When is an arc contained in a conic?

Michel Lavrauw

Sabancı University

joint work with Simeon Ball

Arcs in $\operatorname{PG}(k-1, q)$

An arc in $\operatorname{PG}(k-1, q)$ is a set of points no k in a hyperplane.

An arc in $\mathrm{PG}(2, q)$ is called a planar arc.

Examples of arcs

- planar arcs $(k=3)$
- a basis of \mathbb{F}_{q}^{k}
- a frame (basis + all 1 vector)
- a conic

$$
\left\{\left(1, t, t^{2}\right): t \in \mathbb{F}_{q} \cup\{\infty\}\right\}
$$

- a hyperoval (q even)

$$
\left\{\left(1, t, t^{2}\right): t \in \mathbb{F}_{q} \cup\{\infty\}\right\} \cup\{(0,1,0)\}
$$

- $k>3$
- a normal rational curve (NRC)

$$
\left\{\left(1, t, t^{2}, \ldots, t^{k-1}\right): t \in \mathbb{F}_{q} \cup\{\infty\}\right\}
$$

- Glynn arc $(q=9, k=5)$

$$
\left\{\left(1, t, t^{2}+\eta t^{6}, t^{3}, t^{4}\right): t \in \mathbb{F}_{q}\right\} \cup\{(0,0,0,0,1)\}
$$

where $\eta^{4}=-1$.

Classification of large complete planar arcs

- Hyperovals (size $q+2$) are not classified
- An oval (size $q+1$) in $\operatorname{PG}(2, q)$, q odd, is a conic [Segre 1955]
- An arc of size q is incomplete [Segre 1955] [Tallini 1957]
- In combination with computational results from [Coolsaet and Sticker 2009, 2011] and [Coolsaet 2015], the results from [BL2018] complete the classification of complete planar arcs of size $q-1$ and $q-2$.
[BL2018] S. Ball and M. L. Planar arcs. J. Combin. Theory A. (2018)

Classification of large complete planar arcs

"ll primo nuovo quesito":
Are there more arcs of size $q-3$ which are not contained in a conic?

In combination with previous computational results, [BL2018] implies that the only possibility is an arc \mathcal{A} in $\operatorname{PG}(2,37)$ such that \mathcal{A} is contained in the intersection of two sextic curves not sharing a common component.

The main conjecture (MDS conjecture)

How large can an arc \mathcal{A} in $\operatorname{PG}(k-1, q)$ be?

MDS conjecture (B. Segre 1950's):
\mathcal{A} cannot be larger than NRC
(except if $q \leq k$, or q even and $k \in\{3, q-2\}$)

Many results, but the MDS conjecture is still open!

A lot of results rely on planar arcs (by projection).

Projection

Most results on the MDS conjecture are based on induction arguments from [Segre1955] and [Kaneta and Maruta 1989].

This further motivates the study of planar arcs, in particular the size of the second largest complete planar arc.
$N(q)=$ size of the second largest complete arc in $\operatorname{PG}(2, q)$.
(So if $|\mathcal{A}|>N(q)$ and q is odd, then \mathcal{A} is contained in a conic.)

Results from [BL2018]

Theorem (A)
If q is odd and a square then $N(q)<q-\sqrt{q}+\sqrt{q} / p+3$, and if q is prime then $N(q)<q-\sqrt{q}+7 / 2$.

Corollary
If $k \leqslant \sqrt{q}-\sqrt{q} / p+1$ and $q=p^{2 h}$, p odd, then an arc of $\operatorname{PG}(k-1, q)$ of size $q+1$ is a $N R C$.

Corollary (MDS conjecture for $k \leq \sqrt{q}-\sqrt{q} / p+2$)
If $k \leqslant \sqrt{q}-\sqrt{q} / p+2$ and $q=p^{2 h}, p$ odd, then an arc of $\operatorname{PG}(k-1, q)$ has size at most $q+1$.

About the proof - Bounds on $N(q)$

$N(q)=$ size of the second largest complete arc in $\operatorname{PG}(2, q)$.

1. Segre's algebraic envelope
2. Sketch of the proof of Theorem (A)

The algebraic envelope associated to a planar arc

Segre proved that the set of tangents to an arc \mathcal{A} in $\operatorname{PG}(2, q)$ form an algebraic envelope $\mathcal{E}_{\mathcal{A}}$ of degree t for q even, and of degree $2 t$ for q odd, where

$$
t=\text { the number of tangents through a point of } \mathcal{A} \text {. }
$$

Combining $\mathcal{E}_{\mathcal{A}}$ with the Hasse-Weil theorem and the Stöhr-Voloch theorem lead to the results mentioned in the previous talk by James Hirschfeld (bounds on $m^{\prime}(2, q)$).

