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Tensor product

Consider
⊗

i∈I Vi (I = {1, . . . ,m}, m ≥ 2), with dim Vi = ni

I fundamental tensors: v1 ⊗ . . .⊗ vm, vi ∈ Vi .

I general element τ ∈
⊗

i∈I Vi

τ =
∑

i

v1i ⊗ . . .⊗ vmi

I choosing bases for each Vi we obtain a hypercube (ai1i2...im)

τ =
∑

i1,...,im

ai1i2...ime1i1 ⊗ . . .⊗ emim



Tensor products generalise the concept of a matrix

I For m = 2, τ ∈ V1 ⊗ V2 → (aij).

I Hence linear map Lτ : V ∨1 → V2,

I The isomorphism V1 ⊗ V2
∼= Hom(V ∨1 ,V2) is given by:

Ψ : v1 ⊗ v2 7→
[
v∨1 7→ v∨1 (v1)v2

]
I So if τ =

∑
aijei ⊗ fj then τΨ : v∨1 7→

∑
aijv

∨
1 (ei )f2j , in

particular

τΨ : e∨k 7→
∑

aije
∨
k (ei )fj =

∑
j

akj fj ,

which should look familiar.



Why tensor products?

I Yes, at this stage, tensor products just seem to complicate
things, however ...

I For higher order tensor products (more than two factors),
working with coordinates instead of tensors is not
recommended.

I “Don’t use coordinates unless someone holds a gun to your
head.” (W. Fulton)

I In my opinion, tensor products are much like olives, coffee,
wine or beer, i.e. an acquired taste.



Applications

I computational complexity theory

I tensors describe quantum mechanical systems (entanglement)

I data analysis

I signal processing, source separation

I psychometrics

Many more applications can be found in [Landsberg 2012]: “The
geometry of tensors”, American Mathematical Society



Main issue: ”decomposition”

An expression

τ =
r∑

i=1

v1i ⊗ . . .⊗ vmi (1)

is called a decomposition of τ ∈ V1 ⊗ . . .⊗ Vm.

Four important problems:

I Algorithm

I Uniqueness

I Existence: given τ and r , does (1) exist? → rank

I Orbits: how many ”different” tensors are there?



This talk

1. ”Existence” result

Theorem (ML - A. Pavan - C. Zanella 2012)

The rank of a 3× 3× 3 tensor is at most six over any field.

2. ”Orbits” result

Theorem (ML - J.Sheekey 2012)

There exist precisely four orbits of singular 2× 2× 2 tensors over
any field.



1. Existence → rank of a tensor

Consider

τ =
r∑

i=1

v1i ⊗ . . .⊗ vmi (1)

I the rank of τ is the minimum r such that (1) exists

I notation rk(τ)
I examples (for suitable u, v ,w , x , ui , vi )

I rk(u ⊗ v ⊗ w ⊗ x) = 1;
I rk(u1⊗ v + u2⊗ v) = 1, since u1⊗ v + u2⊗ v = (u1 + u2)⊗ v ;
I rk(u1 ⊗ v1 + u2 ⊗ v2) = 2.

Introduced in [F.L. Hitchcock, The expression of a tensor or a
polyadic as a sum of products, J. of Mathematics and Physics 6
(1927), 164–189.]



Tensor rank



The rank of a tensor is not so easy ...

I the rank of τ ∈ V1 ⊗ V2, corresponds to usual rank of
τΨ ∈ Hom(V ∨1 ,V2).

I Gaussian elimination: computationally the rank of a matrix
(naively) takes about n · n3 multiplications

I in general, computing the rank in
⊗m

i=1 Vi is very difficult.

I in most cases no algorithm available!



Illustration of a rank problem

The rank of matrix multiplication: computational complexity

I Mn,n,n ∈ Bil(Kn2 × Kn2
,Kn2

) matrix multiplication.

I R(Mn,n,n) is the rank of the associated tensor in

(Kn2
)∨ ⊗ (Kn2

)∨ ⊗ Kn2
, using the isomorphism

Bil(A× B,C ) ∼= A∨ ⊗ B∨ ⊗ C :

α⊗ β ⊗ c 7→ [(a, b) 7→ α(a)β(b)c]

I R(Mn,n,n) measures the number of multiplications needed

I [Strassen1969] R(M2,2,2) ≤ 7.

I [Winograd1971] R(M2,2,2) = 7.

I for 3× 3 matrices,

19 ≤ R(M3,3,3) ≤ 23



The rank of a subspace and contraction

Definition
(i) The rank of a subspace U (rk(U)) of

⊗m
i=1 Vi is the minimum

number of fundamental tensors that is needed to span a subspace
containing U.
(ii) For every u∨i ∈ V ∨i , define the contraction u∨i (τ) of
τ = v1 ⊗ v2 ⊗ . . .⊗ vm by

u∨i (τ) = u∨i (vi )v1 ⊗ . . .⊗ vi−1 ⊗ vi+1 ⊗ . . .⊗ vm,

and extend linearly to define the contraction of any tensor.
Proposition
If τ ∈

⊗m
i=1 Vi , then for each j ∈ {1, . . . ,m}: rk(τ) = rk(Tj),

where Tj = 〈u∨j (τ) : u∨j ∈ V ∨j 〉.



