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Finite Semifield

A finite semifield S is a finite division algebra, which is not
necessarily associative

(S1) (S,+) is a finite group

(S2) Left and right distributive laws hold

(S3) (S, ◦) has no zero-divisors

(S4) (S, ◦) has a unit
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Finite Semifield

A finite semifield S is a finite division algebra, which is not
necessarily associative , i.e., (S,+, ◦) satisfying the following
axioms:

(S1) (S,+) is a finite group

(S2) Left and right distributive laws hold

(S3) (S, ◦) has no zero-divisors

(S4) (S, ◦) has a unit

(without (S4) → pre-semifield)



Examples

I A finite field is a finite semifield.

I Proper example of odd order q2k (L. E. Dickson 1906)

SD : (F2
qk ,+, ◦)

{
(x , y) + (u, v) = (x + u, y + v)
(x , y) ◦ (u, v) = (xu + αy qv q, xv + yu)

where α is a non-square in Fqk .
SD is commutative, but not associative.

I Generalized twisted fields (A. A. Albert 1961)

SGT : (Fqn ,+, ◦) with x ◦ y = xy − ηxαyβ,

α, β ∈ Aut(Fqn ), Fix(α) = Fix(β) = Fq, where

η ∈ Fqn \ {xα−1yβ−1 : x , y ∈ Fqn}
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The name semifields

I Dickson (1906): “Linear algebras in which division is always
uniquely possible”

I Dickson (1935): “ Linear algebras in which associativity is not
assumed”

I Albert (1952): “On non-associative division algebras”

I Hughes-Kleinfeld (1960): “Semi-nuclear extensions of Galois
fields”

I Knuth (1965):
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The name semifields

I Dickson (1906): “Linear algebras in which division is always
uniquely possible”

I Dickson (1935): “ Linear algebras in which associativity is not
assumed”

I Albert (1952): “On non-associative division algebras”

I Hughes-Kleinfeld (1960): “Semi-nuclear extensions of Galois
fields”

I Knuth (1965): “We are concerned with a certain type of
algebraic system, called a semifield. Such a system has
several names in the literature, where it is called, for example,
a ”nonassociative division ring” or a ”distributive quasifield”.
Since these terms are rather lengthy, and since we make
frequent reference to such systems in this paper, the more
convenient name semifield will be used.”

Since 1965, people have been using the name semifields.



Semifields and Galois geometry

[ML - O. Polverino: Finite semifields. Chapter 6 in Current research topics in Galois

Geometry Nova Academic Publishers (Editors J. De Beule and L. Storme)]

I Coordinatisation of projective planes (PTR’s)
→ semifield planes

I Spreads

I Ovoids of generalized quadrangles

I Translation generalized quadrangles

I Blocking sets

I ...
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Types of translation planes and their PTR’s

[Hughes - Piper, Projective Planes, Springer, 1973]
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Types of finite translation planes

[Hughes - Piper, Projective Planes, Springer, 1973]



Isotopism classes ↔ Isomorphism classes

I An isotopism from (S, ◦) to (S′, ◦′) is a triple (F ,G ,H) of
bijections from S to S′, linear over the characteristic field of S,
such that

aF ◦′ bG = (a ◦ b)H

I If such an isotopism exists, then S and S′ are called isotopic.

I Semifield S −→ isotopism class [S]
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Action of Sym(3) on the isotopism classes

I If {e1, . . . , en} is a basis for S over the center Z (S), then the
structure constants aijk are given by

ei ◦ ej =
n∑

i=1

aijkek

I Permuting the indices of the aijk gives six semifields (Knuth
1965) ⇒ six semifields S1, . . . ,S6

I Knuth orbit:={[S1], . . . , [S6]}
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The Knuthorbit of a semifield S

[S]dt

[S]

[S]td

rml lrm

rlm mrl

[S]dtd = [S]tdt

[S]t

mlr

lmr
[S]d

Figure: The nuclei are denoted by l ,m, r



Nuclei

The left nucleus

Nl (S) := {x : x ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z , ∀y , z ∈ S},

The middle nucleus

Nm(S) := {y : y ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z , ∀x , z ∈ S},

The right nucleus

Nr (S) := {z : z ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z , ∀x , y ∈ S}.

The center

Z (S) := {c : c ∈ Nl (S) ∩Nm(S) ∩Nr (S) | x ◦ c = c ◦ x ,∀x ∈ S}.
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Cyclic semifields

I Construction by Jha and Johnson (1989) using an irreducible
semilinear map.

I Let T ∈ ΓL(Fd
qn ) be irreducible and for x , y ∈ Fd

qn define

y ◦ x := y

(
d−1∑
i=0

T i xi

)
, where x = (x0, . . . , xd−1).

Then this defines a semifield ST of size qnd .

