.,

o (@0, X1y .y Tp—1) — (@, 2,2l ).
Then o fixes PG(rt — 1, ¢) pointwise and we have the following lemma.

Lemma 1.5.2 (see [28])
A subspace of PG(rt — 1,q%) of dimension d is fized by o if and only if it
intersects the subgeometry PG(rt — 1,q) in a subspace of dimension d.

Moreover there exists an (r —1)-space 7 skew to the subgeometry PG(rt—1, q),
see [28]. Let P be a point of m and let L(P) denote the (¢ — 1)-dimensional
subspace generated by the conjugates of P, i.e., L(P) = (P, P?,.. .,P"til).
Then L(P) is fixed by o and hence it intersects PG(rt — 1,¢q) in a (¢t — 1)-
dimensional subspace over GF(q) because of Lemma 1.5.2. We can do this
for every point of 7 and in this way we obtain a set S of (¢ — 1)-spaces of the
subgeometry PG(rt—1, ¢). Because 7 is skew to the subgeometry PG(rt—1, q),
any two distinct elements of S are disjoint. It follows that S forms a (¢ — 1)-
spread of PG(rt — 1, ¢). Moreover this spread is Desarguesian (follows from the
construction) and every Desarguesian spread can be constructed this way, see
[49], [70]. So together with Lemma 1.5.1 this proves the following theorem.

Theorem 1.5.3 (Segre [70])
A (t = 1)-spread of PG(n — 1,q) exists if and only if t divides n.
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In this construction we see a correspondence between the points of the (r —1)-
dimensional Desarguesian projective space over GF(q?) and the elements of a
Desarguesian (¢t — 1)-spread of PG(rt — 1, ¢). This correspondence will play a
key role in the next chapter. We can also see this in the following way. The
points of PG(r — 1,¢") are the subspaces of rank 1 of V(r,¢"). If we look at
GF(q") as a vector space of rank ¢t over GF(q) then V(r,¢") becomes a vector
space, V(rt,q) of rank rt over GF(g). A subspace of rank 1 in V(r, ¢*) induces
a subspace of rank ¢ in V(rt, q). So the points of PG(r — 1, ¢*) induce subspaces
of rank ¢ in V(rt, ). The lines of PG(r—1, ¢*), which are subspaces of rank 2 of
V(r,q), induce subspaces of rank 2t in V(rt, q). So it is clear that the points of
PG(r—1,¢"), can be seen as the elements of a Desarguesian (¢ — 1)-spread S of
PG(rt—1,¢q). This gives us an alternative view on the correspondence between
the points of PG(r — 1,¢") and the elements of a Desarguesian (¢ — 1)-spread
S.

Let § be a Desarguesian spread in PG(rt — 1,¢) and let U be a subspace
of dimension kt — 1 of PG(rt — 1, ¢), spanned by spread elements. The quotient
geometry of U in PG(rt—1, q) is isomorphic to PG(rt —kt —1, ¢). Equivalently,
we may consider U to be a (k — 1)-dimensional subspace of PG(r — 1,¢"). The
quotient geometry of U in PG(r — 1, ¢*) is isomorphic to PG(r —k—1, ¢*). This
induces an (rt — kt — 1)-dimensional space over GF(q), with a Desarguesian
spread &’ induced by the points of PG(r — k — 1,¢%). We say &’ is the spread
induced by S in the quotient geometry of U in PG(rt — 1,q). The following
theorem now easily follows.

Theorem 1.5.4 If S is a Desarquesian spread in PG(rt—1,q) then the spread
induced by S in the quotient geometry of a subspace spanned by spread elements
in PG(rt — 1,q) is Desarguesian.

1.6 Tensor products

In this section we develop a representation of Desarguesian spreads inside the
tensor product of two vector spaces. Let V' and W be two vector spaces over
the field GF(q), with rk(V') = n, rk(W) = m. The tensor product of V and
W, denoted by V@ W is the set of all linear combinations of elements of
{v@w || v e Vw € W} with coefficients in GF(g), where ® is a binary
operation satisfying

(1 4+v)@W=v1 QW+ vy W,

V@ (w1 +wz) =v@w; + v wa,
(aw) @ w = a(v @ w),
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and
v ® (aw) = a(v @ w),

for all v,v1,v9 € V, w,wi,wy € W, and a € GF(q).

From the definition it follows that V' @Q W is a vectorspace over GF(q) of rank
mn. If we choose a basis {v1,ve,...,v,} for V and {w1,ws,...,wy} for W,
then the set

{viow; |1<i<n,1<j<m}

is a basis for VQ W. Let

u:iiuijviééwj S V®W
i=1 j—1

Then we can use the linearity to expand u in terms of the basis vectors of V'
and in terms of the basis vectors of W. We will use the following notation:

U=uj @i+ + Uy @Wpy =v1 QU + -+ Uy DUy,

where uf € V and vy’ € W, fori = 1,....mand j = 1,...,n. Let Vi, =

Lemma 1.6.1 The vector spaces V,, and W,, are independent of the choice of
basis of V and W.

Proof. Suppose {v1,...,v,} and {v],...,v),} are two bases of V. Let v} =
a;1v1 + - -+ ajpn, for i = 1,...,n. Hence
!
(%1 ail ... Q1n V1
/
vl ani ... Gnp Un,
U1
= A .
Un

with detA # 0, A(4,7) = a;j. Let u =2 @ u'{ + -+ v, ®u',,. Then

u = (a1101 + -+ ) @ U + o F (Aniv o apptn) @ U,
= v @ (au'y + -+ apuy)+ v, @ (a1u'yY + -+ appu’))
v @uY + -+ v, @uy.
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This implies

ut’ ail ... Qpl u'y

uﬁ Alp .. Qpn u':
Since detA # 0, this shows that W, is independent of the choice of the basis
of V. The proof for V,, is completely analogous. |

If a vector u of V. @Q W can be written as v ® w, with v € V and w € W, then
u is called a pure tensor of V. Q W.

Lemma 1.6.2 Ifu € VR W and k is minimal such that u can be written as
the sum of k pure tensors, then rkV, = rkW, = k.

Proof. Suppose u is the sum of k pure tensors, u = z1 + 29 + - - - + 2, with

z = Z Xi(z)v; ® Z wi(z)w,.
i=1 j=1

Expanding z; in terms of the basis vectors of V' gives

=01 @A () Y i (z0wy + 4 v0 ® M(20) D i (z0)w;.
j=1 j=1

Expanding v in terms of the basis vectors of V' then gives us

k

u = ne Al(zl)Zuj(zl)wj
=1 j=1

k m
+ v2 ® Z A2(z1) Z wi(z)w;
=1 j=1

k

+ vy ® )\n(zl)Zuj(zl)wj.
=1 j=1

From this we can see that W, is contained in the space spanned by the set

m m m
D ni(zwy, Y mi(z)wy, > g (z)w;
j=1 j=1 j=1

Analogously, we can show that V,, is spanned by the set

{Z )\Z‘(Zl)’Ui, Z )\i(ZQ)’UZ', ceey Z )\z(zk)vz} .

i=1 =1
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So we have proven that the rank of V,,, respectively W, is at most k. Now
suppose the rank of V,, is less than k, then we can write

n

Z )\Z (zk)vi

i=1

as a linear combination of the previous &k — 1 elements of the above set, let’s

say
n n

Z Xi(zk)vi = aq Z Ai(z1)vi + -+ ag—1 Z Ni(zk—1)v;
i=1

i=1 i=1

It follows that

“t+ag— 12)\ Zk—1) ®Zu] 2)W;,

2k

I
S
i
L[]
>’
=
N
_
~—
<
o7

So we get that

Z Ai(z1)v; ® Z wi(z1)w; + a1 Z i (zi)w;
i=1 j=1 j=1

_|_

n
+Z)\ Zk—1)V; ® Zug Z—1)W5 + G 12/@ 2wy |,
i=1

which shows that u can be written as the sum of £ — 1 pure tensors, a contra-
diction. We can conclude that

rkV, = rkW, =k,
where k is minimal such that « can be written as the sum of k& pure tensors.Hl

Remark. Given a basis for V and W the tensor product V QW can be
identified with the set of n x m matrices over GF(q). The above then essen-
tially says that row and column rank of a matrix are equal, and that every rank
k matrix can be written as the sum of k£ rank 1 matrices.
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Lemma 1.6.3 If H is a subspace of GF(¢") = V(n,q) and o € GF(¢"), such
that oH C H, then H is a vector space over the extension field GF(q)(«).

Proof. If the degree of the minimal polynomial of « over GF(q) is k+ 1, then
every element 3 € GF(¢)(a), can be written as 8 = ag+aja+asa®+- - -+ara®,
with ag,...,ar € GF(q). Let h € H, then

Bh = agh + a1ah + - - - + ara®h.

Since o H = o 1aH CoF"'HC...CaH C H, there exist hg, h1,...,h; €
H, such that
aoh = ho, . .., apa"h = hy.

This implies Sh € H. Clearly H is closed under addition, so we can conclude
that H is a vector space over GF(q)(a). |

Consider the vector space V. = V(rt,q) = GF(q)" @ GF(q)" of rank rt over
GF(q). We define a multiplication of elements of GF(¢") UGF(¢") with vectors
of V. We leave it up to the reader to interpret elements of GF(q)" = GF(¢') as
vectors over GF(gq) or as elements of the finite field GF(q"). For a pure tensor
v ®@ w for example we write A(v @ w) = () @ w = v ® (\w) for A € GF(q),
AMv®@w) = (W) @ w for A € GF(q") \ GF(¢), \(v ® w) = v ® (Aw) for
A € GF(¢")\GF(q"). If A € GF(¢")NGF(q") then we write A(v@w) = (Av) @w
if we consider A as an element of GF(¢") and we write (v®@w)A = v® (Aw) if we
consider A as an element of GF(¢"). So we write multiplication with elements
of GF(q") on the left and multiplication with elements of GF(q?) on the right.
For v € V we define the following subspaces of V.

Sr(v) = {av || € GF(¢")},

Se(v) = {vB || B € GF(¢")}-

We have the following theorem.

Theorem 1.6.4 The set S, = {S.(v) | v € V} is a Desarguesian r-spread of
V. The set S; = {Si(v) || v € V} is a Desarguesian t-spread of V.

Proof. The proof is easy if we consider V as a vector space V(r,q") of rank
r over GF(q') (or projectively as PG(r — 1, ¢%)), respectively as a vector space
V(t,q") of rank t over GF(q") (or as PG(t—1,¢")). The elements of S, are then
the points of PG(t—1, ¢"), and the elements of S; are the points of PG(r—1, ¢*).
The theorem now easily follows. |



Chapter 2

Scattered spaces

2.1 Introduction

Let S be a spread in V(n,q). A subspace of V(n,q) is called scattered with
respect to S if it intersects each spread element in a subspace of rank at most
one. Projectively, if S is a spread in PG(n — 1, q), a subspace of PG(n — 1,q)
is called scattered with respect to S if it intersects each spread element in at
most one point. It is clear that the definitions are consistent with each other
and give rise to equivalent problems.

As an example of a scattered space consider a spread S of lines in PG(3, ¢), and
a line not contained in the spread. The line intersects ¢ + 1 spread elements in
a point and is skew to all other lines of S. Since a plane of PG(3,¢) contains
¢*> + q + 1 points and a line spread of PG(3,q) consists of ¢ + 1 elements, it
is clear that a plane of PG(3,q) necessarily contains exactly one line of the
spread. So the dimension of a scattered space with respect to a line spread in
PG(3,q) is at most 1, the dimension of a line.

A scattered space of highest possible dimension is called a mazimum scattered
space. In the previous example it was easy to determine the dimension of a
maximum scattered space. As we shall see later on this is not always the case.
In this chapter we prove some upper and lower bounds for the dimension of a
maximum scattered space with respect to a (t — 1)-spread of PG(rt — 1, q).

Note that if ¢ = 1, the space PG(rt — 1,¢) containing the spread is scattered
with respect to every (¢ — 1)-spread in PG(rt — 1,¢q), since in this case the
spread elements are just the points of the projective space. From now on we
assume that ¢ > 2. If » = 1 then a (¢ — 1)-spread of PG(rt — 1, ¢) consists of
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one element, the space itself. The dimension of a maximum scattered space is
clearly 0, i.e., the dimension of a point. From now on we assume that r > 2.

2.2 A lower bound on the dimension of a max-
imum scattered subspace

In this section we give a procedure to enlarge a scattered subspace, whenever
this is possible, and obtain a lower bound on the dimension of a maximum
scattered space.

Theorem 2.2.1 ([18, Theorem 2.1])
Let S be a (t—1)-spread of PG(rt—1,q) and let T be an m-dimensional scattered
subspace with respect to S. If

rt —t
2

m <

then T is contained in an (m + 1)-dimensional scattered subspace with respect
to S. Moreover, the dimension of a mazimum scattered subspace with respect
to S is at least [%]

Proof. Let S be a t-spread in V(rt,q) and T = (wp, w1, . . ., wy) be scattered
with respect to S of rank m + 1. For wy,+1 ¢ T, the space (T, wy,+1) will be
scattered with respect to S if and only if

Wnt1 ¢ U @

Q:(QESINQNT#{0})

So T is contained in a larger scattered subspace if
¢ > (@ =@ T L)

The term on the left is the number vectors in V(rt, ¢). The first factor on the
right hand side is the number of non-zero vectors in the subspace spanned by T’
and a spread element intersecting 7', which are not contained in 7". The second
factor on the right hand side is the number of spread elements intersecting 7.
The last term is the number of vectors contained in 7". Hence this allows us to
extend T to a scattered subspace of rank m + 2 if m < % It follows that
the maximum dimension of a scattered subspace with respect to S is at least

{%] This concludes the proof. |
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2.3 An upper bound on the dimension of a scat-
tered subspace

Let S be a (¢t — 1)-spread in PG(rt — 1, ¢). The number of spread elements is
(¢t —1)/(qt —1) = ¢Vt 4 ¢r=2* 1 4 ¢* 4+ 1. Since a scattered subspace
can contain at most one point of every spread element, the number of points in
a scattered space must be less than or equal to the number of spread elements.
So we have the following trivial upper bound.

Theorem 2.3.1 ([18, Theorem 3.1])
If T is an m-dimensional scattered space with respect to a (t — 1)-spread in
PG(rt — 1,q) then

m<rt—t—1.

Let us illustrate these bounds with an example. First of all we remark that
for a line spread in PG(3,¢q) the upper and lower bound coincide. But this
is quite exceptional. Comparing the lower and the upper bound we see that
these bounds can only coincide if ¢(r — 1) < 4. Since we assumed ¢ and r both
at least 2, it follows that we already know the exact dimension of a maximum
scattered space for (r,t) € {(2,2),(2,3)}, i.e., a line spread in PG(3,¢) and
a plane spread in PG(5,¢). The dimension of a maximum scattered space in
these cases is respectively 1, the dimension of a line, and 2, the dimension of
a plane. There is a large variety of spreads and there is not much that can be
said about the possible dimension of a scattered subspace with respect to an
arbitrary spread. This is one reason to consider scattered spaces with respect
to a Desarguesian spread. Another reason is the correspondence between the
elements of a Desarguesian spread and the points of a projective space over an
extension field, as explained in Chapter 1. First, however, we show that for any
subspace W of dimension rt —¢ — 1, we can always find a spread S such that W
is scattered with respect to S. Hence with respect to the spread S there exists
a scattered subspace W attaining the upper bound given in Theorem 2.3.1.

2.4 Scattering spreads with respect to a sub-
space

A spread is called a scattering spread with respect to a subspace, if this subspace
is scattered with respect to the spread.

Theorem 2.4.1 ([18, Theorem 3.2])
If W is an (rt —t — 1)-dimensional subspace of PG(rt —1,q), r > 2, then there
exists a scattering (t — 1)-spread S with respect to W.
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Proof. We remark that since all (rt —¢—1)-dimensional subspaces in PG(rt—
1,q) are isomorphic, it suffices to prove that we can find a spread S and an
(rt — t — 1)-dimensional subspace W, such that W is scattered with respect to
S. We give a proof using induction. In Theorem 2.5.5 we will show that there
exists a scattered (¢ — 1)-dimensional subspace with respect to a Desarguesian
(t — 1)-spread in PG(2t — 1,q). Assume r > 2. Let S’ be a Desarguesian
(t — 1)-spread in PG(rt — 1,¢q) and let U be a (rt — 2t — 1)-dimensional sub-
space of PG(rt — 1, q), spanned by elements of S’. Note that such a subspace
can be obtained by taking the span of r — 2 spread elements corresponding
to r — 2 points of PG(r — 1,¢*) which span an r — 3 space of PG(r — 1,4%),
i.e., a space of codimension 2. Now we consider the quotient geometry of U
in PG(rt — 1, q), which is isomorphic to PG(2t — 1, ¢q). Moreover, the (¢t — 1)-
spread in PG(rt — 1, ¢) induces a Desarguesian (¢ — 1)-spread in this quotient
geometry. The spread elements in the quotient geometry correspond with the
(rt —t — 1)-dimensional subspaces of PG(rt — 1, ¢) obtained by taking the span
of U and a spread element not intersecting U. Since S’ is a spread, it is clear
that two such subspaces are either equal or only have U in their intersection.
By Theorem 2.5.5, we can find a (¢ — 1)-dimensional scattered subspace with
respect to this spread in the quotient geometry. This induces an (rt —t — 1)-
dimensional space W containing U which intersects spread elements outside U
in at most a point. Let W’ be an (rt — t — 1)-dimensional subspace obtained
by taking the space spanned by U and a spread element of S’ not intersecting
W. By induction on r, we can change the spread locally in W’ in order to
find a spread S which is scattering with respect to U. The new spread S is a
scattering spread with respect to W. |

2.5 Scattered spaces with respect to a Desar-
guesian spread

Suppose we want to know the dimension of a maximum scattered space with
respect to a line spread in PG(5, ¢). From the lower bound Theorem 2.2.1 and
the upper bound Theorem 2.3.1 it follows that this dimension lies between 2
and 3. So we can always find a scattered plane but it is not clear if we can
find a scattered 3-space. The dimension of a maximum scattered space with
respect to a line spread in PG(5, ¢) will follow from Theorem 2.5.4.

Let S be a Desarguesian (¢ — 1)-spread of PG(rt — 1, q). Using the correspon-
dence between the points of PG(r — 1, ¢%) and the elements of a Desarguesian
(t—1)-spread of PG(rt—1, q), explained in Chapter 1, we now associate a set of



2.5 Scattered spaces with respect to a Desarguesian spread 21

points of PG(r—1, ¢*), with every subspace of PG(rt—1,q). If W is a subspace
in PG(rt—1, q), then we define B(W) as the set of points of PG(r—1, ¢*), which
correspond to the elements of S which have a non-empty intersection with W
in PG(rt — 1,q). If W has dimension m — 1, m > 0, then the cardinality of
B(W) is at most 0,,-1(¢) and at least one. However, dependent on the rela-
tionship between m and ¢ we can say more. For instance if m < ¢, then B(W)
can consist of one point, namely if W is contained in a spread element. Note
that if there exists a scattered m-space with respect to S, then the cardinality
of B(W) is maximal if and only if W is scattered.

Remark. Let W be a scattered subspace with respect to a Desarguesian
(t — 1)-spread of PG(rt — 1,q). If the dimension of the intersection of W
with a (2t — 1)-dimensional space of PG(rt — 1,q) corresponding with a line
L of PG(r — 1,¢") is bigger than 1, then there are three non-collinear points
of W N L, which are contained in spread elements corresponding with three
collinear points of PG(r — 1,¢"). This implies that the set B(W) is not nec-
essarily an embedding of W in PG(r — 1,4%). For more about embeddings we
refer to [47].

Using the structure of PG(r — 1,¢%), we are able to improve the bounds for
a maximum scattered space with respect to a Desarguesian (¢ — 1)-spread in
PG(rt — 1, ) in a number of cases. First we show that certain scattered spaces
of PG(rt — 1,q) induce two-intersection sets with respect to hyperplanes of
PG(r — 1,4%). To prove this result we use a standard counting technique in
finite geometry.

Theorem 2.5.1 ([18, Theorem 4.2])
If rt is even and W%r, is a subspace of rank %t of V(rt,q), which is scattered
with respect to a Desarguesian t-spread S of V(rt,q), then B(W%r) is a two-

intersection set in PG(r — 1,¢") with respect to hyperplanes with intersection
numbers 0=+ _;_,(q) and 02 _(q).

Proof. Let rt =2m and h; (i = 1,...,m) be the number of hyperplanes of
PG(r —1,q"), seen as subspaces of rank 7t — ¢ in V(rt, q), that intersect W,, in
a subspace of rank i. It is clear that a subspace of rank m and rt — ¢ contained
in V(rt, q) necessarily meet in a subspace of rank at least m — t and since W,
is scattered, such a hyperplane can not meet W, in a subspace of rank bigger
than rt — 2t, because of the number of points contained in that hyperplane.
Counting hyperplanes, point-hyperplane pairs (P,H),P C B(W) N H, and
point-point-hyperplane triples (P, Q, H), P,Q C B(W) N H, we get the set of
equations
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T — bl 1)
T oatam = B (@)ool 2)
.T_tii&l(Q)(@il(Q)l)hi = Om-1(0)(Om-1(q) = Dr—3(¢"). (3)

Consider the expression

rt—2t

Z [(0i-1(q) = Om—t—-1(q)) (0i-1(q) — Om—t(q))] s (2.1)

i=m—t
We can write the coefficient of h; in (3.3) as

0i-1(0)(0i-1(q) = 1) = [Om—t—-1(q) + Om—t(q) — 1]0i-1(q) + Om—t—1(q)0m—t(q).

Using the equations (1), (2) and (3), expression (3.3) is equal to
Om—1(q)(Om—1(q) = 1)0r—3(q")

- [metfl(Q) + 9m4(¢1) - 1]9m71(Q)9r72(qt) + omftfl(q)omft(q)orfl(qt)-

Replacing rt by 2m and 6,,_1(q) by it’s definition, this expression is equal to
(@ =1 a=1)72[(¢™ = D™ = a)(¢®" > = 1)
" =D+ @ =D = (- Dl¢" - D@ " = 1)
+ (@™ =)@ = (P - 1)
= (@ -1)"He—D)2[¢" = D" = 1) (@™ — ) (g™ " +1)
= (@+ 1)@ = 1)+ (@ = D™ + )]
= 0

Hence
rt—2t

Z [(91'71((1) - 9m7t71(Q))(9i71(Q) - 9mft(q))] h; =0,

1=m—t
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which implies that h; = 0, for all ¢ > m —t 4+ 2. Since a scattered subspace of
rank 7 intersects 6;_1(q) spread elements, this concludes the proof. |

If the hypotheses of Theorem 2.5.1, rt is even is not satisfied, then we have the
following.

Theorem 2.5.2 IfW,, is a scattered subspace of V(rt,q), rt odd, with respect

to a Desarguesian t-spread of rank m = Tt2_1, then B(W,,) has at most %

different intersection numbers with respect to hyperplanes in PG(r — 1,¢").

Proof. Starting with the equation (3.3) and using the equations (1), (2) and
(3) from the proof of Theorem 2.5.1 gives

rt—2t

(" =)(g—=1)* X [(0ic1(q) = Om—t-1(q)) (0i=1(q) — Om—1(q))] i

1=m—t

= (¢" = 1)(q = 1)*[Om-1(q) (Om-1(q) — 1)0r—3(q")
- [metfl(Q) + 9m4(¢1) - 1]9m71(Q)9r72(qt) + omftfl(q)omft(q)orfl(qt)]
— (qrt—2t+1 +q2m—t+1 + q2m—t +q7"t)

_ (qrtftJrl +q2m72t+1 + q2m + qrtft).
With m = =L this is

rt—2t

(¢ =D(@—1)* X [(0i-1(q) = Om—t-1(0)) (0i-1(q) — Om—1(q))] i

i=m—t

(q2m72t+2 + q2m7t+1 +q2m7t +q2m+1>

_ (q2m—t+2 +q2m—2t+1 +q2m +q2m—t+1)_

m—t+j5—1 m—t)

The coefficient of hy,,—t4+;—1 in this expression is (¢' — 1) (¢ —q
(qm~tHi=t — gm=t*+1). The highest order term has degree 2m —t +2j — 2. This

implies that h,,—¢+j—1 = 0 for j > (¢t + 3)/2. [ |

We can extract some more information from the proof of Theorem 2.5.1 than
was mentioned in the theorem. First of all we can solve for hre yand hee gy
in (1) and (2) to obtain the unique solution
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h; = 0,i<% -1t

het oy = 0r-1(q") — 02 _1(q),
h%t—t-i-l = 9%_1((])’

hi = 0,i>% —t+1.

