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Throughout the talk V , W V1, . . . ,Vm denote finite-dimensional vector
spaces over some field F.
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Tensor spaces

A tensor space will be one of the following:

I V1⊗V2⊗ . . .⊗Vm, (tensors of format (dimV1, dimV2, . . . , dimVm))
I the space of symmetric tensors SdV ,
I the space of alternating tensors ΛdV ,
I partially symmetric or alternating, i.e. SdV ⊗W , ΛdV ⊗W .



Example in V ⊗ V ⊗ V with V = 〈e0, e1〉

T = e0 ⊗ e0 ⊗ e0 + e0 ⊗ e1 ⊗ e1 − e1 ⊗ e0 ⊗ e1 + e1 ⊗ e1 ⊗ e0

If e0, e1 are linearly independent then T can be represented by the
hypermatrix ([

1 0
0 1

]
,

[
0 −1
1 0

])
with respect to the basis of V ⊗ V ⊗ V consisting of the tensors
eijk = ei ⊗ ej ⊗ ek , i , j , k ∈ {0, 1}.



Tensor products are ubiquitous in science

I Matrices are tensors in Fm ⊗ Fn

I Multilinear algebra
I Algebraic geometry
I Computational complexity theory
I Quantum mechanics
I Data analysis (chemistry, biology, physics, ...)
I Signal processing, source separation

There is a huge amount of research activity related to tensors. See e.g.
[Kolda and Bader (2009) Tensor decompositions and applications] and
[Landsberg (2012) Tensors: Geometry and Applications].



Decomposition

One of the central questions concerns the decomposition of a tensor into
the sum of pure tensors:

T =
∑
i

v1i ⊗ . . .⊗ vmi (1)

I Generalizes Singular Value Decomposition (SVD)
I "PARAFAC", "CANDECOMP", "CP decomposition", ...
I For general tensors no efficient decomposition algorithms exist.



Main problems

T =
r∑

i=1

v1i ⊗ . . .⊗ vmi (1)

Four important problems:

I Is there an algorithm to compute a decomposition?
I Uniqueness: do some tensors have a unique decomposition?
I Existence: given T and r , does (1) exist? → rank(T ) ([Hitchcock

1927], [Kruskal 1977])
I Orbits: how many "different" tensors are there in a given tensor

space?

These problems are known to be very hard for m ≥ 3 (theoretical and
computational). ([Håstad 1990] Tensor rank is NP-complete)



Two examples of tensor rank



A first example

What is the rank of T?

T = e0 ⊗ e0 ⊗ e0 + e0 ⊗ e1 ⊗ e1 − e1 ⊗ e0 ⊗ e1 + e1 ⊗ e1 ⊗ e0

I T has rank 3 over R:

T = (e0−e1)⊗e0⊗e0 + (e0+e1)⊗e1⊗e1 + e1⊗(e0+e1)⊗(e0−e1)

I T has rank 2 over C:

T =

(
1
2
e0 +

1
2i
e1

)
⊗ (e0 + ie1)⊗ (e0 + ie1)

+

(
1
2
e0 −

1
2i
e1

)
⊗ (e0 − ie1)⊗ (e0 − ie1)

I T has rank 2 over Fq iff q ≡ 1 mod 4



An important example in F4 ⊗ F4 ⊗ F4

The tensor

M = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e3 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e4 ⊗ e2

+e3 ⊗ e1 ⊗ e3 + e4 ⊗ e3 ⊗ e3 + e3 ⊗ e2 ⊗ e4 + e4 ⊗ e4 ⊗ e4

has rank ≤ 7.

Proof.

M = (e1 + e4)⊗ (e1 + e4)⊗ (e1 + e4) + (e2 + e4)⊗ e1 ⊗ (e2 − e4)

+e1 ⊗ (e3 − e4)⊗ (e3 + e4) + e4 ⊗ (−e1 + e2)⊗ (e1 + e3)

+(e1 + e3)⊗ e4 ⊗ (−e1 + e3) + (−e1 + e2)⊗ (e1 + e3)⊗ e4

+(e3 − e4)⊗ (e2 + e4)⊗ e1.