I This construction has been generalized by Johnson - Marino -
Polverino - Trombetti (2008)

I Kantor - Liebler (2008): The number of isotopism classes of
semifields ST obtained from this construction is at most
qd − 1.

I Improved by Dempwolff (2011): N(q, d)
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In this talk

1 Determine the nuclei of ST

2 Prove and improve the upper bound for the number of
isotopism classes



Method: Skew polynomial rings

For σ ∈ Aut(F), the skew polynomial ring R := F[t, σ] is the set

{a0 + a1t + . . .+ ar tr : ai ∈ F, r ∈ N}

with termwise addition and multiplication defined by

t i a = aσ
i
t, ∀a ∈ F

[1933] Oystein Ore, Theory of Non-Commutative Polynomials



Properties of skew polynomial rings

Properties:

I multiplication is associative, distributive, but not
commutative,

I left- and right-Euclidean,
⇒ left- and right-principal ideal domain,

I NOT unique factorisation domain,

I link with linearised polynomials
(multiplication ↔ composition),
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Properties of skew polynomial rings

Properties:

I multiplication is associative, distributive, but not
commutative,

I left- and right-Euclidean,
⇒ left- and right-principal ideal domain,

I NOT unique factorisation domain,

I link with linearised polynomials
(multiplication ↔ composition),

Conventions:

1. we work with right divisors, unless otherwise stated,

2. the left ideal R.f is denoted by 〈f 〉.



Properties of the skew polynomial ring Fqn[t, σ]

Let F = Fqn and σ : Fqn → Fqn : a 7→ aq

I Z := the centre of Fqn [t, σ] is Fq[tn, σ] ∼= Fq[X ]

I the two sided ideals in R are 〈f · ts〉 where f ∈ Z

I a polynomial f ∈ R is called irreducible if f cannot be written
as f = gh with deg(h) < deg(f ) and deg(g) < deg(f )

I given f and g , the concepts of least common left multiple
(lclm(f , g)) and greatest common right divisor ( gcrd(f , g))
are well defined.
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Semifields from skew polynomial rings

Let f be an irreducible polynomial of degree d in Fqn [t, σ], and
define a multiplication ◦ on the set of polynomials of degree less
than d by

x ◦ y := xy mod f



Semifields from skew polynomial rings

Let f be an irreducible polynomial of degree d in Fqn [t, σ], and
define a multiplication ◦ on the set of polynomials of degree less
than d by

x ◦ y := xy mod f

Theorem
The multiplication ◦ defines a semifield Sf := Fqn [t, σ]/〈f 〉

[1932] Oystein Ore, Formale Theorie der linearen Differentialgleichungen II

[1934] Nathan Jacobson, Non-Commutative Polynomials and Cyclic Algebras



Semifields from skew polynomial rings

Proof.
(S3) Let x , y ∈ Sf and suppose x ◦ y = 0 in Sf . This means
∃h ∈ Fqn [t, σ], s.t. xy = hf in Fqn [t, σ].

Theorem (Ore 1933)

If f ∈ F[t, σ] factors completely as

f = f1f2 . . . fk = g1g2 . . . gl ,

where fi and gi are irreducible, then k = l and there exists a
permutation ϕ, s.t. deg fi = deg gϕ(i).

Proof continued xy = hf in Fqn [t, σ]
Since f is irreducible of degree d , there must be a factor of x or of
y that has degree d . Since both x and y have degree less than d ,
it follows that x or y must be 0.



Semifields from skew polynomial rings

Proof.
(S3) Let x , y ∈ Sf and suppose x ◦ y = 0 in Sf . This means
∃h ∈ Fqn [t, σ], s.t. xy = hf in Fqn [t, σ].

Theorem (Ore 1933)

If f ∈ F[t, σ] factors completely as

f = f1f2 . . . fk = g1g2 . . . gl ,

where fi and gi are irreducible, then k = l and there exists a
permutation ϕ, s.t. deg fi = deg gϕ(i).

Proof continued xy = hf in Fqn [t, σ]
Since f is irreducible of degree d , there must be a factor of x or of
y that has degree d . Since both x and y have degree less than d ,
it follows that x or y must be 0.



Semifields from skew polynomial rings

Proof.
(S3) Let x , y ∈ Sf and suppose x ◦ y = 0 in Sf . This means
∃h ∈ Fqn [t, σ], s.t. xy = hf in Fqn [t, σ].

Theorem (Ore 1933)

If f ∈ F[t, σ] factors completely as

f = f1f2 . . . fk = g1g2 . . . gl ,

where fi and gi are irreducible, then k = l and there exists a
permutation ϕ, s.t. deg fi = deg gϕ(i).

Proof continued xy = hf in Fqn [t, σ]
Since f is irreducible of degree d , there must be a factor of x or of
y that has degree d . Since both x and y have degree less than d ,
it follows that x or y must be 0.