Secondly, by considering some of the equations obtained in the proof, we get
an upper bound for the dimension of a maximum scattered subspace.

Theorem 2.5.3 ([18, Theorem 4.3])

If W, is a subspace of rank m of V(rt,q), which is scattered with respect to a
Desarguesian t-spread S of V(rt,q) then m < %t FEquivalently, the dimension
of a mazimum scattered subspace with respect to a Desarguesian (t — 1)-spread
in PG(rt —1,q) is at most % — 1.

Proof. Starting with a scattered subspace of rank m with respect to a De-
sarguesian t-spread in V(rt, ¢), we use the same set of equations as in the proof
of Theorem 2.5.1 to obtain the equation

rt—2t

(" =D(g—=1)* X [(0ic1(q) = Om—t-1(q)) (0i=1(q) = Om—t(q))] i

i=m—t

= (¢"=1)(g" —q)(¢"*" —1)
— @™ =)+ (¢ 1) = (¢ = D™ = 1)(¢"" =1)
+ (@™ =) (g™ = 1)(¢" - 1)

— (qrt—2t+1 + q2m—t+1 + q2m—t 4 qrt) _ (qrt—t—i-l 4 q2m—2t+1 4 q2m 4 qrt—t)'

We remark that these equations are also valid for rt odd. Since the coefficient
of h; in this expression is always positive, it follows that m < %t |

Returning to the previous example of a line spread in PG(5,q), we see that
this new upper bound tells us that the dimension of a maximum scattered
space is at most 2. The lower bound already told us that this dimension is at
least 2. Hence a maximum scattered subspace with respect to a Desarguesian
line spread in PG(5, ¢), must be a plane and we see that the bounds are sharp
in this case. This is not surprising since the lower bound (%] and the upper
bound %t — 1 coincide whenever ¢ = 2. So the problem is completely solved for
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Desarguesian line spreads of PG(2r — 1, ¢). As we mentioned before it is hard
to deal with arbitrary spreads. However, for line spreads of PG(2r — 1,q) we
can prove the following.

Theorem 2.5.4 ([18, Theorem 4.5])
Let S be a line spread in PG(2r — 1,q) and let T be a mazimum scattered
subspace of dimension m — 1. Then

m=r if S is a Desarguesian spread,
m>r+1 otherwise.

Proof. IfS isa Desarguesian line spread then the result follows from Theorem
2.2.1 and Theorem 2.5.3. Suppose S is not a Desarguesian spread. There exist
spread elements l;,[;, l such that [, and (I;,[;) intersect in a point P. In (I;, ;)
there are ¢? + g+ 1 planes through P, at least ¢+ 1 of which must be scattered.
Let 7 be such a scattered plane in (l;,1;). Then it is clear that (m,l;) = (m,1;).
By Theorem 2.2.1 we can construct a scattered (r — 1)-dimensional subspace
T,_1 containing 7. But then we have that (T,.—_1,l;) = (T,—_1,[;) and since the
number of r-dimensional spaces containing T)._; in PG(2r—1, q) is equal to the
number of spread lines intersecting T;.—1 (= 6,—1(q)), there exists at least one
r-dimensional scattered subspace containing T;._;. This concludes the proof. B

Remark. In [12], Beutelspacher and Ueberberg give some combinatorial char-
acterizations of Desarguesian spreads. The previous theorem also follows from
their results. The first part from [12, Section 2, Lemma 1], the second from
their main theorem in [12]. The proof given here is a shorter, more direct proof.

We remark that in the case of a Desarguesian line spread in PG(2r — 1,q)
a maximum scattered spaces is induced by a canonical Baer subgeometry
of PG(r — 1,¢%). More generally, a canonical subgeometry PG(r — 1,q) of
PG(r—1,q") induces a scattered (r — 1)-space (not necessarily maximum) with
respect to a Desarguesian spread in PG(rt — 1,¢). It follows from the above
theorem that in the case of line spreads, spreads which are not Desarguesian
admit a scattered subspace of higher dimension than those admitted by a De-
sarguesian spreads. We do not know if this is true in general. We now return
to Desarguesian spreads. In the next theorem we improve the lower bound for
a maximum scattered subspace with respect to a Desarguesian (¢t — 1)-spread
in PG(rt — 1,¢). The result gives us the exact answer whenever r is even. If r
is odd there is some more work to do.

Theorem 2.5.5 If W is a mazimum scattered subspace of dimension m with
respect to a Desarguesian (t — 1)-spread of PG(rt — 1,q), then
{m%t if v is even,

m > % — 1 otherwise.
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Proof. Let S be a (t — 1)-spread in PG(rt — 1,¢). We can write the vectors
of V(rt,q) as vectors over GF(¢") as following. Let o be a primitive root of
unity in GF(¢'), and let v be a vector of V(rt,q). The first ¢ coordinates
(v1,v2,...,v:) of v determine the element vy + vocx + v3a? + ... + U,foﬂtf2 of
GF(q"). The same for the second ¢ coordinates and so on. Thus with a vector
of V(rt,q) there corresponds a vector of V(r, ¢'). Conversely, every element of

GF(q") can be uniquely written as vy + vaar + vza? + ... + vtaqtfz, for some

v; € GF(q), and hence determines ¢ coordinates (vi,vs,...,v:) over GF(q).
With this one-to-one correspondence we can write the set of vectors of V(rt, q)
as {(z1,22,...,2) || #; € GF(¢")}. Without loss of generality we may assume

that S is the canonical Desarguesian spread, i.e., the spread element on the
vector v is {\v || A € GF(q¢")}.
Suppose r is even and let W be the set of vectors

{($1,$2, . ,xT/Q,x'f,xg, . ,$z/2) H x; € GF(qt), 1=1,..., 5}
Then we claim that W is a scattered subspace of rank %t First of all it is clear
that W is a subspace of V(rt,q) of rank %t Suppose W is not scattered with
respect to S. Then there exists a vector v € V(rt, ¢) \ {0}, such that v € W and
Av € W for some A € GF(¢") \ GF(q). Suppose i is the smallest number such
that the i-th coordinate x; of v is not zero. Then i < r/2, and since v, \v € W,
the equality Az} = A7z holds. But this implies A\ = X and hence A € GF(q),
a contradiction. Hence W is scattered with respect to S and has rank %t
If r is odd, then we can consider the following subspace

r—1

2}'

W:{(ml,xg,...,x%,x‘f,xg,...,x‘i;l,xl) | z; € GF(q"), i=1,...,
2

Then W is a subspace of V(rt, q) of rank Tt;t. In the same way as before one
shows that W is scattered. |

Remark. In the case that r is odd, the bound we obtained in Theorem 2.5.5
on the dimension of scattered spaces with respect to a Desarguesian spread
does not improve the bound we obtained in Theorem 2.2.1. However in the
proof of Theorem 2.5.5 an explicit construction is given.

So for r even there always exists a scattered subspace of dimension %t —
with respect to a Desarguesian (¢t — 1)-spread of PG(rt — 1, ¢), and an example
is given explicitly in Theorem 2.5.5 with respect to the canonical Desarguesian
spread of V(rt,q). We now investigate these subspaces in more detail. Put

}.

) r
W:{(561,1'2,...,SCT/Q,Z'({,SCg,...,IEZ/Q) | z; € GF(q"), 1:1,...,5
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Then W is a linear space over GF(q), but not over an extension field of GF(g).
In fact, the subspace W does not contain a subspace which is linear over some
extension field of GF(gq). Hence it is a scattered subspace with respect to the
canonical Desarguesian t-spread in V(rt, q). If U is a subspace over GF(q), and
n is maximal such that a U is linear over GF(¢"), then we say that GF(¢")
is the kernel of U. The scattered subspaces in the proof of Theorem 2.5.5
all have kernel GF(g). This is not a necessary condition however. In the next
theorem we will consider subspaces over GF(q) with an extension field of GF(q)
as kernel, and which are scattered with respect to the canonical Desarguesian
t-spread. But then of course it is necessary that this extension field only has
GF(q) in common with GF(¢?). This means that the extension field is GF(¢"")
for some 7’ relative prime with ¢.

Theorem 2.5.6 ([18, Theorem 4.4])
Let W,,, be a mazimum scattered subspace of dimension m —1 of PG(rt —1,q)
with respect to a Desarguesian (t—1)-spread S of PG(rt—1,q). Then m > r'k,
where k, v, with v'|r and (v',t) = 1, are choosen such that 'k is mazimal
satisfying
p s ifq=2andr =1,
r'k <

’ .
W otherwise;

Proof. We use the representation of a Desarguesian spread in the tensor
product V(rt,q) = GF(¢") @ GF(¢") introduced in section 1.6.

Let C be the class of subspaces of V(rt, ¢) of rank 'k, obtained from subspaces
of V(rt/r',q"") of rank k, which intersect at least one spread element in a sub-
space of rank at least two. Let W € C. Since W is a linear space over GF(qT/),
AW = W, for all A € GF(¢") € GF(q"). A vector u € GF(¢") ® GF(q") is
contained in the spread element S;(u) = {ua || « € GF(¢%)}. This implies
that spread elements are fixed by multiplication with elements of GF(q?). If
B e GF(q") \ GF(g) then

{Bua || a € GF(¢")} N {ue || a € GF(¢")} = {0® 0},

since (r/,t) = 1. Moreover, the spread elements are permuted by elements of
GF(¢"). For every spread element P the set {3P || 3 € GF(¢"')} contains
exactly 0,._1(q) different spread elements. If W has an intersection of rank
two with a spread element P then W will have an intersection of rank two
with at least 6,v_1(q) spread elements since the spaces W N P, A(W N P) and
(WNP)u have the same rank, for all A\ € GF(¢")* = GF(¢")\{0}, 1 € GF(¢")*.
We count 4-tuples (W, P,v1,v2), where W € C, P € S, and v; and vy are two
independent vectors in the intersection of P and W, in two different ways.
Starting with the number of spread elements, then counting the possibilities
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for v1 and v and then counting the number of elements of C' containing (vy, vs),
we get roughly

T_I/S -2 r k—2r")(Zt— r
0r-1(a")(q" = 1)(¢" — q) { P g ] o g Gmre
a’

Starting with the number of elements of C, then choosing the spread element
and then choosing v; and vy in their intersection, we get roughly

010, -1(a)(@* — 1)(¢* — q) ~ |Clg" .

The total number of subspaces of V(rt/r’, q’”l) of rank k has order ¢
If the order of |C] is smaller than this, there must exist a scattered subspace
of rank r'k. By computation there exists a scattered subspace of rank 7'k with
respect to S if

r'k(rt/r' —k) .

rt—t+r' +3
5 .
By doing the computation in detail we see that there exists a scattered subspace

if
(@ = D@ -1 -1)
(" = 1)(¢> = 1)(¢g"t="" = 1)

This is satisfied if r'k < MQFA unless 7’ = 1 and ¢ = 2, in which case

r'k <

<1.

'k < %27«42 implies the existence of a scattered subspace of rank r'k. This
concludes the proof. |

Using the computer package GAP we did some computing for small values
of ¢q,r,t. The results are listed in Table 2.1.

The first three columns give the values of ¢, 7 and ¢ for which the computer
search was performed.

Column 4 contains the upper bound (UB) %, obtained in Theorem 2.5.3, on
the rank of a maximum scattered space with respect to a Desarguesian t-spread
S in V(rt, q).

The next column gives the theoretical lower bound (LB) obtained in Theorem
2.5.5, Theorem 2.5.4 or Theorem 2.5.6. The theorem from which the theoretical
lower bound follows for the specified values of ¢, r and ¢, is given in the last
column. In the case that Theorem 2.5.6 implies the lower bound, the theorem is
not mentioned, but the values of v’ and k, as in Theorem 2.5.6, which determine
the best lower bound , can be deduced from the given vector spaces. In the fifth
row for example, Theorem 2.5.6 states that the lower bound 6 can be obtained
by a rank 2 vector space over GF(23) or by a rank 6 vector space over GF(2).
In the first case v’ = 3, k = 2, in the second case ' =1, k = 6.

In column 6 we give the rank of the scattered subspace with respect to the
t-spread of V(rt,q), for the specified r, ¢, and ¢, which we found using the
computer package GAP.
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q r t | UB=|rt/2] | LB | GAP Theorem

g | even | t rt/2 rt/2 - Theorem 2.5.5
q r 2 r r - Theorem 2.5.4
q 3 3 4 4 4 V(4,q)

q 3 4 6 6 6 V(2,4¢%)

2 3 5 7 6 7 V(2,2%),V(6,2)
2 3 6 9 7 8 V(7,2)

2 3 7 10 9 MP V(3,2%)

2| 3 |8 12 9 11| V(2,2%),V(9,2)
2 5 3 7 7 7 V(7,2)

2 5 4 10 10 MP V(2,2°%)

3 3 3 4 4 4 V(3,3)

3 3 4 6 6 6 V(2,3%)

3 3 5 7 6 MP | V(6,3),V(2,3%)

Table 2.1: Computer results on maximum scattered spaces with respect to a
Desarguesian t-spread in V(rt, q) using GAP

In all the cases where the lower bound is smaller that the upper bound, the
result improved the lower bound or the computer search ran into memory
problems, which we denoted with (MP).

Note that the lower bound was always obtained by a computer search, unless
the search ran into memory problems.

Row 5 is the most interesting. With a computer search we find a scattered
space meeting the upper bound, and improving the lower bound. It follows
from the data in rows 6 and 8 that the computer result improves the lower
bound, although the upper bound is not reached.

It must be mentioned that none of the computer searches was complete. As
computers become more powerful, it is hoped to attain more data than included
in the Table 2.1.

2.6 Two-intersection sets

In this section we want to say something more about the two-intersection
sets we obtained in Theorem 2.5.1. First we point out the relation between
two-intersection sets with respect to hyperplanes, two-weight linear codes and
strongly regular graphs. For a more detailed survey of these objects we refer
to [27].

A g-ary linear code C is a linear subspace of GF(¢q)". If C' has dimension
r, then C is called a [n, r]-code. A generator matriz G for a linear code C is an
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(r x n)-matrix for which the rows are a basis of C'. If G is a generator matrix
for C then C = {zG || x € GF(q)"}. The weight w(c) of a codeword ¢ € C is
the number of non-zero coordinates of ¢ or equivalently the Hamming distance
between the all-zero codeword and c. If no two of the vectors defined by the
columns of GG are linearly dependent, then C' is called projective.

Consider a two-intersection set 7" with respect to hyperplanes in PG(r — 1, q)
of size n, with intersection numbers hy and he. In [27], such a set is called a
projective (n,r, hi, ha) set. We assume that the points of T' span PG(r — 1, q).
Put T = {{g1i,---,9r) || ¢ = 1,...n}. Let G be the (r x n)-matrix with the
points of T as columns. The points of T' span PG(r — 1, ¢), hence the matrix
G has rank r. The rows of G span an [n,r]-code C. Suppose that the j-th
coordinate of a codeword, ¢ = (c1,...,¢n) = (x1,...,2,)G, is zero. That is

ks
Cj = E TiGij = 0.
=1

This is equivalent with saying that the point with coordinates (g1;, ..., gr;) lies
on the hyperplane of PG(r — 1, q), with equation

i .TiXi =0.
i=1

Since T is a projective (n,r, h1,h2) set, the number of zeros in a codeword
is either hy or ho. This implies that C is a two-weight code with weights
w1 = n—hy and wy = n— hy. Conversely, we can start with a two-weight linear
code and obtain a two-intersection set. We have the following correspondence.

Theorem 2.6.1 ([27, Theorem 3.1])

e If the code C is a g-ary projective two-weight [n,r] code, then the points
defined by the columns of a generator matrix of C' form a projective
(n,r,n —wy,n —ws) set that spans PG(r —1,q).

o Conwversely, if the columns of a matrix G are the points of a projective
(n,r, hy, ha) set that spans PG(r — 1,q), then the code C, with G as a
generator matriz, is a q-ary projective two-weight [n,r] code with weights
n—hy and n — hs.

Applying this to the two-intersection set obtained in Theorem 2.5.1, we get a

projective
g7 —1 g2 7'—1 g% "1
-1 -1 " g1
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rt

set which gives rise to a two-weight [qj_zl ,7]-code with weights
rt t_q1
w; =qz2" (%) )
rt t—1_1
wo =4q-2 t+1 (—q =1 ) .

We remark that the condition that the two-intersection set spans PG(r — 1, ¢%)
is satisfied because of Theorem 2.5.3. The parameters of the obtained two-
weight codes correspond to SU2, CY4 and RT1 in [27], which arise from
two-intersection sets obtained as follows. If ¢ is even this set has the same
parameters as the disjoint union of (¢*/2 —1)/(q — 1) Baer subgeometries iso-
morphic to PG(r — 1,¢"/?). We say that a two-intersection set isomorphic to
such a union of subgeometries is of type I If ¢ is odd this set has the same
parameters as the union of (¢* —1)/(q — 1) elements of an (r/2 — 1)-spread in
PG(r—1,q"). We call these two-intersection sets of type II. In [62], Penttila and
Royle give a complete characterization of two-intersection sets in planes of or-
der nine. According to their terminology the parameters of the two-intersection
set obtained in Theorem 2.5.1 for r = 3 are called standard parameters. These
sets occur in planes of square order and have type (m,m + ,/q) in PG(2,q).
We will prove that the sets arising from a scattered space are neither of type I
nor of type II.

Theorem 2.6.2 ([19])

The two-intersection sets arising from scattered spaces of dimension rt/2 with
respect to a Desarguesian (t — 1)-spread S in PG(rt — 1,q) are not isomorphic
with the two-intersection sets of type I or type II.

Proof. First suppose that ¢t is odd. An element E of an (r/2 — 1)-spread in
PG(r—1,q") induces an (rt/2—t)-dimensional space in PG(rt—1, q), partitioned
by a subset of the (¢ — 1)-spread S. Theorem 2.5.3 implies that W intersects
this subspace in a subspace of dimension at most rt/4 — 1, since the intersection
is scattered with respect to the restriction of S to this subspace. Hence B(WW)
can not contain this spread element . Note that using the same argument, it
is easy to show that B(W) can not contain a line of PG(r — 1, ¢").

Now suppose that t is even. We will prove that B(W) can not contain a Baer
hyperplane B, i.e., a subgeometry of PG(r — 1,q") isomorphic with PG(r —
2,qt/2). Note that this is again, as in the case where t is odd, a stronger
property than needed to prove the theorem.

To avoid confusion in what follows P(«) will denote a point in PG(r — 1, ¢"),
while (\) will denote a point in PG(rt — 1, q).

Suppose B is contained in B(W) and let H be the hyperplane of PG(r — 1, ¢*),
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that contains B. Without loss of generality we can assume that B and H are
generated by the same points. So

B= {P(a1u1 +...+ aT_luT_l) H Al,y...,0p_1 € GF(qt/2)}

and
H={P(ajuy + ...+ ar_1ur—1) || a1,...,a,—1 € GF(¢")}.

Since B is contained in B(W), the hyperplane H intersects B(W) in n points,
where n = (¢"t/27t*1 —1)/(q—1) is the larger of the two intersection numbers.
So the subspace in PG(rt — 1,¢) induced by H intersects W in a subspace of
dimension k — 1 := rt/2 —t. We denote the set of points in PG(r — 1,¢")
corresponding with spread elements intersecting this subspace with W. Put

W = {POv1 + ...+ Mvr) | At ... A € GF(g)}.

Moreover we can express the vectors v;, (¢ = 1,...,k), as a linear combination
of uy,...,ur—1 over GF(¢"). Let C be the matrix over GF(g") such that

U1 Uy
V2 Ot U2
Vg Ur—1

Then B will be contained in B(W) if

Vou,...,cae—1 € GF(¢"/?) : 3\, ..., A\ € GF(q),3a € GF(¢")*

such that
a1 )\1
a [6%) —C )\2
Qp_1 Alc
Putting o := (a1, ...,,—1)T, and X := (\1,..., Ax)T this equation becomes
ac = CA.
Let

T = {(a,a,\) € GF(¢")* x GF(¢"/?)""! x GF(¢)* : aa = CA}.
If (a,a, A), (b, u) € T, then C(bA — ap) = 0. This implies that

AT (v, o)t = ap® (v1, ..., o) 7,
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or (v1,...,u)A = a/b (v1,...,vx)p. Since W is scattered with respect to S
and (\), (u) € W, we must have that a/b € GF(q) and so (\) = (u). Let

T, ={(\) || 3a : (a,a,)) € T}.

Note that if a/b € GF(q*/?) then T, = T} and that T}, is a subspace of PG(rt —
1,q). Now if T, # 0 and () € Ty \ Tu, (V) € Te\ Ta, (1) # (v), and (T,, (u)) =
(Tu, (v)), then the line joining (u) and (v) intersects T,, so without loss of
generality A + p + v = 0 and

(aa «, )‘)a (b7 Ba M)) (ca’)/a V) S Ta
for certain B and ~y. It follows that
ac + b3+ cy=0.

Let 6 € GF(¢"/?)"~! be such that 6"a = 0 # §7(. This is possible since we
saw that if P(a) = P(8) then (\) = (u), but (u) & T,. We get bd*3+ cd'y = 0,
and b/c € GF(¢"/?). This implies that T}, = T,. Thus

(aa «, )‘)a (b7 Ba M)) (b775 V) S Ta
for certain 8 and . Now we have that
b(B+7)+ac =0.

So b/a € GF(q"/?) or T, = T, which is a contradiction. This shows that if
T, has dimension d — 1, then there is at most one point in every subspace of
dimension d, containing T;,. So the set

{<:u’> : Hbaﬁ: (bvﬁaﬂ) € T}

contains at most
qd -1 qkfd ~1
+
q—1 g—1

points. Every P(«) determines a different (u), so we must have

(r—=1)t/2 _ d _ k—d _
q 1<q 1+q 1
¢ =1 T g¢-1 q—1

Recall that k = rt/2 — t + 1. Since we assumed d > 1 this implies that d = k,
but this is clearly impossible, since that would imply that W is completely
contained in the smaller set B. |

For the correspondence between two-intersection sets with respect to hyper-
planes and strongly regular graphs, we refer to [27] and simply state the result.
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Theorem 2.6.3 ([27])

A projective (n,r,n —wy,n — we) set for which the points span PG(r — 1,q) is
equivalent with a strongly regqular graph for which the parameters (N, K, A, 1)
are given by

N =¢",

K =n(g-1),

A =K?+ 3K — q(wy +w2) — Kq(wy + ws) + ¢*>wiwa,
2

i :q’;—in:KQqLKqu(lerwg)Jquwlwg.

We remark that since strongly regular graphs with these parameters exist this
theorem does not give us non existence results for scattered spaces.

2.7 Blocking sets

Here we only consider blocking sets in projective spaces. Blocking sets in affine
spaces are far from equivalent to the blocking sets in projective spaces. For
results concerning blocking sets in affine spaces, we refer to S. Ball [5].

An s-fold blocking set with respect to k-dimensional subspaces in PG(n,q) is a
set of points, at least s on every k-dimensional subspace of PG(n, ¢). A point of
an s-fold blocking set with respect to k-dimensional subspaces which lies on a k-
dimensional subspace intersecting the blocking set in exactly s points, is called
essential. If every point contained in the s-fold blocking set is essential, then
we say that the blocking set is minimal or irreducible. This is equivalent with
saying that no proper subset of the s-fold blocking set is itself an s-fold blocking
set. If k =n—1, then we omit the words “ with respect to (n — 1)-dimensional
subspaces”. If s = 1, then we simply speak of a blocking set, otherwise they
are sometimes called multiple blocking sets. If a blocking set with respect to
k-dimensional subspaces contains an (n — k)-dimensional subspace then we call
the blocking set trivial. Here, we will only consider non-trivial blocking sets,
and from now on with a blocking set we mean a non-trivial blocking set. One
example of a blocking set in PG(n, ¢) is a blocking set in a plane of PG(n, q).
On the other hand if B is a blocking set in PG(n,¢), then we can project B
from a point not in B on to a hyperplane. Since this projection will then be a
blocking set in that hyperplane, it follows that the size of the smallest blocking
set with respect to hyperplanes, will be at least the size of the smallest blocking
set in a plane. Moreover, this implies that the smallest blocking sets in PG(n, q)
are the smallest minimal blocking sets in a plane.

