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Abstract. Let Fq be a finite field of order q. This paper uses the classi-
fication in [7] of orbits of tensors in F2

q ⊗F3
q ⊗F3

q to define two algorithms
that take an arbitrary tensor in F2

q ⊗ F3
q ⊗ F3

q and return its orbit, a
representative of its orbit, and its rank.
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1 Introduction and preliminaries

The study of tensors of order at least three has been an active area in recent years,
with numerous applications in representation theory, algebraic statistics and
complexity theory [6,5]. For example, the problem of determining the complexity
of matrix multiplication can be rephrased as the problem of determining the
rank of a particular tensor (the matrix multiplication operator). This problem
has only been solved for 2 × 2-matrices (see Strassen and Winograd), and we
refer to [6, Chapter 2, Section 4] for more on this topic.

Determining the decomposition of a tensor A is a notoriously hard problem
that arises in many other applications such as psychometrics, chemometrics, nu-
merical linear algebra and numerical analysis [5]. In many tensor decomposition
problems, the first issue to resolve is to determine the rank of the tensor, which
is not always an easy task.

Let Sym(2) denote the symmetric group of order 2 and V := F2
q ⊗ F3

q ⊗ F3
q,

where Fq is the finite field of order q. Consider then the two natural actions on
V of the group G and its subgroup H, where G ∼= GL(F2

q)× (GL(F3
q) o Sym(2)),

as a subgroup of GL(V ) stabilising the set of fundamental tensors in V , and
H ∼= GL(F2

q) × GL(F3
q) × GL(F3

q). In this paper, we study tensors in V under
the action of G to present the algorithms “RankOfTensor" and “OrbitOfTensor”,
which take an arbitrary tensor in V and return its orbit, a representative of its
orbit, and its rank.

We follow the notation and terminology from [8]. Let A be a tensor in V .
The rank of A, Rank(A), is defined to be the smallest integer r such that

A =
r∑
i=1

Ai (1)

with each Ai, a rank one tensor in V . Recall that the set of rank one tensors (fun-
damental tensors) in V is the set {v1⊗v2⊗v3 : v1 ∈ F2

q \{0} , v2, v3 ∈ F3
q \{0}}.
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It is clear from this definition that the rank of a tensor is a projective property
in the vector space V . In other words, the rank of A does not change when A
is multiplied by a nonzero scalar. For this reason, to dispose of the unneeded
information, it makes sense to consider the problem of rank and decomposition
in the projective space PG(V ).

The Segre variety. Projectively, the set of nonzero tensors of rank one corre-
sponds to the set of points on the Segre variety S1,2,2(Fq), which is the image of
the Segre embedding σ1,2,2 defined as:

σ1,2,2 : PG(F2
q)× PG(F3

q)× PG(F3
q) −→ PG(V )

( 〈v1〉, 〈v2〉, 〈v3〉 ) 7→ 〈v1 ⊗ v2 ⊗ v3〉.

For any projective point in PG(V ), we define its rank to be the rank of any
corresponding tensor.

Contraction spaces. For A ∈ V , we define the first contraction space of A to
be the following subspace of F3

q ⊗ F3
q:

A1 := 〈u∨1 (A) : u∨1 ∈ F2
q
∨〉

where F2
q
∨ denotes the dual space of F2

q, and where the contraction u∨1 (A) is
defined by its action on the fundamental tensors as follows:

u∨1 (v1 ⊗ v2 ⊗ v3) = u∨1 (v1)v2 ⊗ v3. (2)

Similarly, the second and third contraction spaces, A2 and A3, can be defined.
Note that we are considering in this study the projective subspaces PG(A1),
PG(A2) and PG(A3) of PG(F3

q ⊗ F3
q), PG(F2

q ⊗ F3
q) and PG(F2

q ⊗ F3
q), respec-

tively, where we have PG(F3
q ⊗ F3

q) ∼= PG(8, q) and PG(F2
q ⊗ F3

q) ∼= PG(5, q).
Also, remark that the rank of any contraction coincides with the usual matrix
rank.

