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1. Introduction

These notes are part of the course “Finite Geometry” given at Ghent University by
Professor F. De Clerck. They consist of material for approximately four hours, depending
on the level of the students.

Remark 1.1. As indicated in the title we will only be concerned with finite semifields. So
whenever we mention projective planes, semifields, or other structures, it should be clear
to the reader that these structures are always finite, even when the word finite is omitted.

Remark 1.2. In the earlier literature (≤ ± 1970) semifields were often called division
algebras, division rings or distributive quasifields.

The first part is aimed at understanding the connection between translation planes and
spreads; the so-called André-Bruck-Bose construction. Next we define the notion of semi-
fields (first studied by L. E. Dickson (1906)) and use a vector space representation to
obtain semifield spreads, after which we can apply the André-Bruck-Bose construction to
obtain semifield planes. We define the notion of isotopy and mention the important result
proved by A. A. Albert in 1960, which says that two semifields are isotopic if and only if
the corresponding planes are isomorphic. All of this belongs to, let’s say, the “classical”
part of the notes. It gives us the necessary background to be able to deal with some more
recent topics in Finite Geometry which have received quite a lot of attention during the
last two decades. We start this “modern” part with a particular configuration of subspaces
which turns out to be equivalent to semifields, i.e., each such configuration can be used
to construct a semifield and vice versa, each semifield gives rise to such a configuration.
We conclude these notes with an example of a well-studied structure in finite geometry
related to semifields, namely translation ovoids (sometimes called semifield ovoids) of the
parabolic quadric in 4-dimensional projective space. We show their correspondence with
semifields by constructing them from a particular case of the configuration of subspaces
mentioned above.

Date: 2 May 2006.
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2. Translation planes and spreads: the André-Bruck-Bose construction

2.1. Recap: perspectivities and translations. We recall that a perspectivity in a
projective plane has a centre and an axis and is called an elation if the centre is on the
axis and a homology otherwise. A pespectivity is determined by the image of single non-
fixed element, and the existence of a perspectivity gives rise to the famous configuration of
Desargues (minor in case of a homology). A projective plane is said to be (V, `)-transitive
if the group of perspectivities with centre V and axis ` acts transitive on the points
different from V of each line through V different from `. A projective plane is called a
translation plane if there exists a line ` such that the plane is (V, `)-transitive for each
point V on `. In this case ` is called a translation line and the elations with ` as axis are
called translations. Often a translation plane is identified with the associated affine plane
with respect to the translation line, and the group of translations is called the translation
group. The translation group of a translation plane of order n is elementary abelian of
order n2.

2.2. Spreads. Let S be a set of (t− 1)-dimensional subspaces of PG(n − 1, q). Then S
is called a (t − 1)-spread of PG(n − 1, q) if every point of PG(n − 1, q) is contained in
exactly one element of S. If S is a set of subspaces of V (n, q) of rank t, then S is called
a t-spread of V (n, q) if every vector of V (n, q) − {0} is contained in exactly one element
of S.

Theorem 2.1. There exists a (t− 1)-spread in PG(n− 1, q) if and only if t divides n.

Proof. Suppose there exists a (t − 1)-spread S of PG(n − 1, q). Since every point of
PG(n− 1, q) is contained in exactly one element of S, the number of points of a (t− 1)-

space has to divide the number of points of PG(n − 1, q). In other words qt−1
q−1

divides
qn−1
q−1

. This implies that t divides n.

Conversely, suppose t divides n, and put n = rt. We construct a (t − 1)-spread of
PG(rt−1, q) as follows. The points of PG(r−1, qt) are the subspaces of rank 1 of V (r, qt).
If we look at GF(qt) as a vector space of rank t over GF(q) then V (r, qt) becomes a vector
space of rank rt over GF(q), V (rt, q). A subspace of rank 1 in V (r, qt) induces a subspace
of rank t in V (rt, q). So the points of PG(r− 1, qt) induce subspaces of rank t in V (rt, q).
In this way it is clear that the points of PG(r − 1, qt), can be seen as the elements of a
(t− 1)-spread S of PG(rt− 1, q). �

The (t−1)-spread constructed in the proof of Theorem 2.1 is called a Desarguesian spread.

Exercise 2.2. Let D be a Desarguesian (t − 1)-spread of PG(rt − 1, q). Show that D
induces a Desarguesian spread in every subspaces which is spanned by elements of D.