A blocking set B in PG(2, q) is called smallif |B| < 3(¢+1)/2. If £is a line and
B a blocking set in PG(2, ¢) then ¢ intersects B in at most |B| — ¢ points. If B
is a blocking set in PG(2, q) of size ¢ +m, and there is a line ¢ intersecting B in
exactly m points, then we say that B is of Rédei type, and ¢ is called a Rédei
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line. For a long time all known examples of small minimal blocking sets were
of Rédei type, but in 1997 Polito and Polverino [65] constructed small minimal
blocking sets which are not of Rédei type. The examples were constructed using
the correspondence between the points of PG(2,¢?) and the spread elements
of a Desarguesian (¢t — 1)-spread of PG(3t — 1,¢), as explained in Chapter 1.
Let us give an example. Suppose we want a blocking set in PG(2,¢*). Then
we can look at the points of PG(2,¢") as the elements of a (¢t — 1)-spread S in
PG(3t—1, ¢) and the (2t—1) spaces spanned by two spread elements correspond
with the lines of PG(2,¢"). If W is a subspace of dimension ¢ in PG(3t — 1, q)
then W meets every (2t — 1)-space in at least a point. Hence the set of points
B(W) in PG(2,¢") induced by W intersects every line of PG(2, ¢") in at least a
point, i.e., B(W) is a blocking set of PG(2, ¢*). Moreover if W is scattered with
respect to S then it follows that the blocking set has size ¢! +¢'~ ' +...+q+1.
A blocking set that can be constructed in such a way is called a linear blocking
set. So with a linear blocking set B of PG(r — 1, ¢*) there always corresponds
a subspace W over a subfield of GF(q'), such that B = B(W). The kernel
of the blocking set B(W) is the kernel of the subspace W, as defined in 2.5.
The following theorem states what type of blocking sets we get using scattered
spaces.

Theorem 2.7.1 ([18])

A scattered subspace W of rank m, with respect to a Desarguesian t-spread,
in V(rt,q) induces a (0x_1(q))-fold blocking set, with respect to (H=2tk — 7).
dimensional subspaces in PG(r —1,q"), of size 0.,,—1(q), where 1 < k < m such
that t | m — k.

Proof. Let U be an (“=24% — 1)-dimensional subspace in PG(r — 1,¢").
Then U induces a (rt —m+ k — 1)-dimensional subspace in PG(rt —1, ¢), which
intersects an (m — 1)-dimensional subspace in a subspace of dimension at least
k — 1. The rest of the proof follows from the fact that W is scattered. |

Remark. In [36] Heim introduced a proper blocking set as a blocking set
in PG(n,q) not containing a blocking set in a hyperplane of PG(n,q). In
PG(r — 1,4"), we can always construct a proper blocking set if ¢ > r — 2, with
r > 3. To do this, we use Theorem 2.2.1, with the extra property that we
always choose a vector that lies in a spread element, which corresponds with a
point in PG(r — 1,¢") that is independent from the points corresponding with
the previously intersected spread elements, as long as that is possible. In this
way we can construct a scattered ¢-dimensional subspace W of PG(rt — 1, q),
with the additional property that B(W) is a minimal blocking set not contained
in a hyperplane.
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2.7.1 Linear blocking sets of size ¢ + ¢!+ ... +¢"+1 in
PG(2,¢")

Let S be a Desarguesian (¢t — 1)-spread in PG(3t — 1,¢) and Sp € S. The
quotient space of Sp in PG(3t — 1, ¢) is isomorphic with PG(2t — 1, ¢), and the
Desarguesian spread S induces a Desarguesian (¢ — 1)-spread in this quotient
space. Let U be a maximum scattered space in this quotient geometry. Such a
space exists and has dimension ¢t — 1, see Theorem 2.5.5. Returning to PG(3t —
1,q), U induces a subspace T of dimension 2t — 1, with the property that T
contains Sp and it intersects every other element of S in at most a point. Using
the correspondence between the elements of a Desarguesian (¢ — 1)-spread in
PG(3t—1,q) and the points of PG(2, ¢*), T induces a set of points B(T') of size
g? 14 ¢*"2+...4+¢" +1, containing the point P, which corresponds with the
spread element Sp, see [18]. Taking subspaces of T of dimension ¢ intersecting
Sp in a subspace of dimension ¢ — 1 we obtain small minimal blocking sets of
PG(2,q¢"), of size ¢ + ¢" 1 +...+¢" +1,i € {1,...t — 1}, containing P.

Theorem 2.7.2 The intersection numbers of B(T) with lines of PG(2,¢") are
1, ¢ +1 and ¢ '+ ¢"2+ ...+ 1. Moreover there are ¢ ' + ¢ 24+ ... +1
lines contained in B(T), and ¢* — (¢*~' + ¢* =2 + ... + 1) tangents at P.

Proof. Suppose the line L of PG(2,q") contains P. Such a line induces a
spread element in the quotient geometry of Sp in PG(3t — 1,q). Since U is
scattered, this spread element does not intersect U or it has exactly one point
in common with U. This implies that the (2¢ — 1)-space corresponding with L
in PG(3t — 1, q) intersects T in a subspace of dimension ¢t — 1 or ¢. This gives
the intersection numbers 1 and ¢ + 1, respectively. Counting the points on the
lines P, we obtain that there are ¢*=! +¢'=2 + ... + 1 lines intersecting B(T)
in ¢ + 1 points , i.e., are contained in B(T), and ¢' — (¢ + ¢ 2+ ...+ 1)
lines intersect B(T) only in P, i.e., are tangents at P.

If the line L does not contain P, then T intersects the (2t — 1)-dimensional
subspace of PG(3t — 1, ¢), corresponding with L, in a subspace of dimension
at most ¢ — 1. On the other hand its dimension should be at least ¢ — 1. This
gives the intersection number ¢*=! +¢*=2 + ... 4+ 1. [ |

Blocking sets of size ¢* + ¢/~ + 1
Let W be a t-dimensional subspace of T, intersecting Sp in a subspace of
dimension t — 2.

Theorem 2.7.3 The set B(W) is a small minimal blocking set of size q* +
¢t 41, of Rédei type.
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Proof. It is clear that B(WV) is a small minimal blocking set. It is easy to
see that every non-tangent line through P is a Rédei line. |

Remark. Since every non-tangent line containing P is a Rédei line, it is easy
to check that the blocking set must have ¢ + 1 Rédei lines, and so it follows
from [50] that the blocking set is equivalent to the blocking set defined by the
trace function.

Blocking sets of size ¢! + ¢/t + ...+ ¢ +1,i € {2,...,t -2}

Let W be a t-dimensional subspace of T, intersecting Sp in a subspace of
dimension i — 1, ¢ € {2,...,t — 2}.

Theorem 2.7.4 The set B(W) is a small minimal blocking set of size
'+ ¢+ ... 4 ¢ +1, not of Rédei type.

Proof. It is clear that B(WW) is a small minimal blocking set. A line of
PG(2,¢"), not on P, corresponds to (2¢t—1)-dimensional subspaces L of PG(3t—
1, ¢) intersecting W in a scattered subspace M with respect to the Desarguesian
(t —1)-spread S, induced by the points of PG(2,¢*). Since M is scattered with
respect to the induced Desarguesian spread in L, it follows from Theorem 2.5.3
that a line not on P cannot intersect B(W) in ¢! + ...+ ¢* + 1 points, since
i > 2. Lines on P are tangents, or they intersect B(T) in ¢* + 1 points. From
this it follows that such lines intersect W in ¢ — 1 or in ¢ dimensions. Since
i <t — 2, such a line will never be a Rédei line. [ |

Blocking sets of size ¢/ + ¢! +... +1

Let W be a t-dimensional subspace of T', intersecting Sp in a point.

Theorem 2.7.5 The set B(W) is a small minimal blocking set of size
¢'+ ¢~ +...+1, and depending on the choice of W it is of Rédei type or not.

Proof. It is clear that B(W) is a small minimal blocking set. Lines of
PG(2,¢'), not on P, correspond to (2t — 1)-dimensional subspaces of PG(3t —
1, q) intersecting T in a subspace of dimension ¢t —1. Two such (¢ — 1)-subspaces
of T intersect each other in at most a point. If @) is a point of Sp and 7 is a
subspace of dimension ¢t —1 of T'\ Sp, then (Q, 7) is a ¢t-dimensional subspace of
T, intersecting Sp in the point Q. If we choose 7 as an intersection of a (2¢t—1)-
dimensional subspaces of PG(3t — 1, ¢), corresponding with a line of PG(2, ¢*)
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not containing P, with T' then B({Q, 7)) is of Rédei type. If we choose 7 not
contained in one of the (¢ — 1)-dimensional subspaces of T' corresponding with
lines of PG(2,¢"), then B({Q, 7)) is not of Rédei type. [ |

Remark. In the case of Theorem 2.7.5 the subspace W is scattered with
respect to the Desarguesian spread S. If the blocking set is of Rédei type then
the W can not be extended to a maximum scattered space, because a maximum
scattered space induces a two-intersection set in PG(2,¢') and ¢!~*+...+ 1 is
bigger than both intersection numbers.

2.7.2 Linear blocking sets of size ¢/ + ¢! +1

Theorem 2.7.6 If \ is a primitive element in GF(¢'), and a+b+c=1t— 2,
then

B={{zo+ziA+ ...+ 2 A y0 + YA+ F A 20+ 2N+ 2N
Il 2oy s @as Yoy -+ Ybs 20, - -, 2¢ € GF(q)},
is a small minimal linear blocking set in PG(2,q") of size ¢! +¢'=1 + 1.
Proof. It is clear that the set of all vectors of the form
(aco—l—xl)\—I—...—l—xa)\“,yo—i—ylA—i—...—i—yb)\b,zo—i—zl)\—i—...—i—zc)\c),
with Zg,...,Za, Yo, - - Ybs 20, - - -, 2c € GF(q), is a vectorspace over GF(q) of

rank ¢ + 1. This induces a small minimal linear blocking set in PG(2,¢"). If
the points P = (z,y, z) and Q = (u, v, w) belong to the blocking set then

T = To+TiA+ ...+ T\
Yy o= yot+mA+... .+l
z = zZo+ 2 A+ ...+ 2\
and
u = xH+TIAF . T A
voo= y6+y’1)\+...+yg)\b,
wo o= i+ AN+ .+ 2
for some o, (), . .., Ta, Ty Y0, Yoy - - - » Ybs Ypys 205 205 - - - 5 Ze 2 € GF(q). f P = Q,

then there is an o € GF(q') such that (z,y,z) = a(u,v,w). This implies
that, if we look at the elements of GF(q?) as polynomials in A, there will be
a “representative” for every point P with ged(z,y,2) = 1. So if we count the
number of triples (z,y, z), where z, y, and z are polynomials in A of degree at
most a, b, and ¢, respectively, with ged(z,y, z) = 1, then we will have counted
the number of points of B. We denote this number with I(a,b,c). If u is a
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polynomial in A over GF(q), then with I,(a,b,c), we denote the number of
triples (z,y, z), where z, y, and z are polynomials in A of degree at most a, b,

and ¢, respectively, with ged(z, y, z) = u. If we sum over all monic polynomials
u € GF(¢)[A\] \ {0}, we get

a+b+c+3 _ 1
T(a,b,¢):= Y L(abc) ="

ueM

g—1

where M denotes the set of all monic polynomials in GF(g)[A] \ {0}.

On the other hand, we have a triple (z,y, z) with ged(x,y, 2) = u, if and only
if ged(z/u,y/u,z/u) = 1. So I,(a,b,¢) = I(a — u®,b — u®,c — u®), where u°
denotes the degree of u. This implies that I,,(a, b, ¢) only depends on the degree
of u. Since there are ¢* monic polynomials of degree k we have

T(a,b,c):qul(afk,b—k,cfk).

k=0
From this it follows that
I(a,b,c) = T(a,b,c)—q¢T(a—1,b—1,c—1)
_ gatbrers_g gotre g
- q—1 B S
— g g 1

2.7.3 A (q+ 1)-fold blocking set in PG(2,¢%)

In this section we are interested in a maximum scattered subspace of dimension
5 with respect to a Desarguesian 3-spread in PG(11, ¢). This is how the concept
of scattered spaces found its origin. Let us first give some background informa-
tion on multiple blocking sets in a projective plane. For a survey on blocking
sets (1-blocking sets) we refer to [15], [16]. There is less known about s-fold
blocking sets, where s > 1. If the s- fold blocking set B in PG(2, q) contains a
line ¢, then B\ ¢ is an (s — 1)-fold blocking set in AG(2,q) = PG(2,¢) \ . The
result from [6] gives the following.

Theorem 2.7.7 (Ball [6])
Let B be an s-fold blocking set in PG(2, ¢) that contains a line and e maximal
such that p¢|(s — 1), then |B| > (s +1)g — p® + 1.

This covers previous results by Bruen [22, 23], who proved the general bound
(s+1)(¢—1)+1 and Blokhuis [14], who proved (s+1)q in the case (p,s—1) = 1.
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If the s-fold-blocking set does not contain a line then Hirschfeld [37, Theorem
13.31] states that it has at least sq 4+ (/sq + 1 points. A Baer subplane of a
projective plane of order ¢ is a subplane of order ,/g. A strong result concerning
s-fold blocking sets in PG(2, ¢) not containing a line is the following.

Theorem 2.7.8 (Blokhuis, Storme, Szényi [17] )
Let B be an s-fold blocking set in PG(2,q) of size s(q+ 1) + c. Let ca = c3 =
2713 and ¢, = 1 for p > 3.

1. If g = p**1 and s < q/2 — c,q?/3/2 then ¢ > c,q*/>.

2. If 4 < q is a square, s < q1/4/2 and ¢ < cpq2/3, then ¢ > s\/q and B
contains the union of s disjoint Baer subplanes.

3. If ¢ =p? and s < ¢"/*/2 and ¢ < p[+ + /EEL], then ¢ > s,/q and B
contains the union of s disjoint Baer subplanes.

This result is proved using lacunary polynomials. It is clear that the union of
s disjoint Baer subplanes in PG(2, ¢), where ¢ is a square, is an s-fold blocking
set. A line intersects this set in either s or /g + s points. The result stated
above means that an s-fold blocking set of size s(¢g+1)+c¢, where ¢ is a constant,
necessarily contains the union of s disjoint Baer subplanes if s and ¢ are small
enough (s < ¢'/%).

In this section we show that this bound is indeed quite good. We construct
s-fold blocking sets of size s(¢* +¢? +1) in PG(2, ¢*), with s = ¢+ 1, which are
not the union of s disjoint Baer subplanes by constructing a scattered space of
dimension 5 with respect to a Desarguesian 3-spread in PG(11, g). Because the
constructed blocking set arises from a scattered space it follows from Theorem
2.6.2 that it is not the union of disjoint Baer subplanes. However, in the next
paragraph we prove this again in this special case. We give two construction
methods for a maximum scattered space of dimension 5 with respect to a
Desarguesian 3-spread in PG(11, ¢). The first one shows the use of polynomials
in finite geometry, the second one is using the representation of a Desarguesian
spread in the tensor product, developped in section 1.6.

A construction using polynomials
Let S be a t-spread in V(3t,q). If W is a subspace of V(3t, g), then we define
W= U {v|ve P}

P:(PeS)AN(PNW#{0})

So in fact, W is the union of the vectors of the spread elements corresponding
to the points of B(W). In the following we will use representations of projective
spaces used in [4] and [9].
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The points of PG(2, q) are the 1-dimensional subspaces of GF(¢?), considered
as a 3-dimensional vector space over GF(gq). Such a subspace has an equation
that is GF(g)-linear of the form P’ = 0, with

P =9 — ~yax,

where v € GF(¢%). So a point of PG(2, ¢) is in fact a set {z € GF(¢?) | 29—~z =
0}. Since elements of this set are also zeros of

_plet 4 (xqs —2)— ,yq2p/q _ ,yq2+qpl — (7q2+q+1 1)z

and this is an equation of degree < 1, we necessarily have that 7‘12““”1 =1. So
points of PG(2, ¢) can be represented by polynomials of the form z? — yx over
GF(¢3), where v € GF(¢?) and v *4+1 = 1. Actually this is just a special case
of the representation of PG(n, q) in GF(¢"*!), where, by analogous arguments,
points can be represented by polynomials of the form 29 — vy over GF(¢g"+!),
with v € GF(¢"*!) and AT e =
Now consider PG(3,¢q). Points are represented by a polynomial of the form
x?—~x over GF(q*), with v € GF(¢?) and y4° e+l = 1. A line in PG(3,q) is
a 2-dimensional linear subspace of GF(¢*) (or GF(¢)*), which has a polynomial
equation of degree ¢2. Since this equation has to be GF(q)-linear, it is of the
form W’ = 0, with

W' =29 + az? + Bz,
where a, 3 € GF(¢%). So a line of PG(3,¢) is in fact a set {z € GF(¢*) | 27 +
ax? + Bz = 0}. Since elements of this set are also zeros of

w'e (xq4 — ) — al W' — (ﬁqz _ aq2+q)W/
— (70/125‘1 _ aﬂq2 + aq2+q+1)zq + (aq2+q6 _ 5q2+1 + 1)z

and this is an equation of degree < ¢, both coefficients on the right-hand side
must be identically zero. Manipulating these coefficients we get the conditions
B+ +atl — 1 and a4+l = B9 — B +aTL Again this is just a special case of
the representation of PG(n,q) in GF(¢"*!), where a k-dimensional subspace
can be represented by a polynomial of the form

qk+1 qk qk—l
x + a1x? 4+ asx + ...+ o,

for some ay,az, ..., ar € GF(¢"™1). For a survey on the use of polynomials of
this type in finite geometries, see [4].
Let

W' =29 + az? + B

and
P =zt — g,
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with o, 8,7 € GF(¢'?), 4+ +1 = 1, g'+a’+a’+1 = 1 and 4"+ = g7° —
B+ Tt s clear that W = {z € GF(¢'2)|W’ = 0} is a 6-dimensional
subspace of V(12, ¢q) and the set P = {z € GF(¢'?)||P’ = 0} is a 4-dimensional
subspace of V(12, q).

Theorem 2.7.9 ([7])
The set B(W) is a (q + 1)-fold blocking set of size (¢ + 1)(¢* + ¢*> + 1) in
PG(2,¢*) and is not the union of g + 1 disjoint Baer subplanes.

Proof. First we show that the dimension of the intersection of the subspaces
W and P in V(12,q) is less than or equal to one. Solutions of both W’ = 0
and P’ = 0 are also solutions of

a7 (T (W = P'T) — a(W' = P)1 — atP'))

(WP ) —at Py — (3 (W P') —a( (W' —P'T )1 —a P'))) = 0.

This is
(_5(q2+q)a(q+1) _ 7(q3+q2+q)a(q2+q))xq

(B9 a2t 4 40’ gD g (@ e D) g0y — )

which is a equation of degree ¢ in z. If the coefficients are not identically
zero, then this equation will have at most ¢ solutions. This means that the
6- dimensional subspace W intersects every spread element P in at most one
dimension. So we have to prove that there exist o, 3 € GF(¢'?), for which
these coefficients are not identically zero.

Suppose
B D latD) _ (e +a) o (a7 +0) — (2.2)
and
BT R0t 4 A0 @D g (a' e e ) e — (2.3)
Equation (2.2) implies that 42"+ +4 = —37°+401-%"  assuming a # 0. Substi-

tution in (2.3) gives us
—attl 4 qe@® DD ey qa-aPgd’ —

or
3 3 12 11 3 2 2
1 — —
—af + 47 4 79 TTTTRT =0.

. 3 3 6, 3 .. . .
Since a9 1 = g4 — 2+ 1 this is equivalent with

5q7+q4—q3+q _ 4t et
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or again using o t1 = g¢° — g +’+1 that
ﬁq7+q4—q3+q _ _(ﬁqs-i-l _ ﬁq6+q3+1)q—1_ (2.4)

This results in an equation of degree less than ¢” 4+ ¢*. So there are less than
q" + ¢* possibilities for 3 € GF(¢*?) such that both coefficients are zero. We
can conclude that there exist o, 3 € GF(¢'?), for which these coefficients are
not identically zero; namely where az # 0 and 3 does not satisfy (2.4).

Let m; denote the number of lines of PG(2,¢*), which intersect B(W) in i
points. Since a line induces a 2¢-dimensional subspace in V(12, q), it is obvious
that m; = 0,foralli ¢ {¢g+1,¢* +q+ 1, +@P +q+1,¢* + @+ +q+
1,¢° + ¢* + ¢® + ¢*> + g+ 1}. If one of the last two intersection numbers occurs,
this means that there is a line, seen in V(12,¢) as a 8-dimensional subspace,
having a 5 or 6-dimensional intersection with W. In both cases this implies
that there is an element of the Desarguesian spread S intersecting W in more
than one dimension, which is impossible. So we have that m; = 0, for all 7 ¢
{a+1,*+q+1,¢*+¢*+q+1}. Let us put lo = mgy1, I3 = myzi 441 and
l4 = mg34¢24¢+1- Then by counting lines, point-line pairs and point-point-line
triples we obtain a set of equations from which we can solve I5, I3 and 4 and
these imply Ip = p® —p® —p3 —p? —p, I3 = p®> +p* +p> + p?2 +p+ 1 and
l4 = 0. This implies that the 8-dimensional subspace corresponding to a line
of PG(2,¢%), intersects W in a 2 or 3-dimensional subspace of V(12, q).
Suppose now that the (¢g+1)-fold blocking set B(W) is the union of g+1 disjoint
Baer subplanes of PG(2,¢%). Let B(B) be one of the Baer sublines of these
Baer subplanes and let L be the line of PG(2, ¢*) containing B(B). Then the 8-
dimensional subspace induced by L will intersect W in a 3-dimensional subspace
D and B(B) induces a 4-dimensional subspace B of V(12,q) contained in the
8-dimensional subspace corresponding to L, which intersect every element of
the spread S in a zero or two-dimensional subspace of V(12,¢q). (See Bose,
Freeman and Glynn [21, Section 3] for a representation of a Baer subplane in
PG(5, ), which is analogous to this.) We will prove that B cannot be contained
in D. First we observe that B is in fact a 2-dimensional subspace over GF(¢?),
so B = {au+ pv || a,8 € GF(¢?)}; while D is a 3-dimensional subspace
over GF(q), so D = {\w + pz + vy || \,u,v € GF(¢q)}. From this it follows
that B = {a(au + Bv) || o, B € GF(¢?),a € GF(¢")} and D = { b(hw + px +
vy) || A\, u, v € GF(q),b € GF(¢*)}. Now observe that (B(u), B(v)) over GF(q*)
is in fact the line L. So we can write w, z and y as a linear combination of u
and v over GF(¢*). Without loss of generality, we can write

wo o=cu
T = Ccov
Yy = C3u+ 4,

with ¢y, ¢2, c3, ¢4 € GF(¢*). But if B is contained in D, then for all a € GF(¢*)
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and a, 3 € GF(¢?) there exist b € GF(¢*) and A, u, v € GF(gq) such that
aa = b(Ae1 +ves)
af = bluca +vey),
which results in the equation
el +rves « 9
—— =—-¢€GF U .
P (¢7) U {oo}
Let f be the map
f: GF(q) x GF(q) x GF(q) — GF(¢") U {00}

ey + ves
A, V) = —————,
fO\ ) P

Then the image of f, $(f), must contain GF(¢?). We remark that if S(f) =
GF(¢?) U{oc}, then D must be contained in B, which is of course impossible.
But if f(\, u,v) € GF(¢?), then

el +ves 2 _ el +ves

pes +vey’  pcs +vey’

which gives us the equation

(Ae1 + 1/03)‘12 (e + veq) — (pea + 1/04)‘12()\61 +ves) = 0.