Important? Why?

Observing that

M = (e1 ⊗ e1 + e2 ⊗ e3)⊗ e1 + (e1 ⊗ e2 + e2 ⊗ e4)⊗ e2

+(e3 ⊗ e1 + e4 ⊗ e3)⊗ e3 + (e3 ⊗ e2 + e4 ⊗ e4)⊗ e4

can be rewritten as (where e1 = e11, e2 = e12, e3 = e21, e4 = e22)

M = (e11 ⊗ e11 + e12 ⊗ e21)⊗ e11 + (e11 ⊗ e12 + e12 ⊗ e22)⊗ e12

+(e21 ⊗ e11 + e22 ⊗ e21)⊗ e21 + (e21 ⊗ e12 + e22 ⊗ e22)⊗ e22

hints at the multiplication of 2× 2-matrices.

Indeed, the tensor M ∈ (F2×2)⊗3 represents the matrix algebra F2×2.



Connection to complexity theory

In general, given a tensor T in V ⊗ V ⊗ V∨ we can turn V∨ into an
algebra A. For example, for a pure tensor u ⊗ v ⊗ w ∈ V ⊗ V ⊗ V∨

define the multiplication

V∨ × V∨ → V∨ : (a, b) 7→ a(u)b(v)w .

This connection is a well-studied and important topic in complexity
theory: the rank of the tensor T corresponds to the complexity of
multiplication in the algebra A.

[Bürgisser - Clausen - Shokrollahi (1997) Algebraic Complexity Theory]

[von zur Gathen - Gerhard (2013) Modern Computer Algebra]



Rank(M) = 7

The fact that M has rank ≤ 7 implies that two 2× 2-matrices can be
multiplied, by performing ≤ 7 instead of 8 multiplications: one
multiplication for each pure tensor in the decomposition of M.

This was discovered by [Strassen 1969]. Soon after that [Hopcroft and
Kerr 1971] and [Winograd 1971] proved that M has rank 7.

This decomposition can also be used to multiply n × n-matrices (by
adding zeros and block decomposition of 2k × 2k -matrices). (→
exponent ω of matrix multiplication, see [Bürgisser et al., Chapter 15]).



Algebraic varieties related to tensors

The problems of decomposition and rank have natural geometric
interpretations, and the following connections with algebraic geometry
are well-known.

I Pure tensors corresponds to the set of points on a Segre variety in
PN where N =

∏
dimVi − 1.

I Pure symmetric tensors in SdV corresponds to the points of a
Veronese variety in PN where N =

(
d+dimV−1

d

)
− 1.

I Pure alternating tensors in ΛrV corresponds to the points of a
Grassmann variety PN where N =

(
dimV

r

)
(Plücker embedding)

I Tensors in SdV ⊗W corresponds to linear systems of hypersurfaces
of degree d in PdimV−1.
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The main problems from before

I decomposition
I rank
I uniqueness
I orbits

are invariant under certain natural group actions.



Group actions I

I An element (g1, g2, . . . gm) of GL(V1)×GL(V2)× . . .×GL(Vm)
acts on V1 ⊗ V2 ⊗ . . .⊗ Vm as follows:

v1 ⊗ v2 ⊗ . . .⊗ vm 7→ vg1
1 ⊗ vg2

2 ⊗ . . .⊗ vgm
m .

I If Vi = V for k of the i ’s (1 ≤ k ≤ m), then we also have a natural
action of Sym(k) on V1 ⊗ V2 ⊗ . . .⊗ Vm. For example, for k = m
we have the action of π ∈ Sym(m) defined by

π : v1 ⊗ v2 ⊗ . . .⊗ vm 7→ vπ(1) ⊗ vπ(2) ⊗ . . .⊗ vπ(m).

I A combination of these gives the action of a wreath product
(GL(V ) o Sym(m) in the above example) on V1 ⊗ V2 ⊗ . . .⊗ Vm.



Group actions II

Notation: V⊗d = V ⊗ . . .⊗ V (d factors)

I The space SdV of symmetric tensors in V⊗d consists of all fixed
points of the action of Sym(d) on V⊗d .