Let S be a (t − 1) spread of PG(rt − 1, q). If t = 1 then S is just the set of points of
PG(r − 1, q). If t = 2 then S is called a line spread or a spread of lines. If t = 3 then S
is called a plane spread or a spread of planes.

2.3. André-Bruck-Bose. Let S be a (t− 1)-spread in PG(2t− 1, q). Consider PG(2t−
1, q) as a hyperplane of PG(2t, q). We define an incidence structure (P ,L, I) as follows.
The pointset P consists of all points of PG(2t, q)\PG(2t−1, q) and the lineset L consists
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of all t-spaces of PG(2t, q) intersecting PG(2t − 1, q) in an element of S. The incidence
relation I is containment.

Theorem 2.3. The incidence structure (P ,L, I) is a translation plane of order qt. More-
over every translation plane can be constructed in this way.

Exercise 2.4. Prove that the incidence structure (P ,L, I) is an affine plane of order qt.

This is a fundamental theorem in the Finite Geometry; it says that there is one-to-one
correspondence between translation planes and spreads (where the rank of the elements
of the spread is half the rank of the vector space). The construction is called the André-
Bruck-Bose construction. The next theorem motivates the choice of the term Desarguesian
spread.

Theorem 2.5. A (t− 1)-spread of PG(2t− 1, q) is Desarguesian if and only if the corre-
sponding translation plane is Desarguesian, i.e. isomorphic to PG(2, qt).

Two spreads are said to be equivalent if there exists a collineation of the projective space
mapping one spread onto the other.

Theorem 2.6. Two translation planes are isomorphic if and only if the corresponding
spreads are equivalent.

2.4. A geometric construction of a non-Desarguesian translation plane. Con-
sider three mutually skew lines A, B, C in PG(3, q).

Exercise 2.7. Prove that there are exactly q + 1 lines in PG(3, q) meeting each of the
lines A, B, C.

This set of q + 1 lines, say R, is called a regulus of PG(3, q). Similarly, any three lines of
R determine a regulus.

Exercise 2.8. Prove that each set of three lines of R determines the same regulus R′.

The reguli R and R′ are called opposite. An element of the opposite regulus of a regulus
R is called a transversal of R. If a linespread of PG(3, q) is such that every regulus
containing three lines of the spread is contained in the spread, then this spread is called
regular.

Exercise 2.9. Show that the Desarguesian linespread of PG(3, q) is regular.

We can construct a non-Desarguesian translation plane as follows. Take a regulus R in a
Desarguesian linespread of PG(3, q), and replace R by its opposite regulus. This method
to construct a new translation plane from an old one by replacing a regulus by its opposite
regulus is called derivation.
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3. Finite semifields

3.1. Recap: coordinatisation and quasifields. We recall that given a projective plane
π(P ,L, I), there are several methods of labeling the points and lines of the plane (coordi-
natisation), using a set R of n symbols (where n is the order of the plane) and one extra
symbol (usually ∞). This coordinatision depends on the choice of a frame (four points,
no three collinear), and the labeling of one of the sides of the frame. Assume we have
coordinatised the plane π, and we obtained a the set of points

P = {(a, b) : a, b ∈ R} ∪ {(m) : m ∈ R ∪ {∞}}
and the set of lines

L = {[m, k] : m, k ∈ R} ∪ {[k] : k ∈ R ∪ {∞}},
where the symbols 0, 1 ∈ R, the frame consists of the points {(∞), (0), (0, 0), (1, 1)}, the
line [∞] contains the points (0) and (∞), the line [0] contains (∞) and (0, 0), and the line
[0, 0] contains (0) and (0, 0), and so on ...

Once the plane has been coordinatised one can introduce a ternary operation T on R
as follows; if a, b, c ∈ R, define T (a, b, c) = k if and only if (b, c) is on [a, k]. A set R with
a ternary operation is called a ternary ring and denoted by (R, T ). It follows from the
definition that T satisfies certain properties, and in fact one can list the necessary and suf-
ficient properties that a ternary ring has to satisfy in order to be a ternary ring obtained
by coordinatising a projective plane (by “inverse coordinatisation”, i.e. constructing the
plane starting from the ternary ring). In this case (R, T ) is called a planar ternary ring,
usually abbreviated to PTR.