Since A, u,v € GF(g), this equation results in an quadratic equation in A, u
and v. Triples (\, u, ) € GF(q)? can only give different values for f if they do
not belong to the same 1-dimensional subspace of GF(q)3, i.e., if they represent
different points in PG(2,¢). So the above equation will have at most 2¢ + 1
different solutions, namely the points of a degenerate quadric in PG(2,q). If
q > 2 then 2¢+1 < ¢? +1 and if ¢ = 2 it can be verified that if GF(4) C S(f),
then ¥(f) = GF(4) U {o0}, a contradiction. [

A construction using tensor products

In this section we use the terminology introduced in Section 1.6. Let {e1,...,e.}
be a basis of GF(¢") and {f1, ..., fi} abasis of GF(¢'). If v € GF(¢") Q GF(¢"),
then we can define two subspaces related with v, namely S,.(v) = {fv || 8 €
GF(q")} and S¢(v) = {va || a € GF(¢")}.

Theorem 2.7.10 The subspace
W = (S3(e1 ® f1 +e2®@ f2),53(e3 ® f3))
of GF(¢®) ® GF(q*), is scattered with respect to the spread

S = {Su(v) | v € GF(¢*) (Y GF(g")}-
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Proof. If w is vector of W, then w can be written as
e1 Q@ ur +e2®@uz + e3 @ us,

with (u1,ug,us) C (f1, f2, f3). We will prove that for each vector w in W, it
is impossible to find an a € GF(¢*) \ GF(q), such that wa € W. Suppose the
rank of (u1,us,us) is 3. Then (ui,us2,us) = (f1, f2, f3) and the existence of
an a € GF(g*), such that wa € W implies that (au1, qug, auz) C (uy, us, us).

Using Lemma 1.6.3 we get that o € GF(g). If the rank of (uj,uz,ug) is 1 then
w is a pure tensor. Since w € W, there exist 8,7 € GF(¢?), such that

w = fe1 ® f1+ Pea @ fo+ve3® fs.

If 3 # 0, then S~ 1w is a pure tensor, since w is a pure tensor, and using Lemma
1.6.2 we get a contradiction since the rank of {e1, e, 3~ 1ves) is at least 2. Thus
B =0and w € S3(e3® f3). If w is a pure tensor, then clearly wa is also a pure
tensor. So wa € Ss3(es ® f3). But wa = vye3 ® afs € S3(ez ® f3) implies that
a € GF(q). Suppose that the rank of (u1,us,us) is 2. Then w is the sum of
two pure tensors. Since w € W, there exist 3,7 € GF(¢?), such that

w = PBe1 ® f1 + Pea ® fa +ve3 @ f3.

If 5 =0, then w is a pure tensor and the rank of (u1,us,us) is one. So 8 # 0,
and we can write

ﬂilw =e1®fite® fo+ 571763 ® f3.

Using Lemma 1.6.2 we have that rk{ej, ea, 3 1ye3) = 2. So there exist A,y €
GF(q) such that S~1ve3 = Ae; + pes. Then we can write 1w as

ﬁ71w=€1®(f1 +)\f3)+€2®(f2+,uf3)- (2-5)
Suppose there exist an o € GF(¢*) and 6,e € GF(¢?), such that
wa = de; @ f1 + dea @ fo+ce3 @ f3.

If 6 =0, then wa is a pure tensor and this implies that w is a pure tensor. So
6 # 0 and we can write

STlwa=e1 @ fi+ea® fo+ 0 tees @ fa.

Since w is the sum of two pure tensors, wa can also be written as the sum of
two tensors and Lemma 1.6.2 implies that rk({e1, es, 6 tces)) < 2. So there
exist v,w € GF(q), such that d~lees = ve; + wey. So we can write dlwa as

§lwa =e1 @ (fi +vf3) +e2 @ (fa+wfs). (2.6)
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Combining (2.5) and (2.6) we get

557157111)04 = 5ﬁ7161 ®(fi +vfs)+ 557162 ® (fo+wfs)
e1 @ a(fi + Afz) +ea ® affo + 1f3)

from which follows that (53 1e;, 68 tes) C (e1,e2). Using Lemma 1.6.3 this
implies that 637! € GF(q). So we get

e1®@ (fi+vfz) +e2® (f2+wfs)
e1® 57 (1 + Afs) +e2 ® 555 (fa + 1fs3).

This implies that 57 (f1 + Afs) = (fi+vf3) and 55 (f2+ pfs) = (fa+wf3).
Elimination of 5%17 gives

htvis  fotuwhs
fi+Afs fa+nfs

Without loss of generality we can put fs = 1. Eventually we get that

wfi+ Afo+ I =pfi +vfo+ pv.

Since {f1, f2, f3, fa} forms a basis for GF(¢*), this implies that A = v and
w = p. We have proved that o € GF(q). This concludes the proof. |

2.8 Hyperovals of translation planes

In this section we treat the equivalence of translation hyperovals of a transla-
tion plane and scattered (¢ — 1)-dimensional spaces with respect to a (t — 1)-
spread in PG(2t — 1,2). First we show that with every (¢ — 1)-dimensional of
PG(2t — 1,2) which is scattered with respect to a (¢t — 1)-spread there corre-
sponds a translation hyperoval of a translation plane. For the converse we refer
to [40], and only give an outline of the construction.

Let W be a scattered (¢t — 1)-space with respect to a (¢ — 1)-spread S of
PG(2t — 1,2). Note that there are 2! + 1 spread elements, 2! — 1 of which
intersect W. Now we apply the André-Bruck-Bose construction by embedding
PG(2t — 1,2) in PG(2t,2) as a hyperplane (see Chapter 1). In this way we
obtain a translation plane 7 of order 2t. Now consider a t-dimensional space
T which intersects PG(2t — 1,2) in W. The claim is that the set H consisting
of the affine points contained in 7" together with the points corresponding with
the two spread elements not intersected by 7" form a translation hyperoval of 7.
To prove this, we consider all types of lines of the translation plane 7. First of
all it is clear that the line of 7 corresponding with the hyperplane PG(2t —1, 2)
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intersects H in two points, the points corresponding with the two spread ele-
ments which are skew from W. Next consider a line L corresponding with a
t-dimensional subspace T intersecting the hyperplane in a spread element U. If
U does not intersect W then this t-dimensional space intersects 7" in a point of
PG(2t,2)\PG(2t—1,2). This point together with the point corresponding with
U gives us two points of H on the line L. If U intersects W in a point P then a
t-space on U either intersects 7" in a line M on P or just in P. In the first case
the line L is a secant containing the two affine points of H on the line M dif-
ferent from P, in the second case L is an external line. Hence H is a hyperoval
of the translation plane 7. It immediatly follows that H is a translation hyper-
oval with the translations of the affine space induced on PG(2¢t,2)\PG(2¢t—1, 2).

Conversely, consider a translation hyperoval H in a translation plane 7 of order
2! with translation group G. Let S be the (¢ — 1)-spread associated with ,
see [32]. The elements of the spread correspond with the subgroups of G fixing
every line of a parallel class. G acts regularly on two parallel classes of lines
and has precisely two orbits on the other parallel classes of lines. This implies
that G corresponds with a (¢ — 1)-dimensional space of PG(2t — 1, 2) skew from
2 elements of S and intersecting every other element of S in a point, i.e., a
scattered subspace of dimension ¢ — 1 with respect to S.

It follows from Theorem 2.5.5 that if the spread is Desarguesian then such
a scattered space of dimension ¢ — 1 always exists. This implies the existence
of a translation hyperoval in PG(2,2"). From Theorem 2.2.1 it follows that for
a line spread in PG(3,2), respectively a plane spread in PG(5,2), there exists
a scattered line, respectively a scattered plane. This implies the existence of
a translation hyperoval in every translation plane of order 22, respectively 23.
The existence of a non-Desarguesian plane of order 2! (¢ > 3) that admits a
translation hyperoval is still an open problem.



48

Chapter 2. Scattered spaces




Chapter 3

Translation generalized
quadrangles and eggs

3.1 Generalized quadrangles

The theory of generalized quadrangles can be considered as part of the theory
of generalized polygons. Generalized quadrangles were introduced in 1959 by
Tits in his celebrated work on triality [84].

A generalized quadrangle of order (s,t), (GQ(s,t)), s > 1,t > 1, is an inci-
dence structure (P, L,I) of points and lines with the property that any two
points are incident with at most one common line, any two lines are incident
with at most one common point, any line is incident with s + 1 points, every
point is incident with ¢ + 1 lines, and given an antiflag (P, 1), there is a unique
flag (Q,m), such that m is incident with P, and @ is incident with I. We say
that s and t are the parameters of the GQ. If s = ¢ then we call this incidence
structure a GQ of order s (GQ(s)). From a GQ of order (s,t) we get a GQ
of order (t, s) by interchanging points and lines, called the (point-line) dual of
the GQ of order (s,t). The standard reference for GQ’s is Finite Generalized
Quadrangles by Payne and Thas [60], published in 1984.

A grid is an incidence structure (P,L,I) with P = {P;; | i =0,...,81, j =
0,...,82}, 81 >0, and s3 >0, £ = {lo,l1,...,1ls;,m0,M1,...,Mg, }, Pij Tl if
and only if ¢ = k, and P;; Imy, if and only j = k. A grid for which all lines are
incident with the same number of points (s1 = s2), respectively a dual grid for
which all points are incident with the same number of lines, is an example of
a generalized quadrangle of order (s,t) with ¢ = 1, respectively s = 1. Con-
versely, if a GQ(s,t) has t = 1, respectively s = 1, then it is a grid, respectively
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a dual grid. These examples are called trivial.

Remark. If we consider a generalized quadrangle of order (s,t) with s,¢ > 1,
then from the definition it follows that (i) there are no ordinary k-gons for
2 < k < 4; (ii) any two vertices are contained in an ordinary quadrangle (4-
gon); and (iii) there exists an ordinary pentagon (5-gon). Generalising these
three properties, by replacing 4 by n, and 5 by n + 1, gives the definition for
a generalized n-gon. For more on generalized polygons we refer to the book
Generalized Polygons by Van Maldeghem [86].

The first known non-trivial examples of GQ’s are all associated with classi-
cal groups and were first recognised as generalized quadrangles by Tits [84].
They are called classical. We give a brief description of these GQ’s.

(i) Consider a non-degenerate quadric Q(d, q) of Witt index 2, with d € {3,4,5},
in the projective space PG(d, q), i.e., a hyperbolic quadric in PG(3, ¢), a parabolic
quadric in PG(4, ¢) and an elliptic quadric in PG(5, ¢). Then the points on the
quadric together with the lines on the quadric form a generalized quadrangle,
which we denote by Q(d, q).

(ii) Let H(d,q*) be a nonsingular Hermitian variety of the projective space
PG(d,q?), d = 3 or 4. Then the points of the variety together with the lines
on the variety, form a generalized quadrangle, which we denote by H (d, ¢?).

(iii) The points of PG(3,q) together with the totally isotropic lines with re-
spect to a symplectic polarity form a generalized quadrangle denoted by W (q).

The earliest known non-trivial non-classical examples of GQ’s were constructed
by Tits and first appeared in Dembowski [32] in 1968. The construction of the
incidence structure (P, £,I) goes as follows. Let d = 2, respectively d = 3, and
let O be an oval, respectively an ovoid, of PG(d, q). Consider PG(d,q) as a
hyperplane of PG(d + 1, ¢q). We define 3 types of points:

(i) the points of PG(d + 1,q) \ PG(d, q);

(ii) the hyperplanes of PG(d + 1, ¢q) intersecting PG(d, ¢) in a tangent space
of O;

(iii) a new symbol (00).

We define two types of lines:
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(a) the lines of PG(d + 1, q) intersecting PG(d, ¢) in a point of O;
(b) the points of O.

This defines the set P of points and the set £ of lines. The incidence rela-
tion I is defined as follows: a line of type (a) is incident with the point of type
(ii) that contains it, and with the points of type (i) contained in it; a line of
type (b) is incident with the points of type (ii) containing it, and with the point
(00). Tt is straightforward to prove that the incidence structure (P, L, 1) is a
generalized quadrangle of order ¢ if d = 2 and of order (g, ¢?) if d = 3. We will
give a proof of this in a more general setting in Section 3.3. These examples
are denoted by T4(0), d = 2,3, or just T(O) if no confusion is possible.

Further non-trivial non-classical examples of GQ’s were found by Ahrens and
Szekeres [1] in 1969, by Hall [35], Jr., in 1971, and by Payne [56] in 1971. These
examples have order (¢ — 1,¢q + 1) and they yield the only known examples of
generalized quadrangles where the parameters s and ¢, with s > 1 and ¢ > 1,
are not powers of the same prime. In 1981, Kantor [42] introduced a construc-
tion method for GQ’s starting from a so-called 4-gonal family consisting of a
finite group with a set of subgroups satisfying certain conditions. Let G be a
finite group of order s%t, s > 1,t > 1. Let J = {A; | 0 < i <t} be a family
of subgroups of G, each of order s. Assume that for each A; there exists a
subgroup A} of G of order st, containing A;. Put J* = {Af || 0 <4 < t}.
Define an incidence structure (P, L£,I) = S(G, J) as follows. We define three
types of points:

(i) the elements of G;

(ii) the right cosets Afg, Af € J*, g € G,

(ili) a new symbol (c0).

We define two types of lines:

(a) the right cosets A;g, A; € J, g € G;

(b) the symbols [4;], 4; € J.

This defines the set of points P and the set of lines £. The incidence rela-
tion I is defined as follows: a point g of type (i) is incident with each line 4,g¢,

A; € J; a point Afg of type (ii) is incident with [A4;] and with each line A;h
contained in Afg; the point (c0) is incident with each line [4;] of type (b).
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Then Kantor [42] proved that S(G, J) is a GQ of order (s,t) if

(K1): A;A; N Ay = {1}, for distinct ¢, j, k, and

(K2): AfnA; ={1}, for i # j.

If (K1) and (K2) are satisfied then J is called a 4-gonal family for G.

A combination of results by Payne [57], [58] and Kantor [43], translates the con-
ditions for a 4-gonal family for a specific group yielding a GQ of order (¢?, q),
to conditions for a set of 2 x 2 matrices. A ¢"-clan is a set {A||t € GF(¢"™)}
of ¢" 2 x 2 matrices over GF(¢"), such that the difference of each two distinct
matrices is anisotropic, i.e., a(A4; — Ag)al = 0 for s # t implies a = (0,0). A
q"-clan is additive if Ay + Ay = Apqs. If

a b
a=[o )

then A is anisotropic if and only if the polynomial ax? + (b + ¢)x + d is an
irreducible polynomial in z over GF(¢"). If ¢ is odd, then A is anisotropic if
and only if (b+ ¢)? — 4ad is a non-square in GF(¢"). If ¢ is even, then A is
anisotropic if and only if the polynomial 22 + 2 +ad(b+c) ! is irreducible over
GF(q), i.e. the element ad(b+ ¢)~! has trace 1, see [37].

Let C = {44t € GF(¢")} be a ¢"-clan, put K; = A; + AF, and define
gt(7) = vAyT and % = yK; for v € GF(¢")%. Let G = {(a,¢,3) || , B €
GF(¢™)?,c € GF(g™)}, and define a binary operation * on G by:

(e, B) (o, ¢, B) = (a+ o et ¢ + o’ B+ ).
This makes G into a group. Let J be the family of subgroups
A(t) = {(a, ge(a),@™) || @ € GF(¢")}, t € GF(¢"),

and
A(o0) ={(0,0,8) || B € GF(¢")?}.
Let J* be the family of subgroups
A(t) = {(a,¢,a”) || @ € GF(¢")*, ¢ € GF(¢")}, t € GF(¢"),

and

A% (00) ={(0,¢,0) || c € GF(¢"), 8 € GF(¢")*}.

Then the following theorem is a combination of results by Payne and Kantor.
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Theorem 3.1.1 (Payne [57], [58] and Kantor [43])
The set J is a 4-gonal family for G if and only if C is a q"-clan.

A flock of a quadratic cone in PG(3,¢q) is a partition of the points of the cone
different from the vertex into ¢ conics. The planes containing the conics of
the flock are called the planes of the flock. The classical example of a flock is
constructed by taking the set of planes on a fixed line disjoint from the cone. In
this case the flock is called linear. In 1987 Thas [75], showed that the conditions
for a g-clan are exactly the conditions for a set of ¢ planes to define a flock of a
quadratic cone in PG(3, ¢); and hence that a flock of a quadratic cone gives rise
to a GQ of order (¢2,q). The corresponding GQ is called a flock quadrangle.
If the flock is linear then the corresponding flock quadrangle is isomorphic to
H (3, ¢?), which is isomorphic to the point-line dual of Q(5, q). Furthermore we
have the following theorem.

Theorem 3.1.2 (Thas, [75])
If two flocks of a quadratic cone have more than % conics in common then
they are equal.

As early as 1976 Thas and Walker had discovered, independently, that with
each flock of a quadratic cone there corresponds a translation plane of order ¢>
and dimension at most two over its kernel, see [87]. Currently there are many
examples of flock quadrangles known, and a classification seems unlikely in the
foreseeable future. In this context it is worth mentioning the work of Thas,
Herssens and De Clerck [81], of Penttila and Royle [63], and the recent work of
Law and Penttila, [46], where many examples of flocks for ¢ odd are found by
extensive computer searches.

3.2 Translation generalized quadrangles

A collineation o of a generalized quadrangle S is called an elation about the
point P provided that either o is the identity or it fixes each line incident with
P and no point not collinear with P. If o fixes every point collinear with P, we
say that o is a symmetry with center P. If the GQ S has a collineation group
E which acts regular on the points not collinear with P while fixing every
line incident with P, then S is called an elation generalized quadrangle (EGQ)
with base point P. The group E is called the elation group of the EGQ. The
classical GQ’s and the GQ’s arising from a 4-gonal family are EGQ’s, and in
particular all flock quadrangles are EGQ’s. Suppose S is an EGQ of order (s, t)
with elation group E and base point P. Let @ be a point of S, and suppose
{li || i=0,...,t} is the set of lines incident with P. If @ is not collinear with
P, then there exist points Ry, ..., R:; and lines my, ..., ms, such that R; is the
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unique point on [; collinear with ) and m; is the unique line incident with @
and R;. Define
E;={g € E || m{=m},

Ef ={g€ E || R} = Ri},
for all i € {0,...,t}. Then E; has order s and E has order st.

Theorem 3.2.1 (Payne and Thas [60])
The set J ={E; || i=0,...,t} is a 4-gonal family.

In [33] Frohardt proved that a finite group of order s¢, which yields a 4-gonal
family, is a p-group if s < ¢. This implies that the examples of generalized
quadrangles of order (¢ — 1,q+ 1) of Ahrens and Szekeres [1] , Hall, Jr. [35],
and Payne [56], together with their point-line duals are not EGQ’s.

A translation generalized quadrangle (TGQ) with base point P is an EGQ with
base point P with an abelian elation group 7'. The group T is called the trans-
lation group of the TGQ. Let S be a TGQ of order (s,t) with translation group
T'. In the same way as we defined the subgroups E; and E} for an the elation
group E of an EGQ we can define subgroups 7; and T} for ¢ = 0,...,t of T\
The kernel K of S is the set of endomorphisms g of T for which T/ C T;,
i =20,...,t. In [60] it is proved that K is a field, T is elementary abelian, s
and ¢t must be powers of the same prime, and if s < ¢, then there is a prime
power ¢ and an odd integer a for which s = ¢® and t = ¢®*!. In contrast with
the number of examples of EGQ’s, there are (up to isomorphism) only 4 known
classes of examples of TGQ’s. At the end of this chapter we will consider all
these examples and give a uniform presentation of them.

3.3 Eggs

A weak egg Enm of PG(2n +m — 1,q), is a set of ¢"™ + 1 (n — 1)-spaces of
PG(2n+m—1, q) such that any three different elements of &, ., span a (3n—1)-
space. If each element E of &, ,, is contained in an (n + m — 1)-dimensional
subspace of PG(2n +m — 1,q), Tr, which is skew from any element of &, ,,
different from E, then &, ,, is called an egg of PG(2n + m — 1,¢q). The space
TFE is called the tangent space of &, ., at E. The set of tangent spaces of an
egg En,m is denoted by Tg, ... If we project the egg elements from an egg ele-
ment onto a PG(n +m — 1, q) skew from that egg element, then we obtain ¢™
mutually skew (n — 1)-spaces, i.e., a partial (n — 1)-spread of PG(n+m — 1, q).
Consequently there are 6,,—1(q) points of PG(n + m — 1,¢) not contained in
one of these partial spread elements. The tangent space of the egg element we
projected from, intersects PG(n + m — 1,q) in an (m — 1)-space skew to the
partial spread elements, and hence contains these remaining 6,,_1(¢q) points.
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This shows that the tangent spaces of an egg are uniquely determined by the
egg elements. On the other hand it is not clear whether every weak egg is
contained in an egg. As will be clear from Theorem 3.3.4 later on, the cases
n =m and 2n = m will be important cases.

Remark. From now on an egg &,., of PG(2n + m — 1,¢) will simply be
denoted by &, if no confusion is possible concerning the values of the integers
n and m.

If n=m then a (weak) egg £ of PG(3n—1, q) is called a (weak) pseudo-oval or a
(weak) generalized oval. Every weak pseudo-oval can be extended to a pseudo-
oval, i.e., the tangent spaces always exist. One can easily see this by projecting
the pseudo-oval from an element onto a PG(2n — 1, ¢) skew to that element,
similar to what we did before to show that the tangent spaces of an egg are
uniquely determined by the egg elements. Now, the partial (n — 1)-spread can
be extended to a spread, because it has deficiency 1 and such a partial (n —1)-
spread of PG(2n — 1, ¢) can be uniquely extended to a spread of PG(2n — 1, q),
see e.g. [25]. If n = 1 then a pseudo-oval is an oval of PG(2,¢q). Other exam-
ples are induced by ovals of PG(2, ¢™), by seeing them over GF(q). In fact the
only known examples of pseudo-ovals are ovals of PG(2, ¢™), seen over GF(q).
All pseudo-ovals of PG(3n—1, ¢), ¢™ < 16 have been classified, see Penttila [61].

If 2n = m then a (weak) egg € of PG(4n — 1,q) is called a (weak) pseudo-
ovoid or a (weak) generalized ovoid. If n = 1 then a pseudo-ovoid is an ovoid
of PG(3,¢). An ovoid of PG(3,¢") seen over GF(q) is an example of a pseudo-
ovoid. In the case of pseudo-ovoids more examples are known, which will be
described later. The existence of weak pseudo-ovoids, which can not be ex-
tended to a pseudo-ovoid, i.e., for which the tangent spaces do not exist, is an
open problem.