Rank distributions. For 1 ≤ i ≤ 3, define the i-th rank distribution of A, Ri,
to be the 3-tuple whose j-th entry is the number of rank j points in the i-th
contraction space PG(Ai). Consider now the canonical basis of F `q , {e1, . . . , e`},
for ` = 2, 3. We define the canonical basis of V as {ei ⊗ ej ⊗ ek : 1 ≤ i ≤
2 and 1 ≤ j, k ≤ 3}. By writing A ∈ V as A =

∑
Ai,j,kei⊗ ej ⊗ ek, one can view

A as a 2 × 3 × 3 rectangular solid whose entries are the Ai,j,k’s. This solid can
be decomposed into slices that completely determine A. For example, we may
view A as a collection of 2 size 3× 3 matrices: (A1,j,k), (A2,j,k), which are called
the horizontal slices of A, or a collection of 3 matrices (Ai,1,k), (Ai,2,k), (Ai,3,k)
called the lateral slices of A, or a collection of 3 matrices (Ai,j,1), (Ai,j,2), (Ai,j,3)
called the frontal slices of A.

Proposition 1. (Corollary 2.2 in [8]) Let G1 = GL(F3
q) o Sym(2) and H1 :=

GL(F3
q)×GL(F3

q). Then, two tensors A and C in V are G-equivalent if and only
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if A1 is G1-equivalent to C1, if and only if A is H-equivalent to one of {C,CT },
where T is the map on V defined by sending c1 ⊗ c2 ⊗ c3 to c1 ⊗ c3 ⊗ c2 and
expanding linearly.

Theorem 1. (Theorem 3.10 in [8]) There are 21 H-orbits and 18 G-orbits of
tensors in V .

Note that since we are working projectively, the trivial orbit containing the zero
tensor will be ignored.

For the convenience of the reader, we have collected some information from [8]
about each G-orbit in V and their contraction spaces including representatives
of orbits, the tensor rank of each orbit and rank distributions on the webpage
[2], to which we will refer as Table 1.

2 The algorithms

In this section, we present a GAP function that takes an arbitrary tensor in
V and returns its orbit number (see Table 1) and a representative of its orbit.
The construction of this function is mainly based on the rank distributions of
the projective contraction spaces associated with tensors in V , and the fact that
tensors of the same orbit have the same rank distributions (see Proposition 1).
We follow for this purpose the classification of G-orbits of tensors in V [7] as
summarized in [2].

We start with a series of auxiliary functions that will be needed to construct
our main function. The calling of most of these functions in GAP requires the
usage of the GAP-package FinInG [4,3].

2.1 Auxiliary functions

1. MatrixOfPoint: turns a point of a projective space into an (m× n)−matrix
containing the coordinates.

2. RankOfPoint: returns the rank of MatrixOfPoint(x,m,n).
3. RankDistribution: returns the rank distribution of a subspace by considering

its points as m× n matrices using the RankOfPoint function.
4. CubicalArrayFromPointInTensorProductSpace: returns the horizontal slices

of a tensor in PG(V ) where in our case we have n1 = 2, n2 = 3 and n3 = 3.
Notice that this function depends on how we choose the coordinates.

5. ContractionOfPointInTensorProductSpace: returns the projective contrac-
tion vec∨(point); recall that in our case a point represents a tensor in PG(V ).

6. SubspaceOfContractions: returns the projective contraction spaces associated
with a projective point in PG(V ).

7. Rank1PtsOftheContractionSubspace: returns the set of rank 1 points of PG(Ai)
using the RankOfPoint function.

8. RepO10odd: returns a represantative of o10 if q is odd.
9. AlternativeRepresentationOfFiniteFieldElements: gives an alternative way of

representing finite fields’ elements.

http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
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10. RepO10even: returns a represantative of o10 if q is even.
11. RepO15odd: returns a represantative of o15 if q is odd.
12. RepO15even: returns a represantative of o15 if q is even.