Let (R, T ) be a PTR. In the coordinatisation we mentioned the choice of a frame and the
special symbols 0 and 1 and now we use these symbols to define two operations (denoted
by + and ◦) as follows; for a, b ∈ R put a + b := T (1, a, b), and a ◦ b := T (a, b, 0). It can
be shown that this turns (R, +) and (R, ◦) into loops, with respective identities 0 and
1. With this setup one is able to connect the algebraic properties of the PTR with the
geometric properties of the plane, or more correctly, with the properties of the automor-
phism group of the plane π. A PTR is called linear if T (a, b, c) = a ◦ b+ c, ∀a, b, c ∈ R. A
cartesian group is a linear PTR with associative addition. A (left) quasifield is a cartesian
group in which the left distributive law holds. A linear PTR is a cartesian group if and
only if π is ((∞), [∞])-transitive. A cartesian group is a quasifield if and only if π is
((0), [∞])-transitive, and in this case π is a translation plane and (R, +) is abelian.

3.2. Semifields, semifield spreads and semifield planes. A finite semifield (S, +, ◦)
is an algebraic system satisfying the following axioms:

(A1) (S, +) is a group, with identity element 0
(A2) (S, ◦) has no zero divisors
(A3) (S, +, ◦) satisfies the distributive law
(A4) (S, ◦) has an identity element

Exercise 3.1. Suppose (S, +, ◦) is a finite semifield. Prove that (S, +) is an abelian
group. (Hint: consider (a + b) ◦ (c + d).)
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In fact (S, +) is elementary abelian and the additive order of the non-zero elements is a
prime and is called the characteristic of S.

If an algebraic system (S, +, ◦) satisfies all of (A1), (A2), and (A3), then (S, +, ◦) is
called a pre-semifield.

Exercise 3.2. Show that if we define a new multiplication ∗ by (a ◦ u) ∗ (u ◦ b) = a ◦ b,
then we obtain a semifield with unit u ◦ u.

Of course every finite field is also a finite semifields, but not a proper one. A proper
example of a semifield odd order q2k due to L. E. Dickson (1906) is the following.

(F2
qk , +, ◦)

{
(x, y) + (u, v) = (x + u, y + v)
(x, y) ◦ (u, v) = (xu + αyqvq, xv + yu)

where α is a non-square in Fqk .

Exercise 3.3. Prove that the above multiplication defines a semifield.

Let S be a pre-semifield, and let Fp be the finite field of order p, where p is the characteristic
of S. Then we can consider S as a vectorspace over Fp; say of dimension n.

Exercise 3.4. For each x ∈ S consider the set of vectors Sx := {(y, y ◦ x) : y ∈ S}, and
prove that S := {Sx : x ∈ S} ∪ {(0, y) : y ∈ S} is a spread of V (2n, p) ∼= F2

pn.

Such a spread is called a semifield spread. The corresponding translation plane (con-
structed by applying the André-Bruck-Bose construction) is called a semifield plane.
Semifield planes are translation planes for which the dual is also a translation plane.

Exercise 3.5. Use this to prove that the automorphism group G of a semifield spread
contains a ”special element” such that G (as a subgroup of PΓL(2n, p)) fixes that special
element pointwise and acts transitively on the other elements of the spread.

The converse of this exercise is also true; if a spread has such a special element and
automorphism group then it is a semifield spread.

3.3. Isotopic semifields and isomorphic planes. If we are interested in constructing
new translation planes or new semifields, we need to know what exactly is meant by
“new”. In the case of translation planes we know that we are interested in planes which
are not isomorphic to any of the known planes. In the case of semifields, we can define
isomorphic semifields in the usual way, but it turns out that non-isomorphic semifields
can correspond to isomorphic planes, suggesting that we should weaken the equivalence
relation on the set of semifields, in order to obtain equivalence classes of semifields which
are compatible with the isomorphism classes of projective planes. This is done by defining
isotopy.

An isotopy between two semifields S and Ŝ of order pn is a triple (F, G, H) of non-singular
linear transformations of the vector space V (n, p) such that xF ◦̂yG = (x ◦ y)H . In the
case such an isotopy exists we call the two semifields isotopic.

With this definition we can state an important result in the theory of semifield planes.