All known examples of eggs are generalized ovals or generalized ovoids, see
Section 3.8

Following Thas [76] we say that a (weak) egg € of PG(4n — 1,q) is good at
an element E € € if every (3n — 1)-space containing FE and at least two other
(weak) egg elements, contains exactly ¢" + 1 (weak) egg elements. So an egg
of PG(4n — 1, ¢q) which is good at an element induces an egg of PG(3n — 1,q)
in every (3n — 1)-space containing the good element and at least two other
elements of the egg. We say that an egg £ of PG(4n — 1,q) is a good egg if
there exists an element E € £ such that £ is good at the element F, and E is
called a good element of £.
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Remark. In 1974, Thas [74] defined the following geometrical objects in finite
projective spaces. A [k,n — 1]-arc (k > 2) in PG(3n—1,q) is a set of k& (n—1)-
dimensional subspaces such that every three of them span PG(3n — 1,¢q). A
[k,n—1]-cap (k > 2) in PG(4n—1,q) is a set of k (n—1)-dimensional subspaces
satisfying the following conditions: (i) every three of these subspaces span a
(3n — 1)-dimensional subspace, and (ii) every four of these subspaces are either
contained in a (3n — 1)-dimensional subspace or they span PG(4n — 1, q). With
a [k,n — 1]-arc there corresponds a k-arc of the projective plane over the total
matrix algebra of the (n x n)-matrices with elements in the finite field GF(q),
and with a [k,n — 1]-cap there corresponds a k-cap of the three-dimensional
projective space over the total matrix algebra of the (n x n)-matrices with ele-
ments in the finite field GF(g). In 1971, Thas [73] proved that for such a k-arc
k<q"+1if ¢gis odd, and k < ¢"™ 4+ 2 if ¢ is even, and that for such a k-cap
k < ¢® + 1, except in the case where ¢ = 2, n = 1, where there exists a 8-cap.
A [k,n — 1]-arc in PG(3n — 1,¢q) with k maximal is called an [n — 1]-oval of
PG(Bn —1,q). A [k,n — 1]-cap in PG(4n — 1,¢) with k& maximal is called an
[n — 1]-ovaloid of PG(4n — 1,q). If we compare the definition of an [n — 1]-
ovaloid in PG(4n — 1,q) with the definition of a weak egg of PG(4n — 1,q)
given above, we see that there is one extra condition in the definition of an
[n — 1]-ovaloid, namely that every four elements either span a PG(4n — 1,q)
or are contained in a (3n — 1)-dimensional space; we call this condition (*). It
follows that an [n—1]-ovaloid is a weak egg of PG(4n—1, q) satisfying condition
(%). This makes a significant difference as shown by Thas in 1974, [74], where
he proves the following two results. Firstly, every weak egg of PG(4n — 1,¢q)
satisfying condition (x) is an egg of PG(4n — 1,q) (excluding the exceptional
case ¢ = 2,n = 1), and secondly, every weak egg of PG(4n — 1, q) satisfying
condition (x) is an ovoid of PG(3,¢") seen over GF(q) (excluding the excep-
tional case ¢ = 2,n = 1). In [60] the term [n — 1]-ovaloid is no longer used and
neither is the term eggs, although we find the same definition of an egg as given
above, and such a structure is denoted by O(n,m, q). To my knowledge, it was
Payne [59] who introduced the term “Kantor’s bad eggs” in 1989, referring to
the new generalized quadrangles constructed by Kantor [43] in 1986, although
it is said that Kantor already used the term “badd eggs” on an international
conference. However, no definition of an egg was given at this point. In 1995
Thas and Van Maldeghem [83] give the definition of O(n,m,q) and they call
such a structure a generalized oval or an [n— 1]-oval if n = m, and a generalized
ovoid, an [n — 1]-ovoid, or an egg if n # m. In 1998 Lunardon and Thas [51]
define an egg by the definition given above. Later the term pseudo-oval was
introduced by Wild [88]. Here we use the term egg for the previous O(n,m, q).
We will also introduce pseudo-oval, generalized oval, pseudo-ovoid and gener-
alized ovoid. Motivated by the examples we are of the opinion that these are
good terms for these objects. We hope that these definition are clear and that
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they do not confuse the reader.

Following Thas [79] we call the examples of eggs which are ovals of PG(2, ¢™)
or ovoids of PG(3,¢™) seen over GF(q), classical.

Remark. In Thas [74] eggs which are ovals of PG(2, ¢") or ovoids of PG(3, ¢")
seen over GF(q), are called elementary instead of classical.

Let £ be an egg of PG(2n + m — 1,q). We embed PG(2n + m — 1,q) as
a hyperplane 7 in a PG(2n 4+ m,q) and construct the incidence structure
T(&) = (P, L,1) as follows. Points, the elements of P, are of three types:

(i) the points of PG(2n + m, q) \ 7;

(ii) the (n + m)-dimensional subspaces of PG(2n + m,q) which intersect m
in a tangent space of the egg;

(iii) the symbol (00).
Lines, the elements of L, are of two types:

(a) the n-dimensional subspaces of PG(2n + m, ¢) which intersect 7 in an egg
element;

(b) the egg elements.

The incidence relation I is defined as follows: a line of type (b) is incident
with points of type (ii) which contain it and with the point (co); a line of type
(a) is incident with points of type (i) contained in it and with the point of type
(ii) that contains it. Note that when & is an oval of PG(2,¢) or an ovoid of
PG(3, q),respectively, this construction coincides with the construction of Tits
of T5(€) or T3(E), respectively.

Theorem 3.3.1 (8.7.1 of Payne and Thas [60])
The incidence structure T'(E) is a TGQ of order (¢, q™) with base point (00).
Conversely, every TGQ is isomorphic to T'(E) for some egg € of PG(2n+m —

L,q).

Proof. We consider this as an exercise, to become familiar with the notation
and terminology concerning eggs and TGQs. The proof that the incidence
structure is a GQ of order (g™, ¢™) is left as an exercise to the reader in [60].

Let £ be an egg of PG(2n + m — 1,q), and consider the construction of the
incidence structure T'(£). Straightforward counting arguments show that every
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line is incident with ¢™ + 1 points and every point is incident with ¢ + 1 lines.
Two points of type (i) determine a line in PG(2n + m, ¢) which intersects the
hyperplane PG(2n+m—1, ¢) in a point. If this point belongs to an egg element
FE then they are collinear; the unique line incident with them is the line of type
(a) determined by the egg element E and the line determined by the two points.
If this point does not belong to an egg element then these two points of type (i)
are not collinear. A point of type (i) and a point of type (ii) are collinear if and
only if the point of type (i) is contained in the point of type (ii). The unique
line of T(€) on these two points is the line determined by the point of type (i)
and the egg element contained in the point of type (ii). Two points of type
(ii) are collinear if they contain the same egg element; the unique line of T'(€)
incident with these two points of type (ii) is the line of type (b) corresponding
with the egg element. A point of type (i) is never collinear with the point (o).
Every point of type (ii) is collinear with the point (c0); the unique line of T'(€)
incident with these two points is the line of type (b) corresponding with the
egg element contained in the point of type (ii). We have shown that any two
points lie on at most one line.

Two lines of type (b) intersect in the point (c0). Two lines of type (a) containing
distinct egg elements intersect in at most one point of type (i). Two lines of
type (a) containing the same egg element intersect in at most one point of type
(ii). A line of type (a) and a line of type (b) intersect in a point of type (ii) if
and only if the line of type (a) contains the egg element corresponding with the
line of type (b); the point of type (ii) is completely determined by the line of
type (a). We have shown that any two lines have at most one point in common.
Consider an antiflag consisting of a point P of type (i) and a line of type (a),
which are denoted by (F,Q), E € &, Q € PG2n+m,q) \ 7. If P C (Tg,Q),
then the line (E, P) of type (a) is the unique line incident with the point P
of type (i) and the unique point (Tg, Q) of type (ii), incident with the line
(E, Q) of type (a). Suppose P is not contained in (T'r, Q). Project (E, Q) onto
PG(2n +m — 1,q) from P. This gives an n-space containing the egg element
E. From the definition of an egg it follows that two distinct (2n — 1)-spaces
spanned by E and distinct egg elements must intersect each other in exactly
E. Counting the number of points contained in a (2n — 1)-space spanned by E
and another egg element we get

qm q2n _ qn
q—1
points. Together with the 6,,,_1(¢) points contained in T, these are all the
points of PG(2n +m — 1,q). Hence the projection of (F,Q) from P must
intersect one of these (2n — 1)-spaces spanned by E and a second egg element

F. Then the line (F, P) of type (a) is the unique line incident with P which
intersects the line (E, @) in a point of type (i).
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Consider an antiflag consisting of a point P of type (i) and a line E of type
(b). Then the line (E, P) of type (a) is the unique line incident with P which
intersects E in the unique point (T'g, P).

Consider an antiflag consisting of a point (Tg, P) of type (ii) and and a line
(F, Q) of type (a) with E # F. These two spaces intersect in a point R. The
line (E, R) of type (a) is the unique line incident with the point (T, P) of type
(i) . The point R of type (i) is the unique point incident with the line (E, R)
and the line (F, Q).

Consider an antiflag consisting of a point (T, P) of type (ii) and a line F' of
type (b). The point (c0) is the unique point incident with the line F' and with
the line E of type (b).

Consider an antiflag consisting of the point (co) and a line (E, P) of type (a).
Then FE is the unique line incident with (c0) intersecting the line (E, P) in the
point (Tg, P) of type (ii).

We have shown that the incidence structure T'(€) is a GQ of order (¢, ¢™).
The group of translations of the affine space PG(2n+m, ¢) \PG(2n+m —1,q)
acts transitively on the points not collinear with (oo) and fixes each line on
(00). We may conclude that the GQ T'(€) is a TGQ with base point (co).
Conversely suppose that S is a TGQ of order (s,t) with base point P and
translation group T with kernel GF(q). Then by section 8.5 of [60] there exist
integers n and m such that s = ¢" and t = ¢". Fix a point @ not collinear with
P, and let lg,l1,...,l; be the lines of S incident with P. For ¢ =0,1,...,¢ let
R; be the point of [; collinear with (), and let m; be the line incident with R;
and Q. Define T; = {7 € T || mI = m;}, i.e. the subgroup of T fixing the line
m;, and define T* = {r € T'|| R] = R;}, i.e. the subgroup of T fixing the point
R;. Then T; has order ¢" and T} has order ¢™ and 7} is a subgroup of T7".
Since T is elementary abelian, T' can be seen as a vector space of rank 2n +m
over GF(q), T; as a subspace of rank n over GF(q), and T} as a subspace of
rank m over GF(gq). It follows from section 8.2 of [60] that the corresponding
projective spaces satisfy the conditions for an egg. |

Corollary 3.3.2 (Payne and Thas [60])
The theory of TGQs is equivalent with the theory of eggs.

By the following theorem we know that isomorphic eggs give isomorphic TGQs
and conversely.

Theorem 3.3.3 (L. Bader, G. Lunardon, I. Pinneri [2])

Let &1, & be two eggs of PG(2n +m — 1,q). Then there is an isomorphism
from T(&1) to T(E3), which maps the point (00) to the point (00) if and only if
there is a collineation of PG(2n +m — 1,q) which maps & to &,.

The next theorem gives strong restrictions on the parameters m and n of an
egg and states a nice property about the tangent spaces. It is proved using the
theory of TGQs.
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Theorem 3.3.4 (8.7.2 of Payne and Thas [60])
If € is an egg of PG(2n+m — 1,q), then

1. n=m or n(a+ 1) = ma with a odd.
2. If q is even, then n =m or m = 2n.

3. If n #£ m (resp., 2n = m), then each point of PG(2n + m — 1,q) which
is not contained in an egg element belongs to 0 or ¢~ ™ + 1 (resp., to
exactly g™ + 1) tangent spaces of £.

4. If n # m the ¢ +1 tangent spaces of € form an eqg EP in the dual space
of PG(2n 4+ m — 1,q), called the dual egg. So in addition to T(E) there
arises a TGQ T(EP).

5 If n # m (resp., 2n = m), then each hyperplane of PG(2n +m — 1,q)
which does not contain a tangent space of £ contains 0 or g™ " +1 (resp.,
contains exactly ¢ + 1) egg elements.

The TGQ T'(EP) corresponding with the dual egg £ of £ is called the transla-
tion dual of T(E). We will sometimes refer to the dual of a GQ as the point-line
dual, introduced in Section 3.1, to make clear it is not the translation dual.
Note that for ¢ is even the restrictions on the parameters are stronger than for
q odd. The only known examples of eggs for q even are classical, see Section 3.8.

We have already seen that a 4-gonal family gives rise to a GQ. Moreover the
corresponding GQ is an EGQ, and from every EGQ one can construct a 4-gonal
family, Theorem 3.2.1. In [59] Payne studies the 4-gonal family associated with
an EGQ whose point-line dual is a TGQ. Starting with a 4-gonal family cor-
responding with such an EGQ, S, he deduces the 4-gonal family for the TGQ),
SP. The following theorem states the connection in terms of additive ¢"-clans
and eggs and it is a corollary of the work done by Payne in [59] and Theo-
rem 3.1.1. We remark that we could have stated a similar result in terms of
4-gonal families and eggs. For notational convenience we put F' = GF(¢"). We
represent the points of PG(4n — 1, q) as 4-tuples over F', or sometimes by two
elements of I and one element of F2.

Theorem 3.3.5 ([44])
The set C = {A; || t € F} of two by two matrices over F is an additive ¢"-clan
if and only if the set € = {E(v) || v € F? U {oo}}, with

E(y) ={({t,—g:(7),=7") || t € F}, ¥y € F?,

E(0) = {(0,t,0,0) || t € F},
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together with the set Te = {Tr(7y) | v € F2U {oo}}, with

Te(y) = {(t. 87" 7" —g:(v).8) || t € F, B € F?}, Wy € F?,
Tg(oo) = ((0,t,8) ||t F, B € F?},
is an egg of PG(4n — 1,q), where g;(v) = yAyT and 4% = ~v(A; + AT).
If we are in the situation of the above theorem then, since C is additive, we can
write A; as
n—1 b )
a; 04 ¢
a=Y |6 e
=0
for some a;, bi,c; € F. If an egg € can be written in this form then we denote
the egg as £(a,b,¢), where @ = (ag,...,an-1), b = (bo,...,bn-1), and ¢ =

(cos---,cn—1). In this case we can deduce the explicit form of the dual egg in
terms of @, b,¢. To do this we need the following lemma.

Lemma 3.3.6 Let tr be the trace map from F to GF(q), and o; € F, i =

0,...,mn—1. Then
n—1
tr(z ait?) =0,
i=0

for all t € F if and only if

Proof. Since the trace function is additive and tr(x) = tr(z9), we get

n—1 ) n—1 R .
trlg aitq]:trl<g af )tq ]
i=0 i=0

Since tr(az) = 0, Vz € F implies a = 0 the proof is complete. |

Theorem 3.3.7 ([44]) ~ ~
The elements of the dual egg EP (@, b,€) of an egg £(a,b,€) are given by

E(y) = {(=gi(7),t,—t) || t € F}, Vy € F?,

E(o0) = {(t,0,0,0) || t € F},
Tp(v) = {{f(B:7) +3(),t,8) | t € F, B € F}, ¥y € F?,
s(00) = {(t,0,8)|| t € F, B e F},
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with )
ge(a,b) = Z(aiGQ + bab + Cz'bQ)l/qitl/qiv
1=0
and .
Fl(a,b), (c,d)) = Y (2aac + b;(ad + be) + 2¢;bd) /7.
1=0

Proof. To find E(v), respectively T (7y), we calculate the vector space dual
of Tg(7), respectively of E(v), in V(4n, q) with respect to the inner product

(z,y,z,w), (2", ¢, 2", W) — tr(zd’ +yy' + 22" + ww'),

where tr is the trace map from F' — GF(q). If (z,y,z,w) is in the vector
space dual of E*(v) then tr [zt + y(B7y" +v°9T — g:(7)) + (2, w)BT] = 0, for
allt € F, for all 3 € F2. With v = (a,b) and 3 = (c, d), this is

tr [t + y(ac + bd + YT — gi(7)) + ze + wd| =0,

for all ¢,d,t € F. For t = 0, this equation is satisfied if w = —by and z = —ay.
Substituting this back into the equation we get that tr [zt +y(yoyT — g (’Y))] =
0, for all t € F. Using the formula for g; and §; this is equivalent with

n—1
tr | (z + y(aoa® + boab + cob®))t + Y (a;a® + biab + c;b*)t4 | =0,

i=1

for all ¢t € F, and using the above lemma, it follows that (z,y, z,w) is of the
form

n—1
(— z:(aia2 + b;ab + cib2)1/qlt1/ql,t, —at, —bt),
i=0

for some t € F. This proves the form of the elements E(v) of the dual egg.
The tangent spaces are obtained in the same way. |

For reasons that will become clear later, we will now check if the egg &P
satisfies the conditions in the definition of an egg.

(i) Every three elements span a (3n — 1)-space.

Suppose Eji, Fo, E3 are three distinct egg elements such that Es has a non-
empty intersecion with (E1, E»). If one of these egg elements is the element

E(00), then this implies, supposing E; = E(c0), Fs = E(3), and F3 = E(7),
that there exist r, s,t € F* = F\ {0} such that (r,0,(0,0))+(—gs(8), s, —3s) =
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(—g:(7),t, —t). However it then easily follows that s = ¢, and hence v = 3,
a contradiction. Now suppose that none of the egg elements Ei, Ep, Fj3 is

E(00), then, supposing Ey = E(v1), By = E(72), and Es = E(v3), there exist
t1,to,t3 € F* such that

(=Gt (1), t1, —=1it1) + (=3¢, (12), L2, —Yate) = (—Gey(73), t3, —73t3).

It then follows from the second coordinate it follows that t; + to = t3. Put
v = (a1,61),72 = (az2,B2), with aj,as,01,82 € F. Then from the third
coordinate it follows that

g = tiag +tacg t151 +t2f
3 i+t | ttta )

Note that t1 + to # 0 by assumption. It then follows from the first coordinate
that

tion +taan 11531 + t252>

gtl (051761) + §t2 (052562) = §t1+t2 ( tl ¥ fg ) tl + t2

(3.1)
We want to use the formula for g but for convenience of notation we may
re-index the coefficients a;, b;, ¢; such that g:(a,b) becomes

n—1
Z(aiaQ + bjab + cib2)qltq1.
i=0

Then the condition (3.1) becomes

I
-

n—1

(a;afty + biar fits + ciBitn)? + Z (aiadts + bjaafats + cif3ta)’
i=0

n

-
Il
=)

—

n—

2
tia + tocv
_ [ai (M) (hy + t2)

=0 bty

+

b, L1061 + tafo tiog +taas
! t1 + to t1 + to

) (t1 +t2)

7

q

t161 + tafo
+oo |
t1 + 1o

)2(t1 +t2)

Working out the right hand side of this equation we have
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—1
nz a Oé%t% + Oé%t% + 20[10[2t1t2
= ! 11 +t2

<a151t1 (a1fB2 + azfr)tits + 5152@)

11+ &2

<51 1 + P3t3 + 25152t1t2)] |
11 +t2

= Z(tl + tg) ¢ [al(ath + a2t2 + 2a1a2t1t2)
=0
+ bi(o Brt2 + (1 fe + ) tits + B1Fat2)

i

+ (BT} + B3t5 + 281 Batata) ]

Now we multiply both sides with H;L:_Ol (t; +t2)7 . We get

o I (i +0)7 [aiadtt + (of + ad)tata + a3t3)
i=0 j=0,i#j

+ b;(a1Bit] + (1B + aaf)tits + azfat3)

b e(BPE + (B + Bty + G22)]) T

= Z H (ﬁl + t2)qj [ai(aftf + a%t% + 20410(21f1t2)
=0 j=0,i#£j

+ bi(o1 Bt + (@1 Ba + o )tits + B152t3)

+ (BT + B35 + 261 Batato)]
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This equation is equivalent to

i 1:[ (t1 + t2)7 [(as(ar — an)?

i=0 j=0,i%]

+ bi(ar — a2)(B1 — f2) + ci(B1 — 52)2)t1t2]qi
= 0.
Since t1 + t2 # 0 this is equivalent to
§%(a1 —ag, 1 — f2) =0.

So if we assume that there exist egg elements which do not satisfy the first
condition then we get that there exist a t € F* and a v € F?\ {(0,0)} such

(ii) The tangent space at an element F € £P is skew to the elements
of P\ {E}.

Suppose the tangent space at an egg element E; intersects an egg element
Ey # Ey. If one of these egg elements is E(c0), we immediately get a contra-

diction. If not then put E; = E(vy1) and Ey = E(q2) with 41 # 72 € F2. Then
there exist elements t1,t2 € F, 3 € F?, such that

(f(’}/l;ﬂ) + gtl (Vl)atlaﬂ) = (7§t2(72)5t25 772t2)'

From the second and third coordinate it follows that t; = t3 and 8 = —~ts.
With t = t; = t2, 71 = (o1, 1), and 72 = (az, B2), a1, a2, 81,62 € F, the first
coordinate implies

f((ar, Br), (—aat, =fat)) + Ge(en, fr) = =gelaz, B2). (3.2)

Again, for convenience of notation, we permute the indices of the coefficients
a;, bi, ¢; in the formulae for g and f such that we can write

n—1

gt(a, b) = Z(aiGQ + b;ab + CibQ)qitqi,

and

Z(Qaiac + bi(ad + be) + 2cibd)qi.
=0

~
~—~
—
8
>
:—/
—
o
U
=
=
I
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Equation (3.2) becomes

n—1 )
> [2ai0nast — bi(a1 fat + aafit) — 2ciB1fat + (ai0f + bioa By + ¢iB7)t]?
i=0

n—1

= =3 [(@i0d + biasfhs + B30t .

=0

This implies

|
—

n

[ai(as — a1)® + bi(az — o1) (B2 — Br) + ci(B2 — ﬁl)ﬂqi ' =0,

Il
=]

i

and hence gi(aa — a1,02 — B1) = 0. So if we assume that there exists a
tangent space and an egg element that do not satisfy the condition concern-
ing the tangent spaces in the definition of an egg, then there exist ¢t € F'* and
v € F2\{(0,0)} such that g;(y) = 0, which is the same condition as we obtained
in the above from verifying that every three egg elements span a (3n— 1)-space.

It follows that the only condition required for £P to be an egg is that §;(a, b)
implies t = 0 or a = b = 0. From the form of g it follows that this is equivalent
to the condition for the matrices

ol d pu/d
0

At:Z 7 1 1 1/qi,t€F’

1/q"
i=0 ¢
to form a ¢"-clan. Hence we have the following theorem.

Theorem 3.3.8 The set éqn ={A, | t € F} is a ¢"-clan if and only if EP,
as defined in Theorem 3.3.7, is an egg of PG(4dn —1,q).

The next theorem is a consequence of Theorem 3.3.5 and the above theorem.
However, here we will give a direct proof of this result. Together with the above
theorem we have then provided a proof for Theorem 3.3.5.

Theorem 3.3.9 The following two conditions are equivalent.
n—1 ]
(1) Z(aiaQ + biab 4 ¢;b*)t? =0 implies t = 0 or a = b= 0.
i=0
n—1 ) )
(2) Z(aiaQ + biab + ¢;b*)Y Y9 =0 implies t =0 ora =b=0.
i=0
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Proof. Suppose the equation

n—1
Z ait®’ =0, a; € F (3.3)
=0

has ¢" ¥ different solutions for ¢ in F. The solutions form an (n—k)-dimensional
subspace in V(n, ¢). Hence there are k independent hyperplanes of V(n, q), rep-
resented by the equations tr(a;t) = 0, a; € F, i = 0,...,n — 1, independent
over GF(gq) , such that the solutions of the equation (3.3) are the same as the
solutions of the equation

k-1
Z vitr(a;t) =0,
i=0

where g, ...,7k—1 are k elements of GF(¢"™) independent over GF(q). (Here
we use the representation explained in Section 2.7.3.) We show that there exist
such v; and a;, (i =0,...,k — 1), such that

J
0= Y el
i=0
for j =0,...,k—1. First we remark that («p, ..., @,—1) has dimension k, since
they satisfy n—k independent relations. Assume «, ..., ai_1 are independent.

Then it suffices to solve the set of equations:

g = Yao+710a1+ ... +Ve—10k—1
(0%} = 'yoag+’yla’f+ ...Jr'yk,lai_l

o qk—l qk—l qk—l
Qp—1 =  Yoa + 71aq + .o+ Ye—105_ -

The corresponding matrix has rank k since the hyperplanes are independent.
It follows that there is a unique solution. Now suppose that k& = n, then

ozj/ql é/qlao + 711/q1a1 + ...+ ’yrll@llan,l, for all o, ¢ = 0,...,n — 1. So
Z?;ol ag/qltl/qi =agtr(yot)+...+an—1tr(yn-1t). Since both the v;’s and the
a;'s are independent it follows that

n—1

Y /it =0 (3.4)
1=0

implies ¢ = 0. This proves that the equation (3.3) has only the trivial solution
or is the zero-polynomial in ¢ if and only if the equation (3.4) has only the
trivial solution or is the zero-polynomial in ¢. |
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3.4 A model for eggs of PG(4n —1,q)

Motivated by the previous section and in the spirit of the model for skew
translation generalized quadrangles (STGQ) presented in [60], we present a
model for a weak egg £ of PG(4n — 1,¢q). Put F' = GF(¢").

Let B(7) = {((t,—gi(7), —1™)) || ¢ € F}, and E(sc) = {{(0,£,0,0)) || ¢ € F},
with gt : F?2 — F, 6; : F? — F2. 1f £(g, ) is the set {E(v) || v € F?U {oo}},
with g : t — g4, 0 : t — 0; then we have the following theorem.