I The space ΛdV of alternating tensors in V⊗d consists of all
T ∈ V⊗d for which Xπ = sgn(π)X , ∀π ∈ Sym(d).

I An element g of GL(V ) acts on V⊗d as follows:

g : v1 ⊗ . . .⊗ vd 7→ vg
1 ⊗ . . .⊗ vg

d

I Action of GL(V ) on both subspaces SdV and ΛdV .
I Action of GL(V )×GL(W ) on SdV ⊗W and ΛdV ⊗W .

For the purpose of this talk the acting group will usually be denoted by G .



Tensor spaces with a finite number of G -orbits over C

These spaces have been classified by [Victor Kac 1980].

(1) V1 ⊗ . . .⊗ Vm and G = GL(V1)× . . .×GL(Vm) (m ≥ 2)

(a) m = 2
(b) C2 ⊗ C2 ⊗ Ca

(c) C2 ⊗ C3 ⊗ Ca

(2) SdV with G = GL(V )

(a) S2Ca

(b) S3C2

(3) SdV ⊗W with G = GL(V )×GL(W )

(a) S2C2 ⊗ Ca

(b) S2C3 ⊗ C2



Further results

1. There is a list of tensor spaces over C whose G -orbits can be
parametrized. These cases correspond to group actions (G ,V ) where the
GIT quotient G//V (which is the image of V under the map
ϕ : v 7→ (f1(v), . . . , fm(v)) where f1, . . . , fm ∈ C[V ] are generators for
the ring of invariants C[V ]G ) for which each fiber ϕ−1(w), w ∈ V //G ,
consists of finitely many G -orbits.

2. There are many results known on G -orbits on Λr (Fn), for various F,
e.g. algebraically closed fields F = F, finite fields F = Fq, and fields of
cohomological dimension ≤ 1.

([Schouten 1933] [Dieudonné 1955] [Gurevich 1964] [Cohen and
Helminck 1988] [DeBruyn and Kwiatkowski 2013] [Cardinali, Giuzzi, and
Pasini 2017])



Classification

Since we are primarily interested in tensors over finite fields, with a
classification of the G -orbits we mean a list of representatives, one for
each G -orbit.2 And of course we want a complete proof!

If possible we would also like to have

I the stabiliser group of each representative,
I the size of each orbit,
I an algorithm to determine the orbit of a given tensor,
I Schreier elements for constructive recognition,
I combinatorial invariants for the orbits,
I or even better, a complete invariant for the orbits.

2There are many examples in mathematics of important "classifications" which do
not satisfy these conditions.
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Geometry
Summarising the above we obtain the following geometric setting.

The pure tensors correspond to points of classical algebraic varieties in
projective space PN

I V1 ⊗ V2 ⊗ . . .⊗ Vm → Segre variety with N = (
∏

dimVi )− 1
I SdV → Veronese variety with N =

(
dimV+d−1

d

)
− 1

I ΛdV → Grassmann variety with N =
(
dimV

d

)
− 1

In each case the group G induces a subgroup K of PGL(PN) leaving the
relevant variety invariant.

The tensor rank of T corresponds to the minimal number of points on
the variety which are needed to span a subspace containing the
corresponding point 〈T 〉 in PN .

Points belonging to the same K -orbit have the same rank. So one can
speak of the rank of a K -orbit.

(More generally, one speaks of the X -rank of a point in the ambient
space of an algebraic variety X .)



Contractions

A contraction of a tensor

T ∈ V1 ⊗ . . .⊗ Vm

is a tensor in
V1 ⊗ . . .⊗ V̂i ⊗ . . .⊗ Vm

obtained as the image of T under u∨i ∈ V∨i , defined by

u∨i (v1 ⊗ . . .⊗ vm) = u∨i (vi )v1 ⊗ . . . vi−1 ⊗ vi+1 ⊗ . . . vm.

The i-th contraction space of T is the subspace

Ci (T ) := {u∨i (T ) : ∈ u∨i ∈ V∨i } ≤ V1 ⊗ . . .⊗ V̂i ⊗ . . .⊗ Vm.