6 FINITE SEMIFIELDS AND RELATED STRUCTURES IN FINITE GEOMETRY

Theorem 3.6 (A. A. Albert 1960). Two semifield planes are isomorphic if and only if
the corresponding semifields are isotopic.

The proof of this theorem is not extremely difficult but quite technical and a bit “out of
our way” for the purpose of these notes.

Exercise 3.7. Define isotopy between two pre-semifields in the same way and construct
and isotopy between a pre-semifield and a semifield.

3.4. A geometric construction of finite semifields. In what follows we explain part
of recent research concerning finite semifields. We will see that every finite semifield can
be constructed from a particular (and fairly simple) configuration of two subspaces with
respect to a Desarguesian spread. In what follows, the set of elements of the Desarguesian
spread intersecting a set of points T is denoted by B(T ).

A. The configuration C(U,W )

Choose any r ≥ 2. Put Σ := PG(rn− 1, q)

• Let D be a Desarguesian (n− 1)-spread of Σ.
• Let {

U ⊂ Σ , dim(U) = n− 1
W ⊂ Σ , dim(W ) = rn− n− 1

If no elements ofD intersect both U and W (i.e. B(U)∩B(W ) = ∅), then (U,W ) is called a
semifield pair of subspaces (with respect to D). The configuration is denoted by C(U,W ).

B. The construction

Suppose (U,W ) is a semifield pair of subspaces with respect to D in Σ.

• Embed Σ in Γ := PG(rn + n− 1, q) and extend D to Γ (→ D).
• Let A be an n-space with A ∩ Σ = U .
• Let S(U,W ) be the set of subspaces defined by B(A) in the quotient geometry

Γ/W , i.e.

S(U,W ) = {〈R,W 〉/W : R ∈ B(A)}.

Exercise 3.8. Prove that S(U,W ) is an (n− 1)-spread in Γ/W ∼= PG(2n− 1, q).

It can be shown that S(U,W ) is a semifield spread (guess what the special element is).
Applying the André-Bruck-Bose construction we obtain a semifield plane π(U,W ). We
let S(U,W ) denote the semifield corresponding to the semifield plane π(U,W ). Recently
it has been shown that each finite semifield can be obtained from a semifield pair of sub-
spaces. This gives us a correspondence between the set of finite semifields and the set of
semifield pairs of subspaces.
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3.5. Generalised twisted field. Let q be an odd prime power. Let F be the finite field
of qn elements, let F0 be the subfield of q elements and assume n ≥ 2. The generalised
twisted field (F, +, ◦) has multiplication defined by

y ◦ x = yx− ηyσxα,

where σ and α are automorphisms of F with fixed field F0 and η ∈ F \ {aq−1 | a ∈ F}.

Exercise 3.9. Show that this multiplication defines a semifield.

We now illustrate that we can find a semifield pair of subspaces (U,W ) for this semi-
field. We will identify subspaces of projective space with subspaces of the corresponding
vectorspace. Let D be the usual Desarguesian (n − 1)-spread of PG(3n − 1, q), i.e. the
element of D corresponding to the point P (x, y, z) of PG(2, qn) is the subspace of V (3n, q)
(or PG(3n− 1, q)) defined by the set of vectors {(ax, ay, az) : a ∈ F} in V (3, qn). Define
subspaces U = {(0, x,−η1/σxα/σ) | x ∈ F} and W = {(0,−zσ, z) | z ∈ F} of V (2n, q).
Clearly

B(U) = {{(0, ax,−aη1/σxα/σ) | a ∈ F} | x ∈ F∗}
and

B(W ) = {{(0,−byσ, by) | b ∈ F} | y ∈ F∗}
and they are disjoint since η is not a (q − 1)-th power. Let v = (1, 0, 0). An element of
B(〈U, v〉) \B(U) is of the form

Sx = {(y, yx,−yη1/σxα/σ) | y ∈ F},
for some x ∈ F. We can obtain Sx/W by intersecting 〈Sx, W 〉 with a subspace of rank 2n
which has no non-trivial intersection with W , for example X3 = 0. Now

〈Sx, W 〉 = {(y, yx− zσ,−yη1/σxα/σ + z) | y, z ∈ F}
and so

S(U,W ) = {{(y, yx− ηyσxα)} | y ∈ F} | x ∈ F} ∪ {(0, y) | y ∈ F}.
This is indeed the semifield spread corresponding to the generalised twisted field.