Theorem 3.4.1 ([44])
The set £(g,0) is a weak egg of PG(4n — 1, q) if and only if

e the functions g and § are linear in t over GF(q),

e §; is a bijection fort # 0,

1) Sto\o L
L4 gt (71) + gt2(72) 7& gt1+t2((71t1 6+ 721225t1+j21)7 fOT all tl 7é 0; t? # 07
t1 +t2 #£0, v1 £ v2 and y1 # (’yltl + 72t2)6t1+t2 # s,

Proof. These conditions easily follow from working out the conditions for a
weak egg from the definition. |

Theorem 3.4.2 ([44])
A weak egg £ is good at an element if and only if € is isomorphic to a weak
egg £(g,8) with 6; : v — ~t, and the egg € is good at E(c0).

Proof. Suppose £(g,9) is a weak egg with &, : v — ~t. Projecting (g, 0)
from F(oco) shows that (g, d) is good at E(oc). Conversely suppose that £ is
a weak egg which is good at an element. Without loss of generality we may as-
sume that & is of the form £(g,d) and is good at E(c0). Projecting from E(co)
onto W = {((r,0,s,t)) || r,s,t € F}, gives a partial (n — 1)-spread P of W.
Since £(g,9) is good at E(c0), every (2n — 1)-space of W spanned by two ele-
ments of P, contains exactly ¢™ elements of P. If B is the set of (2n — 1)-spaces
spanned by two elements of P, then with respect to inclusion, the elements of
P and B form the points and lines of an affine plane A of order ¢". Let T be
the set of points of W, not contained in an element of P. Every two elements
of B necessarily meet in an (n — 1)-space of W. Two elements of B which
correspond with two parallel lines of A, meet in an (n — 1)-space contained in
T. Tt follows that all lines belonging to the same parallel class of A, intersect
T in a common (n — 1)-space. Let £ be the set of all these (n — 1)-spaces of
T. Any two elements of £ are disjoint since two non-parallel lines of 4 meet
in a point of A, i.e., an element of P. This shows that £ partitions the set T
We completed the partial spread P to a normal spread of W. By a theorem of
Segre [70] it follows that the affine plane A is Desarguesian. This implies that
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the set P is isomorphic to the set {{(¢,0, —at, —bt) ||t € F} || a,b € F}, under a
collineation of W. Extending this collineation to a collineation of PG(4n—1, q),
the result follows. |

In [76], Thas proves that, for ¢ odd, every subquadrangle that arises from
a (3n — 1)-space on the good element is isomorphic to Q(4, ¢"™). Together with
Theorem 3.3.3, this implies the following lemma.

Lemma 3.4.3 If £ is an egg of PG(4n — 1,q), q odd, which is good at an
element E, then every pseudo-oval on E contained in & is classical.

The next theorem proves a conjecture of Thas [76]. The conjecture was first
proved by Thas in [78], as a corollary of a more general result. Here a shorter
direct proof of the conjecture is given.

Theorem 3.4.4 (Thas [78]; [44])
An egg € of PG(4n — 1,q), q odd, is good at an element if and only if T(E) is
the translation dual of the point-line dual of a flock GQ.

Proof. Starting from a flock GQ, it follows from Theorem 3.3.7 and Theorem
3.4.2 that the egg is good at an element. Conversely, let £ be an egg of PG(4n—
1,¢) which is good at an element. Without loss of generality we may assume
that € is of the form £(g,d) and good at E(oco0). From Theorem 3.2 it follows
that we may assume that d; : v — ~t. Define the following (3n — 1)-spaces:

Vo = {(r,s,—ar,t)) | r,s,t € F},Va € F,

Wy = {{r,s,t,=br) || r,s,t € F},Vb € F,
U={(rstt)| rstelF}

Then every one of these (3n — 1)-spaces contains exactly ¢" + 1 egg elements.
Hence they intersect £(g,d) in a pseudo-oval on E(c0). Now fix b € F and
consider the pseudo-oval Cp lying in Wj,. By the above lemma C; is isomorphic
to an oval of PG(2,¢™), seen over GF(q). Since ¢ is odd, this oval is a conic C
(see Segre [68], [69]). So we can write the points of C as (1, f12% + fox + f3, 2),
for some f1, fa2, f3 € F. If we look at the points of C' as (n — 1)-spaces over
GF(q), then we may write them as {(t, (fiz? + fox + f3)t,xt) | t € F}. The
set of these (n — 1)-spaces is a pseudo-oval of PG(3n — 1,¢). We denote this
pseudo-oval with C. So there exists a collineation of Wj mapping C to C,. The
elements of C, are of the form {(t, —g:(a,b), —at) || t € F'}, where we omit the
last coordinate, which is fixed in W;. Without loss of generality we may assume
that there exists a collineation (A4, 0) € PT'L(3n,q), which maps the (n — 1)-
space {(t, (fia®+ foa+ f3)t, —at) | t € F} to {{t, —g:(a,b), —at) | t € F}, such
that
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t t
Al (fia® + faa+ f3)t | = | —ge(a,b)
—at —at

This implies that 0 = 1 and A is of the form

I, O 0
Al A2 A3 )
0 0 I,

where I,, is the (n x n) identity matrix, and Ay, As, A3 are (n X n) matrices over
GF(q). Since every linear operator on F' over GF(q) can be represented by a
unique g-polynomial over F (see Theorem 9.4.4 in [67]), there exist «;, i, Vi €
F such that

n—1 ) n—1 ) n—1 )
—gi(a,b) =Y ait” + > Bi((fra® + foa+ fa)D)T + Y vi(—at)?.
=0

i=0 i=0
Simplifying this expression we get that there exist a;, b;, ¢; € F such that

n—1

gt(a,b) = Z(aiQQ + ba + Ci)qitqi.
i=0

This was for a fixed b € F', so the coefficients may depend on b. Repeating the
same argument for all b € F', we get that there exist maps a;, b;, ¢; from F' to
F such that

n—1
gi(a,b) = (ai(b)a® + bi(b)a + ci(b)) " 7.
i=0
We can apply the same reasoning to the pseudo-ovals contained in the (3n—1)-
spaces Vg, for all @ € F', and for U. So there exist maps d;, e;, f; from F to F,
and constants, u;, v;, w; € F, such that

n—1
gi(a,b) = Z(di(a) +ei(a)b + fi(a)b?) 717,
i=0
and
n—1 o
git(a,a) = Z(uiQQ + via + w;)T 17
i=0

Consider the pseudo-ovals in Wy and Vj. Their elements are of the form
{{(t, —g:(a,0),—at,0)) || t € F} and {((t, —g:(0,0),0,—0bt)) || t € F}, respec-
tively. Using a coordinate transformation involving only the first 3n coordinates
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we can get rid of the linear terms (terms with a in) and the constant terms
(terms without a) in g¢(a,0). This only adds constant terms or linear terms to
gt(a,b). Using a coordinate transformation involving the second n and the last
n coordinates, we can get rid of the linear terms in g¢(0,b). Again this only
adds linear terms to g:(a,b). We use the same notation for the possible new
gt(a,b). It follows that g;(0,0) = 0, which implies that

n—1 n—1 n—1
D wit)” =3 (e (0)1)” = (di(0)t)7 = 0.
i=0 i=0 i=0
The form of ¢:(a,0) and g:(0,b) implies that
n—1 ) n—1 )
Z(bi(())at)ql = Z(ei(())bt)ql —0,
i=0 i=0
and therefore
n—1 n—1
Y (D = (f0p*)T,
i=0 i=0
and
n—1 ) n—1 )
Z(az‘(o)a%)ql = Z(dz‘(a)t)ql.
i=0 i=0

It also follows that the total degree in a and b must be 2 (up to the exponents
@;). This implies that we obtained the following formula for g;(a,b):

n—1

g1(a,0) = > (ai(0)a® + bi(b)a + f;(0)p)7 47,
1=0

and
n—1

gi(a,b) = Z(ai(O)aQ +ei(a)b+ fi(O)bQ)qitqi.
=0
From g¢(a,a) it then follows that we can also replace b;(b)a and e;(a)b by a
constant times ab. We have shown that there exist constants a;, b;, c; € F' such
that g¢(a,b) can be written as

n—1
gi(a,b) = Z(amQ + bsab + ¢;b?)7 t9 .

i=1

Theorem 3.3.7 implies that (g, d) is the dual of an egg £, such that T(£P)
is the point-line dual of a flock GQ. |
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3.5 The classical generalized quadrangle (4, q)

In the first section of this chapter we gave a brief description of the classical
GQs. One of these examples is the GQ corresponding to a non-degenerate
quadric in PG(4, q), which we have denoted by Q(4,¢q). Another example of a
GQ of order g is the generalized quadrangle constructed by Tits from an oval
of PG(2, g), which we have denoted by T'(O).

Theorem 3.5.1 (Payne and Thas [60, 3.2.2])
If O is an oval in PG(2,q), then the GQ T(O) is isomorphic to the classical
GQ Q4,q) if and only if O is an irreducible conic.

If follows from the construction that T(O) is a translation generalized quad-
rangle with base point (co). Since the collineation group of the classical GQ
Q(4, q) acts transitively on the points of Q(4, q), we have the following corollary.

Corollary 3.5.2 (Payne and Thas [60])
The GQ Q(4,q) is a TGQ with base point P, for any point P of Q(4,q).

If ¢ is odd then every oval in PG(2,q) is a conic C, and hence Q(4,q) is iso-
morphic to T'(C). Let us take a closer look at the isomorphism between these
two generalized quadrangles. To find the isomorphism we have to let the point
(00) of T'(C) correspond with a point of Q(4,¢q). Since the collineation group
of Q(4,q) acts transitively on the points of Q(4,¢), we may choose any point
P. The lines incident with P should correspond with the lines incident with
(00), i.e., the points of a conic. Intersecting the polar space of P with Q(4, q)
we get a quadratic cone IC with vertex P. The base of the cone K is a conic C
and hence there arises a natural way of making the necessary correspondence
between the lines incident with P and the points of a conic by projecting the
cone KC onto its base C. Let m be the plane containing the conic C. Take a
hyperplane H of PG(4, q), containing 7 but not incident with P. Now we have
the setting to construct the TGQ T'(C) in the hyperplane H. Again a natural
correspondence arises between the ¢ points of H not in m, i.e., the points of
type (i) of T'(C), and the ¢3 points not collinear with P by projecting Q(4, q)
from P onto H. The lines incident with a point y not collinear with P meet
the cone K in a point, and hence they are projected from P onto a line of H
meeting the plane 7 in a point of C, this is a line of type (a) of T'(C). The points
collinear with P now have to correspond with planes of H intersecting 7 in a
tangent line to the conic C. We can deduce this by considering the lines not on
P and incident with a point @ collinear with P. All these lines are projected
onto lines of H intersecting 7 in the same point of C, and contained in a plane,
namely the intersection of the polar space of @Q with H. This plane is a point of
type (ii) of T'(C), and hence by the above we obtained a bijection between the
points collinear with P and the points of type (ii) of T'(C). It is straightforward



3.5 The classical generalized quadrangle Q(4, q) 73

to prove that the deduced correspondence defines an isomorphism ¢ between
Q(4,q) and T(C).

Now we will be a bit more precise and introduce coordinates, so that we can
give this isomorphism explicitly. For Q(4, ¢) we take the non-degenerate quadric
with equation X2 = XX +X3X4, for P we take the point (0,0, 0,0, 1), and for
the hyperplane H we choose the hyperplane defined by the equation X, = 0.
Then the plane 7 has equation X3 = Xy = 0 and the conic C has equation
X2 = XoX;. We denote the tangent line at the point (g, 21, z2, ¥3,74) of the
conic C by T¢(xo, x1, T2, 3, 24). Then the isomorphism ¢ : Q(4,q9) — T(C)
can be defined by its action on the points of Q(4, q)

(0,0,0,0,1) = (00),

<a,b,c,1,02fab> = <a’5b705170>5

(a®,1,a,0,b) —  (Te(a?,1,a,0,0),(—b,0,0,1,0))
(1,0,0,0, a) —  (T¢(1,0,0,0,0), (0, —a,0,1,0))

Theorem 3.5.1 can be extended to TGQs corresponding with classical pseudo-
ovals, in the case where ¢ is odd. The pseudo-oval then arises from a conic of
PG(2,¢™), and the corresponding TGQ is isomorphic to Q(4,¢"). It is clear
that the isomorphism can easily be deduced from the isomorphism ¢ between
Q(4,q) and T(C).

In the following section we need this isomorphism in detail. Put F' = GF(¢").
Consider the good egg & corresponding with an additive ¢™-clan as before. The
elements of £ can be written as

E(y) = {{(=g:(7),t,—t)|| t € F}, ¥y € F?,

E(00) = {(t,0,(0,0))] t € F},
Te() = {{f(, ) 9:(),t,0)|| t € F,6 € F?}, Wy € F?,

Tr(co) = {{t,0,c)|| t € F,c € F?},
with
n—1
gt(a,b) _ a2t + Z(bzab+ cib2)1/qltl/¢h,
=0
and
n—1
F((a,b), (e, d)) = 2ac+ Y (bi(ad + be) + 2¢;bd) /",
1=0

With these notations the pseudo-ovoid € is good at its element F(00).
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Consider the pseudo-oval O determined by the the good triple (E(c0), E(0,0),
E(1,0)). So O cousists of the elements E(v), with v € {(a,0)]| a € F} U {occ}.
From the coordinates we see that this pseudo-oval is classical. It is the conic
with equation XoX; + X3 = 0 seen over GF(q).

Consider the projective space PG(4n, q) = {(r, s, t,u, T4n)| 7,8, t,u € F, x4, €
GF(q)}, and suppose that the good egg is contained in the hyperplane with
equation X4, = 0. The pseudo-oval O is then contained in the (3n — 1)-
dimensional subspace p = {(r,s,¢,0,0)| r,s,t € F}. We construct T'(O) in the
3n-dimensional subspace G = {(r, s,¢,0,24,)|| 7,8,t € F, x4, € GF(q)}. Now
we can define, in a similar way as we defined the isomorphism ¢ : Q(4,4¢") —
T(C), an isomorphism ¢ : Q(4,q") — T(0):

(m 3

(—a,b,—c,0,1),
(Tr(a,0)Np,(b,0,0,0,1)),
(Tr(c0) N p,(0,—a,0,0,1)).

1111

So points collinear with 2 are mapped onto points of type (ii) of T(0), i.e., the
span of a tangent space of O with a point of G \ p, and points not collinear
with 2 are mapped onto points of type (i) of T(0), i.e., points of G \ p.

3.6 Semifield flocks and translation ovoids

An ovoid of a generalized quadrangle is a set of points such that every line of
the GQ contains exactly one of these points. An ovoid is called a translation
ovoid or semifield ovoid if there is a group of collineations of the GQ fixing a
point of the ovoid and acting regularly on the other points of the ovoid. If a
GQ of order (s,t) contains a subGQ of order (s',¢") then the set of points in
the subGQ collinear with a point not in the subGQ has the property that no
two of these points are collinear. If s = s’ then every line of the subGQ will
contain one of these points, i.e., these points form an ovoid of the subGQ. The
ovoid is called a subtended ovoid.

In this section we will give the connection between certain type of flocks (semi-
field flocks) of a quadratic cone in PG(3, ¢™) and translation ovoids of Q(4, ¢"),
first explained by Thas in [77] in 1997, and later on by Lunardon [48] with
more details. By my knowledge the explicit calculations given here have not
appeared anywhere before.

Put F = GF(¢"), q odd, and consider the quadratic cone K in PG(3,¢) with
vertex v = (0,0,0,1) and base the conic C with equation XqX; = X3. The
planes of a flock of K can be written as m; : tXo+ f(£) X1 +g(¢t) X2+ X3 =0,
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t e F, for some f,g : F — F. We denote this flock by F(f, g).

Remark. The notations f and g are usually used for the functions defin-
ing the flock. Although sometimes — f is used instead of f. This probably has
its origin from spreads of PG(3,¢). But it would take us too far to explain
this in detail. In this section we choose to use f and not —f because using — f
would imply that we have to drag the minus sign along in all the calculations,
of which we don’t see the point. However when we present the known examples
we will use — f again. The reason for this is to make it easier for the reader to
compare with the examples in the literature.

If f and g are linear over a subfield then the flock is called a semifield flock.
The maximal subfield with this property is called the kernel of the flock. If we
assume that the kernel of F is GF(q), then we can write f and g as

n—1

f&y=> cit? and g(t Z bit? (3.5)

=0

for some b;,¢c; € F,i=1,...,n—1. Now we look at the dual space of PG(3, ¢")
with respect to the standard inner product, i.e., a point (a, b, ¢, d) gets mapped
to the plane with equation a Xo+bX1+cX2+dX3 = 0. The lines of the cone
become lines of PG(3,¢™) all contained in the plane 7 : X3 = 0 corresponding
with the vertex of K. They had the property that no three of them were
contained in a plane, so now they form a dual oval of w. Since g is odd, this
dual oval is a dual conic, i.e., the set of lines of the cone corresponds with the set
of tangents of a conic C’. We want to know the equation of the conic C’. A point
(1,a?, a) of the conic C becomes the plane p with equation Xo+a%X;+aXs = 0.
So the line of the cone K on that point becomes the intersection of the planes
7 and p, i.e. the line with equation Xy + a?X; + aXy = 0 in the plane 7.
Dualising with respect to the inner product corresponding with the polarity
defined by the dual conic, i.e.,

((x,y,2), (u,v,w)) — (zv + yu — 2zw),

we obtain the point (1,a,—2a) corresponding with the line of the cone we
started from. We can do this for all the lines of the cone and we see that
the equation of the corresponding conic C' in 7 is 4XoX; — X5 = 0. Two
planes 7 and 7 of the flock F correspond with the points (¢, f(¢), g(¢),1)
and (s, f(s),9(s),1). Since m and 75 do not intersect on the cone K, the
line ((t f ),g() 1), (s, f(s),9(s),1)) intersects 7 in an internal point (¢t —
s, f(t) — f(s),9(t) — g(s),0) of C'. Since f and g are additive, we obtain a
set {(t, f(t),g(¢),0) || ¢ € F} of internal points of C’. Over GF( ) the plane
7 becomes a (3n — 1)-dimensional space, the conic C’ becomes a pseudo-oval
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O and the set of internal points, becomes an (n — 1)- space skew to all the
tangent spaces of @. Dualising in the (3n— 1)-space corresponding with 7 with
respect to O yields a (2n — 1)-dimensional space U skew to the elements of
the pseudo-oval. To find U we use the inner product corresponding with the
polarity defined by the conic C’:

((z,y, 2), (u,v,w)) — tr(dzu + dyv — 2zw),

where tr is the trace map from GF(¢") to GF(q). So the point {u,v,w) € U if
tr(2uf(t) + 2vt + wg(t)) = 0, for all t € F. Using the expressions from (3.5)
for f and g we obtain the condition

n—1
tr | (2v + 2ucy + wbo)t + Z(Qcm +baw)t? | =0, forallt € F.
i=1

Using Lemma 3.3.6, it follows that we can write U as {{u, —F(u, w), w)|| u,w €
F}, with
F n—1 1 ) 1/qi
(u,w) = ;(Czu + 5 jw) /T
Let p be the (3n—1)-space containing O and consider the construction of T'(O).
If we extend U with a point not contained in p and we apply the isomorphism
11, then we get a 2n-dimensional space containing ¢*" points of type (i) of
T(O). Because U is skew to the pseudo-oval O, no two of these points are
collinear. Adding the point (c0) we get an ovoid of T'(O). Since O is a classical
pseudo-oval this gives us an ovoid of Q(4, ¢"). In order to give the coordinates of
the points of the ovoid of Q(4, ¢™) we have to apply a coordinate transformation
such that the conic C’ with equation 4XoX; — X3 is mapped onto the conic
with equation XoX; + X7 = 0, and then apply the isomorphism ¢~1. After
this transformation U becomes the subspace {(u, F(u, w), w)| u,w € F}, with

n—1

F(u,w) = Z(clu + biw)l/qi.
i=0

If we extend U with the point (0, ...,0,1), we can write the ovoid as the set of
points of PG(4, ¢")

{{(~u, F(u,v), —v,1,v* = uF (u,v))|| u,v € F}U{(0,0,0,0,1)}.
After a coordinate transformation fixing Q(4, ¢"), we get the ovoid O(F)
{<’LL, 7F(U,’U),’U, 15 1)2 - ’U,F(’LL, ’U>>H u,v € F} U {<07 Oa 07 05 1>}

This construction also works starting with a translation ovoid of Q(4,¢") to
obtain a semifield flock of a quadratic cone in PG(3, ¢™). We define the kernel
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of the translation ovoid as the kernel of the corresponding semifield flock.

We conclude this section with a result on isomorphisms between flocks and
ovoids.

Theorem 3.6.1 (Lunardon [48, Theorem 4])

If 71 and Fa are isomorphic semifield flocks of a quadratic cone in PG(3,¢"),
then the corresponding translation ovoids of Q(4,q) are also isomorphic and
conversely.

3.7 Subtended ovoids of (4, q)

We already mentioned that in a good egg of PG(4n — 1, q) there arise a lot of
pseudo-ovals and hence in the corresponding GQ a lot of subGQs. Subtend-
ing gives ovoids of Q(4,q). In 1994 Payne and Thas [82] used this method
to construct a new ovoid of Q(4,¢™), using the Roman GQ, arising from the
Cohen-Ganley semifield flock, [59], by using only one subGQ. The question
remained if using different subGQs, new ovoids could be obtained.

In [64] Penttila and Williams constructed a new translation ovoid of Q(4, 3°).
This implies, as we mentioned in Section 3.6, a semifield flock and hence a
good pseudo-ovoid. It was an open question if new ovoids could be obtained
by subtending from points in the corresponding TGQ.

In this section we show that all the ovoids subtended from points of type (ii)
are equivalent starting from an arbitrary good egg of PG(4n—1, q), ¢ odd. This
solves both questions concerning the ovoids subtended from points of type (ii).
We also show that in at least one of the subquadrangles the ovoids subtended
from points of type (i) are all equivalent. Moreover they are equivalent to the
ovoids subtended by points of type (ii).

Consider the good egg £ from the previous sections (here we denote it with
£ instead of £P) and suppose &€ is contained in the hyperplane with equation
X4n = 0 as before. We construct the TGQ T'(€) in PG(4n,q). Let O be
the pseudo-oval {E(a,0)|| a € F} U{E(c0)}, let p denote the (3n — 1)-space
{(r,s,t,0,0)|| r,s,t € F} and G the 3n-space {(r,s,t,0,Z4n)| 7, 8,t € F, x4, €
GF(q)}. We construct T(O) in G. We see T(O) as a subGQ of T(£), i.e.,
we identify the points (Tr(a,0) N p,z) of type (ii) of T(O) with the points
(Tr(a,0),z) of type (ii) of T'(£). Since T(£) has order (¢", ¢*"), and T'(O) has
order (¢", ¢™), the above method yields subtended ovoids in T'(O).

First we consider the ovoids subtended from a point of type (ii) of T'(£). The
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obtained ovoids are translation ovoids determined by a (2n — 1)-space which is
skew to the elements of the pseudo-oval O. Since O is classical, and ¢ is odd,
this is equivalent with a semifield flock. Let Q@ = (Tg(a,b), (o, ..., Tan-1,1))
be a point of type (ii) of T'(£) not contained in T(O). It follows that b # 0. We
may assume that a = 0, since there is a collineation of T'(£) mapping E(a, b)
to E((a,b) +d(1,0)) for all d € F, and fixing T(O), see [82]. Then
n—1
T(0,b) N p={(>_(bibc+ cibt) /9, c,0)| t,c € F},
i=0
is a (2n — 1)-space skew to the classical pseudo-oval arising from the conic of

PG(2,¢") with equation XoX; + X3 = 0. From the previous section it follows
that the semifield flock corresponding with this ovoid is F(f, g), with

n—1 n—1
Fy =0 "cit?, and §(t) =b>_ bit? .
1=0 1=0

In PG(3,¢"™) we can apply a coordinate transformation fixing the cone K such
that the planes of the flock f(f,g) are mapped onto the planes of the flock
F(f,g). The matrix
10 00
0 d> 0 0
0 0 d o0
0 1

induces such a coordinate transformation. It follows that the subtended ovoids
obtained by subtending from points of type (ii) are isomorphic to the transla-
tion ovoid O(F).