Groups and geometry

I Segre embedding:

σ : PG(V1)× PG(V2)× . . .× PG(Vm) → PG(
⊗

i

Vi )

(〈v1〉, 〈v2〉, . . . , 〈vm〉) 7→ 〈v1 ⊗ v2 ⊗ . . .⊗ vm〉

I Sn1,n2,...,nm(F ) = Im(σ) is the Segre variety



Group action

I An element (g1, g2, . . . gm) of
GL(V1)×GL(V2)× . . .×GL(Vm) acts on points of the
Segre variety as follows:

〈v1 ⊗ v2 ⊗ . . .⊗ vm〉 7→ 〈vg1
1 ⊗ vg2

2 ⊗ . . .⊗ vgm
m 〉.

I If Vi = V = V (n,F ) for all i , then we also have an action of
Sm as follows:

π : 〈v1 ⊗ v2 ⊗ . . .⊗ vm〉 7→ 〈vπ(1) ⊗ vπ(2) ⊗ . . .⊗ vπ(m)〉.



Vi = V = V (n, F )

I The wreath product GL(V ) o Sm induces a subgroup Gm of
PGL(nm − 1,F ).

I Gm stabilizes X := Sn,...,n and the set of maximal subspaces of
X ,

for example σ(PG (V1)× v2 × . . .× vm).

NOTE: the rank is invariant under the action of Gm



The 3-fold tensor product

Here we are interested in the maximum rank of a tensor in a
three-fold tensor space.

I m = 1: rk(u) ≤ 1, ∀u ∈ V1

I m = 2: V1 ⊗ V2
∼=M(n1, n2,K ): rk(u) = rk(Mu)

I m = 3: What is the maximum rank in V1 ⊗ V2 ⊗ V3 ?

→ Maximum rank depends on the dimension of the factors and on
the ground field.
→ Known results are over C.
→ We will focus on the case n1 = n2 = n3.



The rank in Km ⊗ Km ⊗ Km

Proposition
If τ ∈

⊗m
i=1 Vi , then for each j ∈ {1, . . . ,m}: rk(τ) = rk(Tj),

where Tj = 〈u∨j (τ) : u∨j ∈ V ∨j 〉.

I Proposition ⇒ trivial upper bound is m2

Theorem (Atkinson-Stephens 1979)

If K = C, then the maximum rank ≤ 1
2 m2 + O(m)

I As far as we know, this is still the best result of its kind.



The 3-fold tensor product for general fields K

I the proof of Atkinson-Stephens depends on the fact that C is
algebraically closed and separable.

n = 1 The rank in K ⊗ K ⊗ K : trivial

n = 2 The rank in K 2 ⊗ K 2 ⊗ K 2

Theorem
The rank of a 2× 2× 2 tensor is at most 3 over any field.

Proof Each line in PG(3,K ) lies in a plane spanned by three
points on S2,2(K ).

n = 3 The rank in K 3 ⊗ K 3 ⊗ K 3



The rank in K 3 ⊗ K 3 ⊗ K 3

Theorem (ML - A. Pavan - C. Zanella 2012)

The rank of a 3× 3× 3 tensor is at most six over any field.

Proof (sketch)

I We need to prove: each point of 〈S3,3,3(K )〉 is contained in a
subspace spanned by six points of S3,3,3(K ).

I τ ∈ U ⊗ V ⊗W → N = 〈u∨i (τ) : i = 1, 2, 3〉 ⊂ PG(V ⊗W )

I N is contained in a plane of 〈S3,3(K )〉 ⇒ N = 〈σ, L〉,
σ ∈ V ⊗W , for some line L (w.l.o.g.)

I choose bases v1, v2, v3 and w1,w2,w3 s.t.

σ ∈ 〈v1 ⊗ w1, v2 ⊗ w2, v3 ⊗ w3〉 =: D

I show that L is contained in the span of D and ≤ three other
points of S3,3(K ).



The rank in K 3 ⊗ K 3 ⊗ K 3

Theorem (ML - A. Pavan - C. Zanella 2012)

The rank of a 3× 3× 3 tensor is at most six over any field.

→ This bound is sharp

I the tensor rank of in an algebra S: Trk(S)

I we have Trk(Fqn) ≥ 2n − 1, with equality iff q ≥ 2n − 2
[Winograd 1979], [de Groote 1983]

I for n = 3 it follows that Trk(F23) = Trk(F33) = 6



2. Orbits

I aim: determine the orbits of points of PG(
⊗m

i=1 Vi ) under
the action of Gm

I since the rank is invariant, the number of orbits is at least the
maximum rank in PG(

⊗m
i=1 Vi )

I a tensor T is nonsingular if applying any m − 1 consecutive
nonzero contractions never returns the zero vector

I nonsingularity is invariant under Gm

I observe that v ∈ V1 ⊗ V2 is nonsingular if and only if the
corresponding homomorphism in Hom(V ∨1 ,V2) is nonsingular



Nonsingular tensors and semifields (planes)

[Liebler1981]

semifield S 7→ TS ∈ V1 ⊗ V2 ⊗ V3, Vi
∼= Kn

Theorem
(i) The tensor TS ∈ V1 ⊗ V2 ⊗ V3 is nonsingular.
(ii) To every nonsingular tensor T ∈ V1 ⊗ V2 ⊗ V3 there
corresponds a presemifield S for which T = TS.
(iii) The map S 7→ TS is injective.