3.6. Connection with ovoids of Q(4, q). We now turn our attention to a class of semi-
fields which is of particular interest in Finite Geometry because of their numerous links
with other objects in this research area. These are the so-called Rank Two Commuta-
tive Semifields (RTCS). Apart from a pure algebraic definition, there are various ways
to introduce these semifields. They are connected to translation generalised quadrangles,
semifield flocks, eggs in projective spaces, ...
Here we will introduce them geometrically using the subspaces U and W and the Desar-
guesian spread D as before with r = 2, and explain their connection to ovoids of the polar
space Q(4, q).

3.6.1. Intermezzo: An alternative model for the polar space Q(4, q). Let C be a conic in the
plane π contained in PG(3, q). Define the following incidence structure T2(C) = (P ,L, I).
There are three different types of points: (i) a point (∞); (ii) the planes of PG(3, q)
which intersect π in a tangent line of C (called points of tangent type); (iii) the points of
PG(3, q) \π (called affine points). There are two different types of lines: (a) the points of
C; (b) the lines of PG(3, q) intersecting π in a point of C. The point (∞) is incident with
the lines corresponding to points of C and the remaining incidence relations are natural.
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Exercise 3.10. Show that this incidence structure is a generalised quadrangle of order q.

This incidence structure is isomorphic to Q(4, q). An ovoid of Q(4, q) is a set of q2 + 1
points no two collinear.

Exercise 3.11. Let O be a set of q2 + 1 points containing the point (∞). Prove that O
is an ovoid of Q(4, q) if and only if the set of points of the conic C is disjoint from the set
of directions determined by O \ {(∞)}.

An ovoid O of Q(4, q) is called a translation ovoid or semifield ovoid if there is group G
of order q2 of collineations of Q(4, q), fixing O, a point P in O, and every line through P .

Example: The q2 affine points of a plane intersecting π in a line external to C together
with (∞) is an ovoid of Q(4, q).

Exercise 3.12. Prove that it is a translation ovoid.

These ovoids are quite rare in the sense that few examples are known compared to the
amount of effort that mathematicians have put in this area of research. They are in one-
to-one correspondence with the so called semifield flocks, and people have tried to classify
them by hand and using a computer. At the moment it is known that if the characteristic
is even there are no “proper” examples (1981), and if the characteristic is odd then there
is are strong restrictions on the possible values of q (2001). Apart from a finite field and
an early example due to Dickson (1906) there was one other example constructed in 1981.
For almost twenty years people believed that no other examples could exist until the most
recent construction in 1999 with the help of a computer.

3.6.2. Continuing from before the intermezzo. Our aim is to put extra hypotheses on the
semifield pair (U,W ) in order to construct a translation ovoid of Q(4, q).
Suppose n is even, and recall that the elements of the Desarguesian (n− 1)-spread D of
PG(2n − 1, q) correspond to the points of PG(1, qn). Let W0 be an (n − 1)-dimensional
subspace of PG(2n− 1, q) corresponding to a Baer subline PG(1, qn/2) of PG(1, qn), and
let U be an (n − 1)-space of PG(2n − 1, q) such that no elements of D intersect both U
and W0. Then by definition, the pair (U,W0) is a semifield pair of subspaces.

Remark 3.13. If n = 4 then all these configurations C(U,W0) have recently been classified
(2005).

Now put n = 2m and consider this configuration in PG(3, qm). Then, by definition W0

is a transversal to a regulus of PG(3, qm), and defines a hyperbolic quadric Q+(3, qm),
and U is skew to the set of elements of D corresponding to Q+(3, qm) in PG(3m− 1, q).
Let γ be a plane of PG(3, qm) which intersects Q+(3, qm) in a non-degenerate conic C,
and suppose that U is contained in the (3m − 1)-dimensional subspace of PG(2n − 1, q)
corresponding to γ.

Exercise 3.14. Construct an ovoid of Q(4, qm) from U (hint: embed PG(3m − 1, q) as
a hyperplane in PG(3m, q), and consider the q2m “affine points” of a 2m-dimensional
subspace of PG(3m, q) which intersects PG(3m− 1, q) in U).

In fact it can be shown that this ovoid is a translation ovoid of Q(4, q), and we have
reached what we aimed for.