Contraction spaces and subspace rank

A tensor T ∈ V1 ⊗ . . .⊗ Vm is called i-concise if dimCi (T ) = dimVi and
concise if T is i-concise for all i ∈ {1, . . . ,m}.

Each contraction space admits a natural action of the group Gi .

The rank of a subspace U of V1 ⊗ . . .⊗ Vm is defined as the minimal
number of pure tensors needed to span a subspace containing U.



Two useful lemma’s

Lemma
Two tensors V1 ⊗ . . .⊗ Vm are G -equivalent if and only if the their i-th
contraction spaces Ci (T ) and Ci (S) are Gi -equivalent.

In particular, two G -equivalent tensors have contraction spaces of the
same dimension, giving us a combinatorial invariant
[dimC1(T ), . . . , dimCm(T )] for the G -orbits.

Lemma
The rank of a tensor T is equal to the rank of the i-th contraction space
of T , i.e.

rank(T ) = rank(Ci (T ))

for i ∈ {1, . . . ,m}.
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For me the tensor story started around 2008 during a visit to Tim Penttila at
Colorado State University in Fort Collins, where I gave a talk in the Rocky
Mountain Algebraic Combinatorics Seminar (7 March 2008) with the title
Semifields and secant varieties to Segre varieties. This is where I met Robert
Liebler (he was one of the organisers of the seminar). Although I actually used
tensor products in my PhD thesis to give a construction of a maximum
scattered linear set (this must have been in 1998), I had absolutely no idea
about all, or at least most, of the above. I think I even forgot the construction
in my thesis.

The conversations which I had with Bob led me to study the connection
between tensors and semifields and eventually to the paper Finite semifields
and non-singular tensors (2013) which I presented at the Third Irsee
Conference on Finite Geometries in September 2011. Soon I realised that I had
stumbled upon a "can of worms". Instead of tensors allowing me a way out,
they pulled me (back) in.

We start by giving a very brief intro to semifields via projective planes.



Types of finite translation planes

[Hughes - Piper, Projective Planes, Springer, 1973]



Some details on semifields and tensors

A semifield is a (finite) possibly non-associative division algebra.

I An n-dimensional semifield S gives TS ∈ V1 ⊗ V2 ⊗ V3, Vi
∼= Fn

q

I The tensor TS ∈ V1 ⊗ V2 ⊗ V3 is nonsingular (each non-trivial
double contraction gives a nonzero vector).

I To every nonsingular tensor T ∈ V1 ⊗ V2 ⊗ V3 there corresponds a
(pre-)semifield S for which T = TS.

I The map S 7→ TS is injective.
I Semifields ↔ projective planes (with a lot of symmetry)

Inspired by previous work by [Knuth 1965] and [Liebler1981].



Orbits and isotopism (isomorphism)

I The isomorphism classes (planes) ↔ isotopism classes (semifields)
↔ orbits on tensors.

I The Knuth orbit of a semifield S is represented in the projective
space Pn3−1 as the orbit of 〈TS〉 under the group GL o S3.

I The tensor rank of a semifield is an invariant for the Knuth orbit of
a semifield

Moral of the story: the tensor TS is what we, geometers, should be
looking at.

For further details, see [ML 2013] Finite semifields and non-singular
tensors.



Finite geometry and coding theory/cryptography

Considering the impact that the research on semifields has had on the
study of MRD codes (as have other topics in finite geometry on the
theory of linear codes, or cryptography), it would not surprise me if the
research on the geometry of tensors over finite fields has a similar impact
on coding theory (or cryptography).
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(A) G -orbits - theoretical results over Fq

Besides the previously mentioned studies of G -orbits on Λr (Fn
q), the

G -orbits have been theoretically studied in the following cases:

(i) F2
q ⊗ F3

q ⊗ Fr
q r ≤ 6, [ML-Sheekey 2015], [ML-Sheekey 2017],

[Alnajjarine-ML 2020]
(ii) S2F3

q ⊗ F2
q [ML-Popiel 2019]

(iii) S2F3
q ⊗ F3

q [ML-Popiel-Sheekey 2020, 202*]

(iv) S2F3
q ⊗ F4

q [Alnajjarine-ML-Popiel 202*]

(v) S3F2
q ⊗ F2

q [Günay-ML 202*]

More details on (ii), (iii) and (iv) can be found on the slides of a recent
talk in the eSeminar series Galois Geometries and their applications.