Next we consider the ovoids subtended from a point @ of type (i) of T'(E). We
may assume that @ = (0,0,0,d, 1), with d € F*, since we can apply a transla-
tion fixing T'(O) if necessary, see [82]. Points of type (i) of T'(O) collinear with
Q are (E(a,b),Q) NG, with b # 0. We get the ¢*" — ¢" points

(—gt(a,b),t,—at,0,1), a € F, be F*, t = %
of type (i). Points of type (ii) collinear with @ are (Tg(a,0) N p,Q), a € F
and (Tg(oc0) N p,Q). We want to use the isomorphism ¢ given earlier be-
tween Q(4, ¢™) and T'(O). First we remark that (Tr(a,0)Np, Q) = (Tr(a,0)N
o, (@ 0), (0,~)),0,0,0, 1)), and (T(00) N, Q) = (T5(00) Mp, (0,0,0,0,1)).
So applying 1»~! we obtain the ¢" points

n—1
(a*,1,a,0, — Z(biad)l/‘f}, ac€F,
i=0
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and the point (1,0,0,0,0) of Q(4,¢™). Applying 1»~! to the ¢*" — ¢" points of
type (i) we obtain the points

ad ad., d
(g4 (a, b), 5y b ()~ 392a(a,b)
b n—1 ) b n—1 )
0 /g’ o . b/
+ - ; (biad + c;bd)/9" 1, a, = ;(bzadJrczbd) a)

for a € F, and b € F* of Q(4,¢™). So the ovoid can be written as the set of
points of PG(4, ¢™)

n—1 n—1
{(a2 +0 (bida + c;d®0)7 1 a,b,— Y (bida + ¢d*0)'7) || a,b € F}
i=0 =0

u{(1,0,0,0,0)}.

It follows that the subtended ovoid of Q(4,¢™) is the translation ovoid corre-
sponding with the semifield flock determined by the functions

n—1

f —dQchtq,andg —detq

=0

From the previous section together with the above it follows that the ovoid is
a translation ovoid and the corresponding semifield flock is isomorphic to the
semifield flock F(f, g) we started with.

So for every d € F* we obtain an ovoid of Q(4,¢™), by subtending from a
point (0,0,0,d,1) of type (i). Also for every b € F* we obtained an ovoid by
subtending from a point (T (0,b), (0,0,0,0, 1) of type (ii), and in the above we
have shown that all these ovoids are isomorphic translation ovoids of Q(4, ¢™).

Theorem 3.7.1 Let £ be a good egg of PG(4dn — 1,q), ¢ odd, represented as
in Section 3.5. Then all the ovoids of the subquadrangle S determined by the
elements E(00), E(0,0), and E(1,0) of the good egqg &, obtained by subtending
from points of T(E)\S are isomorphic translation ovoids of Q(4,q™). Moreover,
these ovoids are isomorphic to the ovoid of Q(4,q™) arising from the semifield
flock which corresponds with the good egg &.

Next we will show that the ovoids subtended from points of type (ii) in all the
subGQs induced by the good element are equivalent. They all arise from the
same semifield flock F(f, g).

Consider a quadratic cone K in PG(3, ¢") with vertex (0, 0,0, 1) and with base
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the conic with equation XoX; — X2 = 0 in the plane with equation X3 = 0.
Let F(f,g) be a semifield flock of K with kernel GF(q), where the planes of the
flock have the equation tXo + f(t)X1 + ¢g(t)X2 + X35 =0, t € F. Then there
exist b;, ¢; € F such that f(t) = Y1) ¢;t?, and g(t) = Y7~ bit?. Consider
the egg € of PG(4n—1, q) from above and let p, , be the (3n—1)-space spanned
by the elements E(c0), E(0,0) and E(a,b) and put p = p1,0. We will construct
the (2n — 1)-space Tg(c,d) N pqp, where E(c,d) is not contained in pgp, i.€.,
(¢, d) is not a multiple of (a,b), or ad —be # 0. This condition implies that the
matrix

a’> 2ac 0
b2 d? 2bd 0
ab c¢d ad+bc O
0 O 0 1

induces a collineation of PG(3, ¢"™) fixing the cone K. Applying to the planes
of the flock we get the planes with equations

(a®t + b2 f(t) + abg(t)) Xo+ (2t +d*f(t) + cdg(t)) X,

+ (2act + 2bdf (t) + (ad + be)g(t)) Xo+ X3=0, t € F.
In the dual flock model we get the (n — 1)-space (over GF(q))

{(a®t + b2 f (t) + abg(t), Pt 4+ d> f (t) + cdg(t),

2act 4 2bdf (t) + (ad + bc)g(t),0) || t € F'}

which is skew to the tangent spaces of the pseudo-oval corresponding with the
conic C with equation 4X¢X; — X2 = 0 in the plane with equation X3 = 0.
Let A be the bijection mapping t — a?t + b2 f(t) + abg(t) (this is a bijection
since the functions f and ¢ induce a flock), and let p be the (3n — 1)-space
corresponding with the plane with equation X3 = 0. Applying the collineation
induced by the matrix

A7Y 0 0
0o I, 0 |,
0 0 I,

to p the pseudo-oval corresponding with the conic C is mapped onto the pseudo-
oval with elements {{{A~1¢,7%t,2rt,0) || t € F} | r € F}U{{0,¢,0,0) || t € F}
or rewriting the coordinates we obtain the pseudo-oval with elements

{{{t,r*At,2rAt,0) || t € F} || r € F} U {(0,t,0,0) || t € F'}.

The (n — 1)-space skew to the tangent spaces of this pseudo-oval becomes the
(2n — 1)-space

{(t, Pt + d*f(t) + cdg(t), 2act + 2bdf (t) + (ad + cb)g(t),0) || t € F}.



3.7 Subtended ovoids of Q(4,q) 81

Now we dualise with respect to the inproduct
((‘Ta Y, Z)a (u7 v, ’LU)) = tI‘(,CEu +yv + Z’LU),

where tr is the trace map from F — GF(q). The dual space of the pseudo-oval
element {(t,r?At,2rAt,0) || t € F} becomes

I
-

{{(— [(a;a® + biab + ¢;b%)(r*v + 2rw)] Ve ,0,w,0) || v,w € F},

%

Il
o

where we introduced (ag,...,an—1) = (1,0,...,0) for convenience of notation.
The dual of the (n — 1)-space skew to the tangent spaces of the pseudo-oval
becomes

|
-

{{(= ) [(2a;ac+ b;i(ad + cb) + 2¢;bd)w

%

Il
=]

+(a;c® + bied + ¢;d*)v] e ,0,w,0) || v,w € F}

skew to the elements of the new pseudo-oval in p. Now we apply the coordinate
transformation mapping p to the (3n — 1)-space pqp = {(r, s, at,bt) || r,s,t €
F'}. This transformation maps the tangent space

{({(— [(aia® + biab + ¢;b%) (r*v + 2rw)] e ,0,w,0) || v,w € F}.
of the pseudo-oval to the space

{(O>  [(aia® + biab + ¢;b°)(r?v + 2rw)] e , v, wa,wby || v,w € F},

%

Il
=)

which is the tangent space Tr(ra,rb) N pqp of the pseudo-oval in p,; at the
element E(ra,rb). (Note that we applied an extra coordinate transformation
Xo — —Xj to get rid of the minus sign in the first coordinate). The (2n — 1)-
space skew to the pseudo-oval in p is mapped to the (2n—1)-space Tr(c, d)Npq.b,
i.e., the (2n — 1)-space which induces the translation ovoid subtended from
a point of type (ii) on the tangent space Tg(c,d) of the egg £. Since the
elements of a pseudo-oval are determined by the tangent spaces it follows that
the obtained pseudo-oval is the one determined by the elements E (o), E(0,0)
and E(a,b) of the good egg corresponding with the semifield flock. Moreover
we have shown that all the ovoids of Q(4,¢"™) obtained by subtending from
points of type (ii) are isomorphic to the ovoid arising from the semifield flock
corresponding with the good egg.



82 Chapter 3. Translation generalized quadrangles and eggs

Theorem 3.7.2 Let € be a good egg of PG(4dn —1,q), q odd, represented as in
Section 3.5. Then all the ovoids of a subquadrangle S, determined by a pseudo-
oval on E(00) contained in &, obtained by subtending from points of type (ii) of
T(E)\ S are isomorphic translation ovoids of Q(4,q™). Moreover, these ovoids
are isomorphic to the ovoid of Q(4,q™) arising from the semifield flock which
corresponds with the good egg .

3.8 Examples of eggs

In this section we list all know examples of eggs. From Theorem 3.3.4 we know
that either n = m or ma = n(a + 1) with @ odd. The only known examples
satisfy n = m, i.e., pseudo-ovals, or m = 2n, i.e., pseudo-ovoids.

3.8.1 Pseudo ovals

All known examples of pseudo-ovals are classical, i.e., they arise from ovals of
PG(2,¢™). Pseudo ovals are classified for ¢" < 16, see Theorem 3.9.3. If ¢ is
odd then the tangent spaces of a pseudo-oval form a pseudo-oval in the dual
space. If ¢ is even then the tangent spaces of a pseudo-oval all pass through an
(n — 1)-space of PG(3n — 1, q), called the nucleus of the pseudo-oval, see [74].

3.8.2 Pseudo ovoids

The only known examples of eggs with n # m are pseudo-ovoids, of which there
are four classes of examples. Pseudo-ovals are classified for ¢" < 4, see Section
3.10. In this section we will treat all of the examples and give the elements of
the egg explicitly.

Let us start with an additive ¢"-clan C' = {A; || t € GF(¢™)}, with

w=lo 56

where f and g are linear in t over GF(q). The corresponding semifield flock of
a quadratic cone K with vertex v = (0,0,0, 1), and base the conic C : XoX; —
X2 =0 in PG(3,q") is denoted by F(f,g). The planes of the corresponding
semifield flock are tXo — f(¢) X1 + g(t) X2 + X3 = 0. The condition for C' to be
a ¢"-clan is

a’t +g(t)ab— f(H)b* =0 = a=b=0ort=0 (3.6)

or the polynomial t2? 4 g(t)x — f(t) is an irreducible polynomial over GF(q"),
for all t € GF(¢™)* = GF(¢™) \ {0}. Since ¢ is odd this is equivalent to
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g(t)? + 4tf(t) is a non-square in GF(q") for all t € GF(¢q")*. Let & be the
corresponding egg. Since f and g are linear over GF(q) we can write

n—1 n—1
F#)y==> cit”, g(t) =Y =bit?.
=0 =0

From Theorem 3.3.8 it follows that the condition for the corresponding good
egg EP to be an egg is

n—1
Z(aia2 + b;ab + cib2)1/qlt1/ql =0 = a=b=0ort=0.
i=0

Theorem 3.3.9 implies that the condition

n—1
Z(aiaQ + b;ab + cib2)tql =0 = a=b=0ort=0.
i=0

is equivalent, indeed this is the condition (3.6). Maybe we should remark
that in this chapter we have shown that all these conditions are equivalent,
independent of the results by Payne [58], [59] or Kantor [42].

Classical pseudo-ovoid

If m is a non-square in GF(¢"), then the equation a?t — mb* = 0 implies
a=b=0ort=0. Hence

f(t) =mt and g(t) =0

are functions satisfying the conditions to define an egg £-. The planes of the
corresponding semifield flock F¢ are

e tXo —mtX; + X3 =0, t € GF(¢").

All these planes contain the line with equation X3 = Xg—mX; = 0, and hence
the flock F¢ is linear. The elements of the corresponding egg ¢ are

E(a,b) = {(t, —a*t + mb*t, —at,mbt) || t € GF(¢")}, V(a,b) € F?,

E(OO) = {<0’ta070> H te GF(qn)}a

together with the set T¢. of tangent spaces. All the coordinates of an egg
element are linear in ¢ over GF(¢™). Hence such an egg element F(a,b) can
be seen as a point (1, —a? + mb?, —a, mb) of PG(3,¢"). The coordinates of
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these points all satisfy XoX; + X5 —m~1X3 = 0, i.e., they are the points of
an elliptic quadric in PG(3,¢™). In Section 3.5 we treated the isomorphism
between Q(4,¢") and T»(O) when O is a conic of PG(2,¢"). In the same
way there is a isomorphism between Q(5,¢™) and T5(O) when O is an ellip-
tic quadric, see [60]. One can start with the elliptic quadric with equation
XoX1+ X3 —m X2+ X4 X5 =0 in PG(5,¢") to obtain an isomorphism be-
tween the GQ corresponding with this elliptic quadric and T5(Q), where O is
the elliptic quadric with equation XoX;1+X35—m ™' X% = 0 in the 3-dimensional
subspace X4 = X5 = 0.

More generally every ovoid O of PG(3,¢") yields a pseudo-ovoid in PG(4n —
1,q). The coordinates of the egg elements are linear in ¢ over GF(¢"), and
hence the kernel is GF(¢"), i.e., this is a classical pseudo-ovoid. The corre-
sponding TGQ is isomorphic to Q(5,¢™) if and only if the ovoid of PG(3,¢"™)
is an elliptic quadric. If ¢ is odd then every ovoid of PG(3,¢™) is an elliptic
quadric, and hence for ¢ odd the TGQ corresponding to a classical ovoid is
always isomorphic with Q(5,¢™). Since every plane different from a tangent
plane at a point of the ovoid intersects the ovoid in an oval, it follows that a
classical pseudo-ovoid is good at every element. The converse also holds, i.e.,
if an egg is good at every element then it is classical, see Theorem 3.9.1.

Kantor pseudo-ovoid (¢ odd)

If ¢ is odd and m is a non-square in GF(¢™) then the equation a?t — mb*t® = 0
with o a GF(g)-automorphism of GF(¢™), implies ¢ = 0 or a = b = 0 (since
t°~1 is a square). Hence the functions

f(t) =mt® and g(¢t) =0

are functions satisfying the conditions to define a semifield flock Fg, sometimes
called the Kantor-Knuth semifield flock. The planes of the flock are

m o tXo —mit® X1+ X3 =0, t € GF(¢").

All these planes contain the point (0,0,1,0), and the Kantor-Knuth semifield
flock is characterized by the property that all the planes of the flock contain a
common point but not a common line, see Theorem 3.9.4. The elements of the
corresponding egg Ex are

E(a,b) = {{t, —a*t + mb*t”, —at,mbt°) || t € GF(¢™)}, V¥(a,b) € GF(¢")?,

E(OO) = {<Oat70a0> H te GF(qn)}a
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together with the set Tg, of tangent spaces. If we project the egg elements
onto the (3n — 1)-space W = {(r,0,s,t) || r,s,t € GF(¢")} from the element
E(00), we obtain the set S of disjoint (n — 1)- spaces

{{£,0, —at, mbt?) || t € GF(¢")}, V(a,b) € GF(q™)2.

The matrix

I 00 0
0 I 0 0
0 0 I 0
0 00 ot
defines a collineation of PG(4n — 1,q) fixing W. (With the entry o=! we

mean the corresponding non-singular (n x n)-matrix over GF(g).) Applying
this collineation to the elements of S gives ¢*" (n — 1)-spaces which can be
extended to a canonical Desarguesian spread of W. It follows that the Kantor
pseudo-ovoid is good at the element F(0co). Now we apply this collineation to
the elements of £x. We obtain the set of (n — 1)-spaces

{(t,—a’t + mb*t7, —at, (mb)" 1) || t € GF(¢")}, V(a,b) € GF(q")*,
{(0,£,0,0) [ t € GF(¢")}.
Applying the coordinate transformation Xy — — m?Xy, and rewriting the
second coordinate gives
{(t,—a®t + (m” (b7 )%t)7,—at,—b" t) || t € GF(¢")}, ¥(a,b) € GF(¢")?,
{(0,£,0,0) [ t € GF(¢")}.
The elements of the dual egg £ are
{(—a?t+ (mb*)7 ", t,—at, ~bt) | t € GF(¢")}, ¥(a,b) € GF(g")?,
{(t,0,0,0) [ t € GF(¢")}.
Now it is easy to see that by applying another coordinate transformation to the

clement E(a, b) of Ex we obtain the element E(a,b° ) of the dual egg ER but
then for the automorphism ¢! and the non-square me . It follows that the
dual of a Kantor pseudo-ovoid with the automorphism ¢~! and the non-square
me s isomorphic to a Kantor pseudo-ovoid with the automorphism o and
the non-square m. But Kantor [43] has shown that the associated GQ obtained
by replacing m with m® " and o with o~ is isomorphic to the original. This
implies the following theorem.

Theorem 3.8.1 (Payne [59])
The TGQ T(Ek) corresponding with the Kantor pseudo-ovoid is isomorphic to
its translation dual.
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Cohen-Ganley pseudo-ovoid (¢ = 3)

If m is a non-square in GF(3") then
t6 +m_1t2 +mt10

mt?(m= 1+ m=2 +19)
— th(t4 _ m71)2

is a non-square for all ¢ € GF(3")*. Hence the functions
f(t) =m™ 't +mt® and g(t) =

satisfy the conditions to define a semifield flock Fog. The planes of the flock
are
m o tXo — (mT '+ mt?) X1 + 2 Xo + X3 =0, t € GF(3").

The elements of the corresponding egg Ec are
E(a,b) = {{t, —a®t — abt® + m ™ b*t + mb*t°, —at — bt3, —at® + m = bt + mbt®)

| t € GR(3")}, V(a,b) € GF(3")?2, E(co) = {(0,£,0,0) || t € GF(3™)},

together with the set Tg. ., of tangent spaces. The dual egg was first calculated
by Payne in [59] in 1989, where it was shown that the Cohen-Ganley pseudo-
ovoid is not self dual. Hence the corresponding TGQ T'(E£,;) is not isomorphic
to its translation dual T'(Ecq), and was called the Roman GQ by Payne [59].
It was the first example of a TGQ which is not the translation dual of the
point-line dual of flock GQ. The elements of the dual egg £ are

E(a,b) = {(—a®t — (abt)*® + m™ % 4+ (mb?t)Y/° t, —at, —bt) || t € GF(3")},

Y(a,b) € GF(3™)2, E(c0) = {{t,0,0,0) || t € GF(3")},
together with the set ngc of tangent spaces. The egg EF is good at its ele-

ment E(occ)

The corresponding semifield flock is sometimes refered to as the Ganley semi-
field flock. We choose to use Cohen-Ganley, because we believe that the origin
of this example is in a very nice paper by Cohen and Ganley [31].

Penttila-Williams pseudo-ovoid (¢ = 3,n = 5)

Put
f(t) =1t% and g(t) = t*".
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Penttila and Williams [64] proved with the help of a computer that these func-
tions f and g yield a translation ovoid of Q(4,3°). Using the connection first
given by Thas [77], Bader, Lunardon and Pinneri [2] calculated the correspond-
ing semifield flock, sometimes called a sporadic semifield flock. The planes of
the flock are

T o tXo — X + 7T Xo 4+ X3 =0, t € GF(3°).

To prove that the functions f and g define a pseudo-ovoid we must show that
g(t)?2 +4tf(t) = t°* + 10 is a non-square for all t € GF(3%)*, or equivalently
t# + 1 is a non-square for all t € GF(3%)*. If u = t** then u is an 11-th root
of unity. Note that

(u+1)12! = (u + 1)1+3+32+33+34
which is 1 or —1 depending if (u 4 1) is a square or a non-square. Now,

(u + 1)1-1—3-1—32-1-33-1-34

= ()@ + )@ + 1)@ + D +1)

120
= 2+ Zaiui modulo u*! — 1,
i=1

where a; is the number of ways that ¢ can be written as the sum of a subset
of {1,3,32,33,3%} modulo 11. The exponents 1,3,3% 3% 3% are the squares
modulo 11, and every non-zero integer modulo 11 can be written in exactly
three ways as the sum of the elements of a subset of {1,3,32, 33, 3%} modulo
11. Hence in GF(3%), the product

(u+1)(u® + 1)(u32 + 1)(u33 + 1)(u34 +1) =2 = —1modulo (u'" —1).

It follows that (u + 1)!2! = —1 modulo (u'! — 1), and hence (t** +1)12! = —1
modulo #?42 — 1 implying (t** + 1)'?! = —1 for all t € GF(3%)*. This implies
that t# + 1 is a non-square for all ¢+ € GF(3%)*. This proof is taken from [3].
The elements of the corresponding egg Epyy are given by
E(a,b) = {(t, —a*t — abt®" + b*t", —at — bt*", —at*" +bt°) || t € GF(3%)},
V(a,b) € GF(3%)?, E(c0) = {(0,t,0,0) || t € GF(3°)},

together with the set Tg,,, of tangent spaces. The elements of the dual egg
ER, are

E(a,b) = {(—a*t — (abt)*" + (b*t)Y/° t, —at, —bt) || t € GF(3%)},
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¥(a,b) € GF(3°), E(c0) = {(t,0,0,0) || t € GF(3%)},
together with the set ngw of tangent spaces. The egg €5, is good at its
element E(c0).

3.9 Some characterizations of eggs

In the previous section we proved that for ¢ odd, good pseudo-ovoids correspond
with semifield flocks. In this section we list a number of characterizations of
eggs. Almost all results were obtained by Thas.

It is quite surprising that, although it is known since 1981 that eggs and TGQs
are equivalent objects, still, apart from Thas his results, eggs were not studied
in more detail until recently. The first characterization was given by Thas in
1974, [74]. At that time eggs of PG(4n — 1,q) where called [n — 1]-ovaloids
and their definition included the extra property that every four elements either
span PG(4n — 1, q), or they are contained in a PG(3n — 1, ¢). In the paper [74]
Thas then shows that every [n — 1]-ovaloid of PG(4n — 1,¢) is classical. This
implies the following theorem.

Theorem 3.9.1 (Thas [74])

If every four elements of a pseudo-ovoid in PG(4dn — 1,q) either are contained
in a (3n — 1)-dimensional space or span PG(4n — 1,q), then the pseudo-ovoid
1s classical.

Note that from this theorem it follows that if an egg of PG(4n — 1, q) is good
at every element then it is classical.

A strong result about pseudo-ovals was obtained by Casse, Thas and Wild
[29] in 1985. The result is also contained in [60]. Consider a pseudo-oval with
elements Fy, ..., Eg. By projecting the elements F;,j = 1,...,¢" from an
element FEy of a pseudo-oval onto a (2n — 1)-space W skew to Ey we obtain
q" mutually skew (n — 1)-spaces of W. Together with T, N W, we get an
(n — 1)-spread Sp of W, and hence a translation plane of order ¢™. In this way
we obtain ¢" + 1 (n — 1)-spreads S, ..., Sgn of PG(2n —1,¢). Next consider
the (n — 1)-spaces defined by T'(E;) N T(Ey),i = 1...¢". Together with Ey
we get an (n — 1)-spread S§ of the (2n — 1)-space T'(Ey), and hence again a
translation plane of order ¢". We can do this for every tangent space of the
pseudo-oval and in this way we obtain ¢ + 1 (n — 1)-spreads Sg, ..., Sgn of
PG(2n —1,q).

Theorem 3.9.2 (Casse, Thas, Wild [29])
Consider a pseudo-oval in PG(3n — 1,q) with g odd. Then at least one of
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the (n — 1)-spreads Sg, .. -y Sgn 18 regular if and only if at least one of the
(n — 1)-spreads Sy, ..., Sqn is regular. In such a case all the (n — 1)-spreads
S0y Sqny S5, -+ Sgn are reqular and the TGQ) corresponding with the pseudo-

oval is isomorphic to the classical GQ Q(4,q™).

Pseudo-ovals are classified for ¢™ < 16.

Theorem 3.9.3 (Penttila [61])
If O is a pseudo-oval of PG(3n — 1, q), with ¢™ < 16, then O is classical.

If all the planes of a flock of a quadratic cone in PG(3, ¢™) contain a fixed line,
then the flock is linear. We have a similar characterisation for the semifield
flock of Kantor type.

Theorem 3.9.4 (Thas [75])
If all the planes of a flock contain a common point, but not containing a common
line, then the flock is a semifield flock of Kantor type.