Theorem
Each ST is isotopic to some Sf .

Proof: Consider a basis v ,Tv ,T 2v , . . . ,T d−1v , and suppose that

T d v =
d−1∑
i=0

fi T
i v .

Define a φ ∈ GL(n, qn): φ(t i ) := T i , then

Tφ = φLt,f ,

where Lt,f is left multiplication in Sf by t with

f (t) = td −
d−1∑
i=0

fi t
i .

Kantor - Liebler: conjugate semilinear transformations define
isotopic semifields.
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The nuclei of Sf

Theorem
If f is irreducible of degree d in Fqn [t, σ], then

(#Sf ,#Nl (Sf ),#Nm(Sf ),#Nr (Sf ),#Z (Sf )) = (qnd , qn, qn, qd , q)

Proof:
If ab = uf + v and bc = wf + z , then

(ab)c = a(bc) ⇐⇒ ufc + vc = awf + az ,

and hence

(a ◦ b) ◦ c = a ◦ (b ◦ c) ⇐⇒ vc = az modf

⇐⇒ vc = ufc + vc modf ⇐⇒ ufc modf = 0.

⇒ Nl (Sf ) = Nm(Sf ) = Fqn , and Nr (Sf ) = E (f ) eigenring of f .



Counting isotopism classes

Theorem (Odoni 1999)

The number of monic irreducibles of degree d in Fqn [t, σ] is equal
to

N(q, d)
qnd − 1

qd − 1
,

where N(q, d) is the number of monic irreducibles of degree d in
Fq[X ], i.e.,

N(q, d) =
1

d

∑
s|d

µ(s)qd/s .



Isotopisms for semifields Sf

Put R := Fqn [t, σ]

Lemma
If f , g ∈ R are irreducible of degree d and ∃u, v ∈ R of degree
< d, s.t. gu = vf , then [Sf ] = [Sg ]. An isotopism is given by
(id ,Ru,Ru), where Ru is right multiplication in Sf .

Proof.
We show that

x ◦f y Ru = (x ◦g y)Ru .

LHS = x ◦f (y ◦f u) = x ◦f (yu − af ), for some a ∈ R
= x(yu − af ) mod f = xyu − xaf mod f = xyu mod f .

RHS = (x ◦g y) ◦f u = (xy − bg) ◦f u, for some b ∈ R
= (xy − bg)u mod f = xyu − bgu mod f = xyu mod f .
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More properties of the skew polynomial ring R = Fqn[t, σ]

Define the minimal central left multiple of f ∈ R (mzlm(f ) as the
monic g ∈ Z (R) of minimal degree s.t. f |g .

Properties:

I Since Z (R) = Fq[tn, σ] ∼= Fq[X ] it follows that
mzlm(f ) = F (tn), for some F ∈ Fq[X ].

Moreover if f ∈ R is irreducible of degree d :

I mzlm(f ) exists, is unique and has degree nd

I if mzlm(f ) = F (tn), then F is irreducible of degree d in Fq[X ]

I if F is irreducible of degree d in Fq[X ], then any irreducible
divisor of F (tn) in R has degree d
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Isotopisms for semifields Sf

Lemma
If f , g ∈ R are irreducible of degree d then the following are
equivalent
(i) ∃u, v ∈ R of degree < d, s.t. gu = vf
(ii) mzlm(f ) = mzlm(g).

Corollary

(i) If f , g ∈ R are irreducible and mzlm(f ) = mzlm(g), then
[Sf ] = [Sg ]
(ii) The number of isotopism classes of semifields Sf with f ∈ R
irreducible of degree d is at most N(q, d) (This was also proved by
Dempwolff (2011))
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More isotopisms

Let a ∈ F∗qn and consider the map ψa : R → R : f (t) 7→ f (at)

Lemma
(i) The map ψa defines an isomorphism of R.
(ii) If f ∈ R is irreducible, then [Sf ] = [Sf ψa ].
(iii) If f ∈ R is irreducible and mzlm(f ) = F (tn), then

mzlm(f ψa ) =
1

N(a)d
F (N(a)tn),

where N is the norm from Fqn to Fq.
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Bound on the number of isotopism classes of semifields Sf

Define the equiv. relation: F ∼ G ⇔ ∃λ ∈ Fq : F (X ) = G (λX ).
Put M(d , q):= # equivalence classes of ∼ on the set of
irreducibles of Fq[X ] of degree d .

Theorem
The number of isotopism classes of semifields Sf with f ∈ R
irreducible of degree d is at most M(q, d).

( If q is prime and (q − 1, d) = 1, M(q, d) = N(q,d)
q−1 )



Future research

I Is this bound sharp? Computer data: YES in small cases.

I Can this method be used to count isotopism classes for the
generalised cyclic semifields? [JMPT]

I Or can this method be generalised in another direction?
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