Sketch of the proof of Theorem (A)

Theorem (A) is a corollary of our main result:
Theorem (B)
Let \mathcal{A} be a planar arc of size $q+2-t, q$ odd, not $\mathcal{A} \nsubseteq$ conic.
(i) If \mathcal{A} is not contained in a curve of degree t then \mathcal{A} is contained in the intersection of two curves of degree at most $t+p^{\left\lfloor\log _{\rho} t\right\rfloor}$ which do not share a common component.
(ii) If \mathcal{A} is contained in a curve ϕ of degree t and

$$
p^{\left\lfloor\log _{\rho} t\right\rfloor}\left(t+\frac{1}{2} p^{\left\lfloor\log _{\rho} t\right\rfloor}+\frac{3}{2}\right) \leqslant \frac{1}{2}(t+2)(t+1)
$$

then there is another curve of degree at most $t+p^{\left\lfloor\log _{\rho} t\right\rfloor}$ which contains \mathcal{A} and shares no common component with ϕ.

If \mathcal{A} is contained in a curve of degree t (part (ii)), then the proof is not as streamlined, and we refer to the paper for further details. ${ }^{1}$

We continue with part (i):
If \mathcal{A} is not contained in a curve of degree t then it is contained in the intersection of two curves of degree at most $t+p^{\left\lfloor\log _{p} t\right\rfloor}$ which do not share a common component.

The crucial part is the existence of a certain (t, t)-form which relies on a scaled coordinate-free version of Segre's lemma of tangents.

[^0]A polynomial in $\mathbb{F}_{q}[X, Y]$ is called a (t, t)-form if it is simultaneously homogeneous of degree t in both sets of variables $X=\left(X_{1}, X_{2}, X_{3}\right)$ and $Y=\left(Y_{1}, Y_{2}, Y_{3}\right)$.

Lemma (1)

There exists a (t, t)-form $F(X, Y) \in \mathbb{F}_{q}[X, Y]$ such that for each $y \in \mathcal{A}$, the curve defined by $F(X, y)$ is the union of the t tangent lines of \mathcal{A} at y.

For each $w=(i, j, k) \in\{0, \ldots, t-1\}^{3}$ where $i+j+k \leqslant t-1$, define $\rho_{w}(Y)$ to be the coefficient of $X_{1}^{j} X_{2}^{j} X_{3}^{k}$ in

$$
F(X+Y, Y)-F(X, Y)
$$

Observe that the degree of $\rho_{w}(Y)$ is $2 t-i-j-k$.
Since

$$
F(X, y)=F(X+y, y)
$$

for all $y \in \mathcal{A}$, we have that $\rho_{w}(y)=0$ for all $y \in \mathcal{A}$.

The curves defined by the $\rho_{w}(Y)$'s are then used to prove that one of the following conditions holds:

Lemma (2)
(i) there are two co-prime forms of degree at most $t+p^{\left\lfloor\log _{p} t\right\rfloor}$ which vanish on $\mathcal{A}(=$ Theorem (B) (i));
or
(ii) there exists a form of degree at most $t+p^{\left\lfloor\log _{p} t\right\rfloor}$ which is hyperbolic on \mathcal{A}.

Proof (sketch) Consider the gcd ϕ of the space spanned by the $\rho_{w}(Y)^{\prime} s$ of degree between $t+1$ and $t+p^{\left\lfloor\log _{p} t\right\rfloor}$.

- ϕ cannot be zero.
- If $\operatorname{deg} \phi=0$ then we get case (i).
- If $\operatorname{deg} \phi>0$, then ϕ must be hyperbolic on \mathcal{A}.

A form ϕ on $\operatorname{PG}(2, q)$ is hyperbolic on \mathcal{A}, if it has the property that ϕ modulo any bisecant factorises into at most two linear factors whose multiplicities sum to the degree of ϕ and which are zero at the points of \mathcal{A} on the bisecant.

$$
\phi(X)=\alpha(X)^{a} \beta(X)^{b} \text { modulo bisecant }
$$

with $\alpha(x)=0, \beta(y)=0$, and $a+b=\operatorname{deg} \phi$.

In order to finish the proof we need to exclude case (ii) of Lemma (2), i.e. we need to show that the existence of a hyperbolic form on \mathcal{A} implies that \mathcal{A} is contained in a conic.

Lemma (3)

If there is a form ϕ which is hyperbolic on an arc \mathcal{A}, where $|\mathcal{A}| \geqslant 2 \operatorname{deg} \phi+2$, then all but at most one point of \mathcal{A} are contained in a conic and if q is odd then \mathcal{A} is contained in a conic.

Combining the Lemma's (1) (2) and (3) with Theorem (B) completes the proof of Theorem (A).

Final comments

- Theorem (B) gives the best results for q a square.
- In the case that q is a non-square and non-prime, our results do not improve upon the bound of Voloch.
- We do not rely on Hasse-Weil or Stöhr-Voloch.
- In the case that q is prime, it does improve on Voloch's bound for primes less than 1783.
- $F(X, Y)$ for higher dimensions $F\left(Y_{1}, \ldots, Y_{k-1}\right)$

Thank you for your attention!

[^0]: ${ }^{1}$ This part is fundamentally different from the 2017 version