If ¢ is odd, then the semifield flock F induces a good pseudo-ovoid £. In Sec-
tion 3.7 we gave a geometric construction of the egg elements starting from
the flock F , using the explicit coordinates of the egg elements. In partic-
ular we constructed every intersection Tr N (E, E1, Es), where Ey, Es, F are
three different egg elements such that F' is not contained in the (3n — 1)-space
(E, E1, E5). Note that the pseudo-conic induced by the elements E, Ey, By is
contained in a Desarguesian spread of (F, E1, Ea), which we denote by S. If
all the planes of the flock contain a common line, then from the construction
it follows that Tr N (E, Eq, Ea) is a line over GF(¢"), i.e., a (2n — 1)-space
spanned by two elements of S. If this is the case then we say that (F, Ey, E9)
is a supernormal triple. Conversely if there exists such a supernormal triple,
then all the planes contain a common line. This gives a characterization of the
classical pseudo-ovoids.

Theorem 3.9.5 Let £ be an egg of PG(4n — 1,q), q odd, which is good at an
element E. Then the following properties are equivalent.

e & is a classical pseudo-ovoid.

o There exists a triple (F, E1, Es), where F is not contained in the pseudo-
conic C induced by the elements Eq and Es in the (3n—1)-space (E, E1, Es),
which is supernormal.

o All triples (F, E1, E2), where F is not contained in the pseudo-conic C
induced by the elements Ey and Es in the (3n — 1)-space (E, E1, Es) are
supernormal.
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If all the planes of F contain a common point but not a common line, then
by following the construction given in Section 3.7 step by step, it is clear that
the (2n — 1)-space Tp N (E, Ey, E3) contains exactly one element of S. If this
is the case then we say that (F, F1, E3) is a normal triple. Note that we can
do this for every such egg elements F, Fq, E5. Conversely if there exists one
normal triple (F, E1, E3), then again from the construction it follows that the
planes of F, must all meet in a point, and by the above every such triple of egg
elements F), F1, Es is normal. So we translated the property that all planes of
the flock contain a common point into a property of the corresponding good
pseudo-ovoid, resulting in the following characterization of the Kantor pseudo-
ovoid.

Theorem 3.9.6 Let £ be a non-classical egg of PG(4n —1,q), q odd, which is
good at an element E. Then the following properties are equivalent.

e & is a Kantor pseudo-ovoid.

o There exists a triple (F, E1, Es), where F is not contained in the pseudo-
conic C induced by the elements E1 and Es in the (3n—1)-space (E, E1, Es),
which is normal.

o All triples (F, E1, E2), where F is not contained in the pseudo-conic C
induced by the elements Ey and Es in the (3n — 1)-space (E, E1, Ea) are
normal.

Proof. The theorem follows from the above and Theorem 3.9.4. [ |

Remark. The equivalence of the first two properties of the last theorem is
a result of Thas [80]. The proof of the result given here is an alternative proof.

In 1997 Thas published a long paper [77] on eggs of PG(4n — 1,q), ¢ odd,
making the connection with Veronese varieties. It would take us too far to go
in detail. Let us mention the main theorem of the paper.

Theorem 3.9.7 (Thas [77, Theorem 6.9])
Suppose the egg € of PG(4n — 1,q) is good at an element E, then we have one
of the following.

(a) There exists a PG(3,q™) in the extension PG(4dn — 1,¢™) of PG(4n — 1,q)
which has exactly one point in common with each of the extensions of the egg
elements. The set of these ¢*™ + 1 points is an elliptic quadric of PG(3,q™)
and T(E) is isomorphic to the classical GQ Q(5,q™).

(b) We are not in case (a) and there exists a PG(4,q™) in PG(4n — 1,q")
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which intersects the extension of E in a line M and which has exactly one
point r; in common with the extension of the other eqq elements. Let W be
the set of these intersection points r;, i = 0...¢*" and let M be the set of
all common points of M and the conics which contain exactly q" points of W.
Then the set WU M is the projection of a quadric Veronesian Vi from a point
P in a conic plane of Vi onto PG(4,q™); the point P is an exterior point of
the conic of Vi in the conic plane. Also if the point-line dual of the translation

dual of T(E) is a flock GQ, then £ is of Kantor type.

(c) We are not in cases (a) and (b) and there exists a PG(5,q") in PG(4n —
1,q™) which intersects the extension of E in a plane w, and which has exactly
one point r; in common with the extension of the other egg elements. Let VW
be the set of these intersection points r;, i = 0...¢*" and let P be the set of
all common points of m and the conics which contain exactly q" points of W.
Then the set W U'P is a quadric Veronesean in PG(5, ¢"™)

If we are in case (a), then the egg is classical, and hence can be extended to
a Desarguesian (n — 1)-spread of PG(4n — 1,¢). Since now we know that the
TGQ corresponding with a good egg of PG(4n — 1, q), ¢ odd, is the translation
dual of the point-line dual of a flock GQ, it follows that in case (b) the egg is
always of Kantor type. The following conjectures were given by Thas in the
same paper.

Conjectures (Thas [77])

1. In case (c) of the above theorem and if the point-line dual of the translation
dual of T(E) is a flock GQ, then & is of Cohen-Ganley type

2. Any TGQ T(&) of order (s,s?) and s # 1, with £ good at some element, is
the point-line dual of the translation dual of a semifield flock GQ.

The first conjecture was disproved in 1999 by the discovery of the Penttila-
Williams translation ovoid of Q(4, 3%) [64]. The connection between translation
ovoids of Q(4, ¢™), semifield flocks, and eggs of PG(4n—1, q), ¢ odd, was treated
earlier on in this chapter. The second conjecture was proved by Thas in 1999,
[78], in a more general setting. A direct and shorter proof of this conjecture
was given in Section 3.4.

Another characterization of the Kantor pseudo-ovoid was given in 1999, de-
pending on a result by Thas and Van Maldeghem [83].

Theorem 3.9.8 (Bader, Lunardon, Pinneri [2])
If both an egg € of PG(4n — 1,q), q odd, and its dual are good at an element,
then the eqq is classical or of Kantor type.
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The next theorem for g even follows from the fact that all semifield flocks for
q even are linear.

Theorem 3.9.9 (Johnson [41])
If a TGQ T(E) of order (q,q%), q even, is the point-line dual of a flock GQ
then T'(€) s classical.

The next two theorems are from a recent paper of Thas [79], treating eggs of
PG(4n —1,q), q even.

Theorem 3.9.10 (Thas [79, Theorem 6.1])
An egg € of PG(4n —1,q), q even, is classical if and only if € is good at some
element and contains at least one pseudo-conic.

Theorem 3.9.11 (Thas [79, Theorem 6.2])
An egg € of PG(4n—1,q), q even, is classical if and only if € contains at least
two intersecting pseudo-conics.

3.10 On the classification of semifield flocks

In this section we give an important result towards the classification of semifield
flocks, obtained in 2000. We already mentioned that if ¢ is even, all semifield
flocks of a quadratic cone of PG(3,¢™) are linear. Now we consider the case
when ¢ is odd. In 1998 Bloemen, Thas and Van Maldeghem obtained the
following results.

Theorem 3.10.1 (Bloemen, Thas and Van Maldeghem [13])
Let F be a semifield flock of a quadratic cone in PG(3,¢"™), q odd, with kernel
GF(q). If n =1 then the F is linear. If n = 2 then F is of Kantor type.

Theorem 3.10.2 (Bloemen, Thas and Van Maldeghem [13])
Let F be a semifield flock of a quadratic cone in PG(3,q3), q odd, with kernel
containing GF(q). If 3 < q < 31 then F is linear or of Kantor type.

In Section 3.6 we saw that with a semifield flock of PG(3,¢"), ¢ odd, there
corresponds an (n — 1)-dimensional projective space over GF(q), contained in
the set of internal points of a non-degenerate conic C of PG(2,¢™). If @ is the
quadratic form whose zeros are the conic C, then the value of () on the internal
points is either a non-zero square or a non-square in GF(¢™), see [37], and after
multiplying by a suitable scalar we may assume it is a non-zero square. We
will show that this implies an upper bound on the value of ¢, determined by
the value of n. First we need the following lemmas.

The first lemma is due to Weil and can be found in Schmidt [72].
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Lemma 3.10.3 (see [72])
The number of solutions N in GF(q) of the hyperelliptic equation

y* = g(x)
where g € GF(q)[X] is not a square and has degree 2m > 2 satisfies
IN —q+1] < (2m —2)/7.

Lemma 3.10.4 ([8])

Let f(X) = X? +uX +v € GF(¢")[X] be a non-zero square in GF(q"™) for all
X =1z € GF(q), q odd and q > 4n? — 8n + 2. At least one of the following
holds.

1. f is the square of a linear polynomial in X over GF(q").
2. n is even and f has two distinct roots in GF(¢"/?).

3. The roots of f are a and a° for some GF(q)-automorphism of GF(¢™),
o, and o € GF(g").

Proof. Let ng be the order of the smallest subfield such that f(X) € GF(¢"*)[X]
and f(z) is a non-zero square in GF(¢™) for all © € GF(q). If n; # n simply
replace n by n; and assume that no such subfield exists. Let f; be the poly-
nomial obtained from f by raising all coefficients to the power ¢°. The roots
of f; are the roots of f raised to the power ¢. For all x € GF(q) we have that
f(z) is a square in GF(¢™) implies that

g = ][ Fi@)
1=0

is a square in GF(q). The degree of g is 2n, g(X) € GF(¢)[X] and by assump-
tion

[2¢g — g+ 1| > (2n — 2)/q,

The number of solutions (x,y) of y? = g(x), where g(x) is always a square, is
2q, and hence the previous lemma implies that g is a square. Assume that f is
not a square and let «, 3 # « be the roots of f. The roots of g are

n—1 n—1
aaaqa"'7aq ’B’Bqa"'aﬁq

and every value occurs in this list an even number of times since g is a square.
Therefore there exists a GF(g)-automorphism of GF(¢™), o, such that § = o
or there exists GF(g)-automorphisms of GF(¢"),0 and 7, such that « = a°

and 8= (3".
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Suppose there is a ¢ such that a = a?, and there is no ¢ such that § = a“.
Let d be minimal such that 2% = 27", Then each element of {a,a8,..., oﬂdil}
occurs in the list {a, a4,. .., oﬂnil} an even number of times. It follows that
n = md with m, the order of o, an even integer. In particular n is even and
a=a’=a"" =a?""” and a € GF(¢"/?). Likewise 8 € GF(¢"/2). This
implies that f has two distinct roots in GF(¢g"/?).

o}

Suppose there is a ¢ such that g = a7 = a?" where d is chosen to be minimal.
Then the list {3, 89,.. .,6‘177’%71} is equal to the list {aqd,aqd“, ol )
Therefore each value which occurs in the list

{a,a4,. .., ot cad”, ozqn“, ce ozqn+d71},
occurs an even number of times. Let e be minimal such that & = a4". Note
that e < 2n since « is a root of f and e > d by the minimality of d, and so the

. . a1 .
elements in the list {o,a9,...,a9 "} are all distinct. Hence
d—1 n n+1 n+d—1
q q — 100" o q
{a,a,...;a7 }={a? ,« e, }
and , ,
2 n+1 n+2 n+
a4 Y — [ q q
{a%a? ,...,07 } = {« ,Q e, }

which by taking the symmetric difference implies {a, oﬂd} = {oﬂn,oﬂnw}. If
a = a?", then f has two roots o and o, where a € GF(¢"). If a # a?" then
a=a?"" and a? = a?" which combine to give a = a?" and therefore e
divides 2d. Moreover since e > d we have that e = 2d and since e divides 2n
that d divides n. The coefficients of f are —a — a?’ and 2"+ respectively
which are in the subfield GF(q?). Hence f € GF(q%)[X]. If n/d is even then
2d divides n and f has two roots a and «” where o € GF(¢"). If n/d is odd
then for all z € GF(q)

1= f(gc)(tl"—l)/2 — f(x)(1+qd+...+q"’d)(qd—l)/2 — f(x)("/d)(qd—l)/%

Since f(z)(@'~1/2 € GF(q%), with ¢ odd, and since n/d is odd and

Fla) /D@ =02 _

it follows that f(x)(@"~1/2 = 1. This implies that f(z) is a square in GF(q%),
for all x € GF(q). However we assumed at the start of the proof that this was
not the case. |

Theorem 3.10.5 ([8])
If there is a subplane of order q contained in the set of internal points of a
non-degenerate conic C in PG(2,q"), n >3, then ¢ < 4n® — 8n + 2.
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Proof. Let @ be the quadratic form
QX,Y,Z)=X?>+aXY +bXZ +cY? +dY Z + eZ?

whose set of zeros is the conic C. Suppose that () is a non-zero square on the
set {(z,y,2)|x,y,z € GF(q)}, i.e., we suppose that the set of internal points of
the conic C contains a subplane of order ¢q. Let n; be the order of the smallest
subfield such that all the coefficients of @ are elements of GF(¢™). If n; #n
simply replace n by n; in the theorem and assume that all coefficients of () do
not lie in a subfield.

Assume that ¢ > 4n? — 8n + 2. For a fixed y and z in GF(q) not both zero let

fyz(X) = Q(Xayvz)'

The polynomial f,. € GF(¢")[X] is a square for all z in GF(q). If f,. is
a square of another polynomial then @ is a square for all points on the line
zY —yZ = 0. However, the lines that contain internal points also contain
external points on which @) is a non-square.

If f,. has two distinct roots o and 8 in GF(¢™/?) then (a,y, z) and (8,7, 2)
are points of the conic C. Moreover, since y, z € GF(q), they are points of the
conic C” defined by the quadratic form whose coefficients are the coefficients
of Q raised to the power ¢™/2. The coefficients of @ do not all lie in a subfield
so C # C". Since a conic in is determined by five points, the conics C and C”
meet in at most four points. Hence f,. can have two distinct roots in GF(¢"/?)
for at most two projective pairs (y, z). We assume henceforth that (y, z) is not
one of these two.

By the previous lemma the roots of f,. are therefore o and a” for some o €
GF(¢") and some GF(g)-automorphism o of GF(¢™). Let g(Y,Z) = aY + bZ
and h(Y,Z) = cY? +dY Z + eZ? so we have that

fy=(X) = (X = a)(X — %) = X* +g(y, )X + h(y, 2).

There are two cases to consider, namely when the order of ¢ is odd and when
it is even.

Consider first the case that the order m of ¢ is odd. Since

_ 2 ... m—1 m
(alJra)l oo +o — Hlto 2

and
— 2_... v—1 v 1
( 1+G’)G’(1 o+o +o ) ao’-‘,—a’ aQG—
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we have the identity

(a + 046)2 _ (a1+a)170+027...+om’1 + 20117 + (alJra)a(lfaJraz7...+am’1)
which implies
9(y.2)> = h(y,2) =77 T F L 2h(y, 2) + h(y, 2) O e,

There is such an automorphism o for ¢ — 1 projective pairs (y, z) and hence,
since there are n — 1 possibilities for o, there exists an automorphism & which
occurs for at least

(g—1)/(n—1)>2n>2m

projective pairs. Note that for the last inequality we used the hypotheses n > 3
and ¢ > 4n? — 8n + 2. We modify our notation and let fi be the polynomial
obtained from f by raising all coefficients to the power &*. The above relation
implies

hlhg N hm,1g2 = ho(h2h4 N hm,1 + hlhg N hm,2>2

which has total degree 2m and holds for at least 2m + 1 pairs, holds for every
projective pair (y, z), ¥,z € GF(q), and is therefore an identity. For all z €
GF(q)

fre(X +2) = X?+ (g+20)X + h+zg+2”° = (X — (@ —2))(X — (a7 —2))
and we get the more general relation
wwWs . .. Wy—1(g9 + 21‘)2 = wo(wawy . . . Wyp—1 + WrwW3 .. .wm,2)2

where w(z,y, z) = h(y, 2)+g(y, 2)x+x2. This equation is valid for all (z,y, z) €
GF(q)? and since it is of total degree 2m the equation is again an identity. We
may replace wy = w by @ and it follows that

Q1| QoQ2 ... Qm-1.

Therefore either Q1 = Q; for some i € {0,2,4,...,m — 1} and the coefficients
of @ lie in some subfield or 1, and hence @, splits into linear factors, and @
is degenerate. In both cases, we get a contradiction.

In the second case when the order m of o is even

h(yvz)1+a2+...+a’"*2 _ h(y,z)a+a3+...+am*1

and, by the same reasoning, there exists an automorphism & for which this is
an identity. We define w(z, y, z) as before and obtain the more general relation

WoWw ... Wm—2 = W1W3 ... Wn-1
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which is also an identity. We may replace wg = w by @ and since

QlQ1Q3...Qm—1

either Q = @Q; for some ¢ and the coefficients of ) lie in some subfield or @)
splits into linear factors and @ is degenerate. In both of these cases, we get a
contradiction. [ ]

Theorem 3.10.6 ([8])
If F is a semifield flock of a quadratic cone in PG(3,q"), and ¢ > 4n? —8n+2,
then F is linear or of Kantor type.

Proof. Let F be a semifield flock of a quadratic cone in PG(3,¢™), with ker-
nel GF(q). If g is even then all semifield flocks are linear, see e.g. [41]. If
n = 1,2, then by Theorem 3.10.1, F is linear or of Kantor type. If n > 3 and
q is odd, the result follows from the last theorem. |

For ¢ odd, this yields the following corollary.

Corollary 3.10.7 If £ is a good egg of PG(4n — 1,q), q odd, and q > 4n? —
8n + 2 then & is classical or a Kantor pseudo-ovoid.

If we restrict ourselves to the case n = 3, the above results imply the following
theorem.

Theorem 3.10.8 If € is a good egg of PG(11,q), q odd, then £ is classical or
a Kantor pseudo-ovoid.

Proof. If ¢ < 14 the result follows from Theorem 3.10.2. If ¢ > 14 the result
follows from the above corollary. |

3.11 Classification of eggs in PG(7,2)

The TGQ Q(5,2) is the unique GQ of order (2,4), and the TGQ Q(5,3) is
the unique GQ of order (3,9), [60]. In this section, we show by computer
that classical GQ Q(5,4) is the unique TGQ of order (4, 16). This is based on
the classification of eggs in PG(7,2). The fundamental, underlying, computer-
based result is the following lemma.

Lemma 3.11.1 ([44])
Let € be an egg of PG(7,2), and H be a hyperplane containing no tangent space
to £. Then H contains 5 elements of £ which span a 5-space.
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Proof. By Theorem 3.3.4, H contains 5 elements of £. We must show that
these span a 5-space. The stabiliser of H in PGL(8,2) is transitive on un-
ordered triples of lines of H spanning a 5-space. It has two orbits on unordered
quadruples of lines of H, any triple of which span a 5-space, namely, those
which span a 5-space and those which span H. It has at most three orbits on
ordered quintuples of lines of H, any triple of which span a 5-space, and such
that the quintuple spans H. We must show that such quintuples cannot be the
set of lines of £ in H. We use the tangent spaces to £ to do this. Since H con-
tains no tangent space to £, each tangent space to £ must meet H in a 4-space.
Considering each of the three possible quintuples of lines in turn, we find that
each has one line lying on four 4-spaces disjoint from the remaining 4 lines, and
the other 4 lines lie on two 4-spaces disjoint from the other lines. Thus there
are 64 possible tangent structures on intersection with H. Using the fact that
the remaining 12 lines of £ meet H in a point on no tangent space to £,and on
no transversal line to a pair of elements of the quintuple, we can rule out all
but one of the quintuples, and only 6 possible tangent structures survive for
that quintuple, each of which leaves 14 possible candidates for the 12 points.
Finally, these 6 possibilities can be eliminated by noting that there must be no
lines joining 2 of the 12 points and meeting an element of the quintuple. |

Theorem 3.11.2 ([44])
If € is a pseudo-ovoid of PG(7,2), then £ is classical.

Proof. By the Lemma above, each PG(5,2) containing 3 elements of £ con-
tains exactly 5 elements of £. This implies that £ is good at every element.
The result follows from Theorem 3.9.1. |

Equivalently we have the following.

Theorem 3.11.3 ([44])
There is a unique translation generalized quadrangle of order (4,16), namely,
the classical generalized quadrangle Q(5,4).
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Nederlandse samenvatting

Dit proefschrift kan beschouwd worden als bestaande uit twee delen, die beide
afzonderlijk kunnen gelezen worden. Het eerste deel behandeldt verstrooide
deelruimte (“scattered spaces”) ten opzicht van een spreiding (“spread”) in
een eindige projectieve ruimte. Het tweede deel is gesitueerd in de theorie van
de veralgemeende vierhoeken en de equivalente zogenaamde eieren (“eggs”) in
eindige projectieve ruimten. Daartegenover staat echter dat de onderwerpen
die in beide delen behandeld worden, deelstructuren zijn van Galois ruimten,
en dus vanuit dit oogpunt dicht bij elkaar liggen.

In hoofdstuk 1 worden enkele definities en fundamentele resultaten uit de inci-
dentie meetkunde en de eindige projectieve meetkunde bijeen gebracht als basis
voor de volgende hoofdstukken.

Hoofstuk 2 behandeld verstrooide deelruimten ten opzichte van een spreid-
ing in een eindige projectieve ruimte. Een spreiding is een verdeling van de
punten van een projectieve ruimte in deelruimten van gelijke dimensie en een
deelruimte wordt verstrooid genoemd ten opzichte van een spreiding indien ze
elk element van de spreiding in ten hoogste 1 punt snijdt. Eerst beschouwen we
willekeurige spreidingen en leiden een bovengrens af voor de dimensie van een
verstrooide deelruimte. Als de dimensie van een verstrooide deelruimte deze
bovengrens bereikt, dan wordt de verstrooide deelruimte mazimaal genoemd.
Een constructie van verstrooide deelruimten leidt tot een ondergrens voor de di-
mensie van een maximale verstrooide deelruimte. Daarna beperken we ons tot
Desarguaanse spreidingen en we verbeteren de bovengenoemde grenzen. Indien
de elementen van de spreiding even dimensie hebben en de projectieve ruimte,
waarvan ze een spreiding vormen, oneven dimensie heeft, dan zijn deze grenzen
scherp. Het blijkt bovendien dat maximale verstrooide deelruimten ten opzicht
van Desarguaanse spreidingen twee-intersectie verzamelingen ten opzichte van
hypervlakken induceren in een projectieve ruimte van lagere dimensie over een
lichaamsuitbreiding en we bewijzen dat de verkregen twee-intersectie verza-
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melingen nieuw zijn. Daarna wordt de theorie van verstrooide deelruimten
toegepast op de theorie der blokkeer-verzamelingen (“blocking sets”) en we
geven de constructie van zulke blokkeer-verzamelingen gebruik makende van
verstrooide ruimten. Op het einde van het hoofdstuk geven we nog twee expli-
ciete constructies van verstrooide deelruimten, één met behulp van de techniek
“veeltermen in eindige meetkunde” en één gebruik makende van de represen-
tatie van spreidingen in het tensor produkt van twee vector ruimten, zoals
uitgelegd in het eerste hoofdstuk. De geconstrueerde blokkeer-verzamelingen
zijn van belang in verband met een resultaat van Blokhuis, Storme en Szényi.

In het derde hoofdstuk gaan we wat dieper in op de theorie der eieren, welke
equivalent is met de theorie der translatie veralgemeende vierhoeken (“trans-
lation generalized quadrangles”). We geven een nieuw model voor eieren in
projectieve ruimten over eindige lichamen van oneven karakteristiek en gebruik
makende van dat model zijn we in staat een kort bewijs te leveren voor een
belangrijk resultaat van Thas (bewezen in een algemenere context). In het
tweede deel van het hoofdstuk bestuderen we ovoiden van de veralgemeende
vierhoek korresponderend met een niet-singuliere parabolische kwadriek in een
eindige vier-dimensionale projectieve ruimte over een eindig lichaam van oneven
karakteristiek. Het hoofdresultaat in deze paragraaf leidt tot een nieuwe meth-
ode om een goed ei te construeren en een onmiddellijk gevolg daarvan is een
karakterisatie van de eieren van Kantor type. We geven ook een overzicht van
alle gekende voorbeelden gebruik makende van het nieuw model voor eieren,
samen met hun duale. Daarna geven we een recent resultaat in verband met
de classificatie van goede eieren in projectieve ruimten over een eindig lichaam
van oneven karakteristiek en we eindigen het hoofdstuk met de classificatie van
eieren in de zeven-dimensionale projective ruimte over het lichaam met twee
elementen.
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