2.2 OrbitOfTensor

The OrbitOfTensor function takes an arbitrary tensor A in PG(V ) and by using
the above auxiliary functions, it calculates the rank distribution of the first
contraction space of A, R1, and compares it with the results in Table 1 to specify
the orbit number containing A. In some cases, R1 is not enough to distinguish
between orbits. For example, orbits o10, o11 and o12 (resp. o6 and o7) have the
same R1. In this case, we calculate R2 and R3 to differentiate among them. But
since the orbits o4, o7 and o11 are the only G-orbits of tensors which split under
the action of H to oi and oTi [8], we can see that a direct comparison between
R2 and R3 from Table 1 will not be enough to distinguish between o10, o11
and o12 (resp. o6 and o7). For this reason, we consider (algorithmically) some
extra possible cases of R2 and R3 to insure that if A ∈ oj then AT ∈ oj , where
j ∈ {7, 11} [2]. Notice that, we do not have to do a similar work for o4 since it
is completely determined by R1.

Although rank distributions are sufficient to specify the tensor’s orbit in most
cases, they are not helpful in distinguishing o15 and o16 as they have the same
rank distributions. For this purpose, we use Lemma 1 to distinguish between
them.

Lemma 1. Consider the two G-orbits of tensors in V , o15 and o16. In both
cases PG(A1) is a line with rank distribution [0, 1, q]. Let x2 be the unique rank
2 point on PG(A1) and x1 be a point among the q points of rank 3 on PG(A1).
Then, there exists a unique solid V containing x2 which intersects S3,3(Fq) in
a subvariety Q(x2) equivalent to a Segre variety S2,2(Fq). Furthermore, there is
no rank one point in U \Q(x2) for o16 where U := 〈V, x1〉, and there is one for
o15.

Proof. The first result is a direct application of [8, Lemma 2.4]. The second one
uses the two possible cases of having 2 points yi, i = 1, 2 of rank i such that x1
is on the line 〈y1, y2〉 and Q(x2) = Q(y2) or no such points exist, which were
used in [8, Theorem 3.1 case(4)] to define o15 and o16, respectively. ut

For the same reason, we consider the case q = 2 separately. In this case, as R1 is
the same for the orbits o10, o12 and o14, we distinguish between o10 and o14 using
R2. However, as o12 and o14 have the same rank distributions, we differentiate
between them using the geometric description of the second contraction space.
In particular, the difference between o12 and o14 is that for o14 the 3 points of
rank one in the second contraction space (which is a plane) span the space, while
for o12 they do not (see Table 1).

In most of the cases, except for o10, o15 and o17, the orbit representative is
directly deduced from Table 1 and it is defined by its two horizontal slices. For

http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
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example, a representative of o11 is e1⊗(e1⊗e1 +e2⊗e2)+e2⊗(e1⊗e2 +e2⊗e3)
(see Table 1), and this can be represented by its horizontal slices as

1 0 0
0 1 0
0 0 0

 ,
0 1 0

0 0 1
0 0 0

 .

Representative for o17. We know that the orbit o17 has representatives of
the form e1 ⊗ (e) + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3 + e3 ⊗ (αe1 + βe2 + γe3)) where
λ3 + γλ2 − βλ+ α 6= 0 for all λ ∈ Fq and where e = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3
(see Table 1). Instead of computing these parameters for every q (which would
become computationally infeasible for very large q), we will give an explicit con-
struction which does not require any computation at all. First, observe that o17
is the only orbit of lines in PG(F3

q ⊗ F3
q) ∼= PG(8, q) consisting entirely of points

of rank 3 (see [7]). Thus, to obtain a representative for the orbit o17 it suffices
to construct such a line of constant rank 3. In order to do so, consider the cubic
extension Fq3 of Fq as an Fq-vector space W and the set U = {Mα : α ∈ Fq3}
where Mα is the matrix representative of the linear operator on W defined by:
x → αx. Clearly, U is a 3-dimensional Fq-vector space consisting of the zero
matrix and q3 − 1 matrices of rank 3. Any 2-dimensional Fq-subspace of U will
give us a representative of o17. Furthermore, a basis of this subspace gives us
the two horizontal slices of the representative. In particular, we consider the
2-dimensional Fq-subspace generated by the identity matrix and the companion
matrix of the minimal polynomial of a primitive element w of the cubic extension.