I semifields ↔ projective planes (with a lot of symmetry)



Types of finite translation planes

[Hughes - Piper, Projective Planes, Springer, 1973]



Orbits and isotopism (isomorphism)

I isomorphism classes (planes) ↔ isotopism classes (semifields)
↔ orbits on tensors

I the Knuth orbit of a semifield S is represented in the projective
space PG(n3 − 1, q) as the orbit of PS under the group Gn.

I the tensor rank of a semifield is an invariant for the Knuth
orbit of a semifield [ML2012]



Geometric characterisation of singular tensors

Theorem (ML 2012)

A tensor τ ∈ Kn ⊗ Kn ⊗ Kn is singular if and only if

〈τ〉 ⊂ 〈x1, . . . , xj , Sk1,k2,k3〉

for some j < n points and a Sk1,k2,k3 properly contained in Sn,n,n.

We will use this result for n = 2.



The orbits in K 2 ⊗ K 2 ⊗ K 2

Theorem (ML-J. Sheekey 2012)

There exist precisely four G3-orbits of singular tensors in
K 2 ⊗ K 2 ⊗ K 2.

I Glynn et al (2006) showed this computationally for F2.

I Havlicek-Odehnal-Saniga (2011) proved this geometrically for
F2.



It is well known that every point y = y1 ⊗ y2 ⊗ y3 lies on precisely
three lines of the Segre variety X :

l3(y) := σ(y1 × y2 × PG(V ))



Each pair of lines lie on a sub-Segre variety which is a hyperbolic
quadric:

Q1(y) := σ(y1 × PG(V )× PG(V ))



Each quadric spans a 3-space:

Li (y) := 〈Qi (y)〉



The shamrock of a point y , denoted by Sh(y), is the union of the
three 3-spaces Li (y), and we call Li (y) a leaf.

Clearly G3 sends a shamrock to a shamrock, a leaf to a leaf etc.

I The enumeration of the orbits goes by the rank of the points.

I We know from before that the maximum rank in
K 2 ⊗ K 2 ⊗ K 2 is three.



Rank one and two

The rank one points (i.e. the points of X ) form an orbit O1.

Any rank 2 point is contained in a line spanned by two points of
X , say 〈y , z〉

Lemma
There exist precisely two orbits of rank two tensors.

Denote these by O2 and O3.



Rank three...

Next we consider planes π = 〈y , z ,w〉, y , z ,w ∈ X .

I We can assume π contains no lines of X ;

I We can assume π is not contained in any leaf;

(as then everything on π would have rank at most two).

I We will consider the shamrock of the point u = y1 ⊗ z2 ⊗ w3.
Then y ∈ L1(u) etc.

We need to consider four possibilities...



Possibilities for rank three...

We need to consider four possibilities...

(3, 3, 3) (2, 3, 3) (2, 2, 3) (2, 2, 2)



The geometric characterisation from before implies that every
singular point is contained in the span of a point and a quadric
〈x ,Qi (y)〉, and hence:

Corollary

A tensor of rank three is singular if and only if it lies on a plane of
type (a1, a2, a3), with some ai = 2.



Possibilities for rank three...

Hence we need to consider four three possibilities...

(3, 3, 3) (2, 3, 3) (2, 2, 3) (2, 2, 2)



(2, 2, 3) planes...

Every point on a (2, 2, 3)-plane has rank at most 2:



(2, 3, 3) planes...

Every point on a (2, 3, 3)-plane has rank at most 2 OR lies on a
plane of type (2, 2, 2).

The rank three points on (2, 2, 2)-planes form a single orbit O4.



Hence...

Theorem (ML - J.Sheekey 2012)

For n = 2, there exist precisely four G3-orbits of singular tensors
over any field.

Corollary

For n = 2, the number of orbits of tensors is

I five if F is finite;

I five if F = R;

I four if F is algebraically closed;

I infinite if F = Q.



Thank you for your attention!



Tensor rank depends on the field
and not just on the characteristic!

Example

τ = e0 ⊗ e0 ⊗ e0 + e0 ⊗ e1 ⊗ e1 − e1 ⊗ e0 ⊗ e1 + e1 ⊗ e1 ⊗ e0

I τ has rank 3 over R:

τ = (e0−e1)⊗e0⊗e0 + (e0+e1)⊗e1⊗e1 + e1⊗(e0+e1)⊗(e0−e1)

I τ has rank 2 over C:

τ =

(
1

2
e0 +

1

2i
e1

)
⊗ (e0 + ie1)⊗ (e0 + ie1)

+

(
1

2
e0 −

1

2i
e1

)
⊗ (e0 − ie1)⊗ (e0 − ie1)

I τ has rank 2 over Fq iff q ≡ 1 mod 4