The following slides concern (i) and (v).



The orbits in F2
q ⊗ F3

q ⊗ F3
q [ML-Sheekey 2015]

Here is an example of a classification of the G -orbits. The following table gives
a representative for each of the 18 G -orbits of tensors in F2

q ⊗ F3
q ⊗ F3

q. The
last column gives the rank distribution of the first contraction space C1(A) of
the representative A.

Orbit Canonical form Condition r1(A)

o0 0 [0, 0, 0]
o1 e1 ⊗ e1 ⊗ e1 [1, 0, 0]
o2 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) [0, 1, 0]
o3 e1 ⊗ e [0, 0, 1]
o4 e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e2 [q + 1, 0, 0]
o5 e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 [2, q − 1, 0]
o6 e1 ⊗ e1 ⊗ e1 + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e1) [1, q, 0]
o7 e1 ⊗ e1 ⊗ e3 + e2 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) [1, q, 0]
o8 e1 ⊗ e1 ⊗ e1 + e2 ⊗ (e2 ⊗ e2 + e3 ⊗ e3) [1, 1, q − 1]
o9 e1 ⊗ e3 ⊗ e1 + e2 ⊗ e [1, 0, q]
o10 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2 + ue1 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + ve2 ⊗ e1) (∗) [0, q + 1, 0]
o11 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3) [0, q + 1, 0]
o12 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e1 ⊗ e3 + e3 ⊗ e2) [0, q + 1, 0]
o13 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + e3 ⊗ e3) [0, 2, q − 1]
o14 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e2 ⊗ e2 + e3 ⊗ e3) [0, 3, q − 2]
o15 e1 ⊗ (e + ue1 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + ve2 ⊗ e1) (∗) [0, 1, q]
o16 e1 ⊗ e + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3) [0, 1, q]
o17 e1 ⊗ e + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3 + e3 ⊗ (αe1 + βe2 + γe3)) (∗∗) [0, 0, q + 1]

Condition (∗) is: vλ2 + uvλ − 1 6= 0 for all λ ∈ Fq .
Condition (∗∗) is: λ3 + γλ2 − βλ + α 6= 0 for all λ ∈ Fq .



Orbit identification

This classification of the G -orbits includes various other useful data of
the G -orbits, such as tensor rank, geometric description, and rank
distribution of the contraction spaces, see
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html.

In some cases one needs to understand more of the geometry to tell
orbits apart. For example, for o15 and o16.

Lemma
Let x2 be the unique rank 2 point on C1(A) and x1 be a point among the
q points of rank 3 on C1(A). Then, there exists a unique solid V
containing x2 which intersects S3,3(Fq) in a subvariety Q(x2) equivalent
to a Segre variety S2,2(Fq). There is no rank one point in U \ Q(x2) for
o16 where U := 〈V , x1〉, and there is one for o15.

The lemma is implicitly contained in [ML-Sheekey 2015] as explained in
[Alnajjarine-ML2020].

http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html


Implementation in GAP [Alnajjarine - ML 2020]

(joint work with Nour Alnajjarine)

The geometric and combinatorial data from the classification of tensors
in F2

q ⊗ F3
q ⊗ F3

q has been used to implement algorithms in GAP (relying
on the FinInG package) which allow orbit identification and rank
computation in this tensor space.

[Alnajjarine - ML 2020] Determining the rank of tensors in F2
q ⊗ F3

q ⊗ F3
q

(2020).

The GAP code is available from
http://people.sabanciuniv.edu/mlavrauw/T233/T233_paper.html.

This research is part of Nour’s PhD.

The code is illustrated on the next slide with an example in the
17-dimensional projective space over the field of size 397.

http://people.sabanciuniv.edu/mlavrauw/T233/T233_paper.html


gap> q:=397; sv:=SegreVariety([PG(1,q),PG(2,q),PG(2,q)]);
397
Segre Variety in ProjectiveSpace(17, 397)
gap> Size(Points(sv));
9936552395502
gap> pg:=AmbientSpace(sv);;
gap> Size(Points(pg));
151542321438098147995655901146938756967526078
gap> A:=VectorSpaceToElement(pg,[Z(397)^0,Z(397)^336,Z(397)^339,
Z(397)^37,Z(397)^233,Z(397)^56,Z(397)^268,Z(397)^363,Z(397)^342,
Z(397)^297,Z(397)^146,Z(397)^71,Z(397)^57,Z(397)^84,Z(397)^33,
Z(397)^203,Z(397)^229,Z(397)^191]);
gap> OrbitOfTensor(A)[1]; time;
14
94
gap> RankOfTensor(A); time;
3
141
gap> NrCombinations([1..Size(Points(sv))], 3);
163514371865202881474954561407873423500



Orbits in S3F2
q ⊗ F2

q [Günay-ML 202*]

(joint work with Gülizar Günay)

The classification of the G -orbits of partially symmetric tensors S3F2
q⊗F2

q

includes the classification of lines in P3 under the action of a copy of
PGL(2, q) in PGL(4, q). The underlying geometry is the twisted cubic.

We have thus far determined 10 line-orbits, including their point-orbit
distributions and hyperplane-orbit distributions. (There are 4 point orbits
and 4 hyperplane orbits.) These 10 line-orbits comprise the set of lines `
of P3 for which ` or `ρ belong to an osculating plane of the twisted cubic.
Here ρ is the symplectic polarity of P3 sending a point on the twisted
cubic to its osculating plane.

This research is part of Gülizar’s PhD.



G -orbits - computational results for small values of q

There are computational classification results for the G -orbits in the
following cases:

1. F2
q ⊗ F2

q ⊗ F2
q ⊗ F2

q for q ∈ {2, 3} [Bremner-Stavrou 2013]

2. S4F2
q for q ∈ {2, 3, 5, 7} [Stavrou 2014]

3. SdF3
q for d ∈ {3, 4} and q ∈ {2, 3}, [Stavrou 2015]

4. F2
2 ⊗ F2

2 ⊗ F2
2 ⊗ F2

2 ⊗ F2
2 [Stavrou-Low-Hernandez 2016]

[Stavrou-Low-Hernandez 2018] [Betten-ML 202*]

Other results?



(B) Tensor ranks

(i) The maximum rank in F3 ⊗ F3 ⊗ F3 is 6 [ML-Pavan-Zanella 2012]
Since it is known that Fqn has Fq-tensor rank 2n − 1 if q ≥ 2n − 2,
and > 2n − 1 if q < 2n − 2 [Winograd 1979], [de Groote 1983], this
shows that F27 has F3-tensor rank 6.

(ii) All semifields of order 27 have F3-tensor rank equal to 6
[ML-Pavan-Zanella 2012].

(iii) All semifields of order 16 have F2-tensor rank equal to 9.
(iv) The field and GTF of order 81 have F3-tensor rank 9, all other

semifields of order 81 have F3-tensor rank 8 [ML-Sheekey 202*].
This establishes the tensor rank of a semifield as a non-trivial
invariant of the Knuth orbit of semifields.



Concluding remarks

I Tensors can be studied in many different ways. We have opted for a
geometric/combinatorial approach, because that is what we like, but
also because we feel that this allows for a better understanding of
the rank and orbits.

I This talk is in no sense a complete overview of results on tensors
over finite fields. There are many results which I could not mention.
I apologise for that. (Including to some of my co-authors.)

I Byrne et al. picked up on this tensor approach to study MRD codes.
[Byrne, Neri, Ravagnani, Sheekey 2019] Tensor representation of
rank metric codes (2019) (Semifields are special MRD codes.)

I There are still many open problems in the area, and it is my hope
that some of you will join us in our endeavours.