Representatives for o10 and o15. By Table 1, we can see that e1 ⊗ (e1 ⊗
e1 + e2 ⊗ e2 + ue1 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + ve2 ⊗ e1) and e1 ⊗ (e1 ⊗ e1 + e2 ⊗
e2 + e3 ⊗ e3 + ue1 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + ve2 ⊗ e1) are representatives of o10
and o15 respectively, where vλ2 + uvλ − 1 6= 0 for all λ ∈ Fq and u, v ∈ F∗q .
Similar to the previous case, we give an explicit construction of o10, which does
not require any computations. It follows from [9] that o10 has a representative
line of constant 2-rank 2 × 2-matrices, which is an external line to a conic in
V3(Fq), where V3(Fq) is the image of the map ν3 : PG(2, q)→ PG(5, q) induced
by the mapping sending v ∈ F3

q to v ⊗ v. Thus, by constructing such a line and
taking any 2 points on it, we obtain the required representative. First, recall that
interior points of the conic (C) : X0X2 −X2

1 = 0 in PG(2, q) are (x, y, z) where
xz − y2 are non-squares. Hence, if q is odd, one can start with a primitive root
in Fq (which is a non-square in Fq). Then, by considering its image under the
polarity α associated to (C), we obtain an external line to (C) in PG(2, q). This
line can be seen in PG(8, q) by embedding PG(2, q) as the set of points with
last column and last row equal to zero. If q is even, a similar argument works.
In this case, we can start with the minimal polynomial of a generator of the
multiplicative group of Fq2 to obtain an irreducible quadratic polynomial over
Fq. The coefficients can then be used as the dual coordinates of a line in PG(2, q)
disjoint from the conic consisting of the points (a2, ab, b2) with (a, b) ∈ PG(1, q).
Once we have that line, we can map it to a line in PG(8, q) by embedding

http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
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PG(2, q) as the set of points with last column and last row equal to zero. Now,
by using a representative of o10, we can find the above u and v, which gives us
directly a representative of o15.

2.3 RankOfTensor

The RankOfTensor function takes an arbitrary tensor A in PG(V ) and uses
the OrbitOfTensor function to specify the G-orbit of the tensor and returns the
tensor’s rank. The code of all of these functions can be found in [1].

3 Computations and Summary

Example 1. gap> q:=397; sv:=SegreVariety([PG(1,q),PG(2,q),PG(2,q)]);
397
Segre Variety in ProjectiveSpace(17, 397)
gap> m:=Size(Points(sv));
9936552395502
gap> pg:=AmbientSpace(sv);
ProjectiveSpace(17, 397)
gap> n:=Size(Points(pg));
151542321438098147995655901146938756967526078
gap> A:=VectorSpaceToElement(pg,[Z(397)^0,Z(397)^336,Z(397)^339,
Z(397)^37,Z(397)^233,Z(397)^56,Z(397)^268,Z(397)^363,Z(397)^342,
Z(397)^297,Z(397)^146,Z(397)^71,Z(397)^57,Z(397)^84,Z(397)^33,
Z(397)^203,Z(397)^229,Z(397)^191]);
gap> OrbitOfTensor(A)[1]; time;
14
94
gap> RankOfTensor(A);
3
gap> time;
141
gap> NrCombinations([1..m], 3);
163514371865202881474954561407873423500

Summary. The RankOfTensor is an efficient tool to compute tensor ranks of
points in PG(V ). Without this algorithm, it is computationally infeasible to do
this. For example, consider q, sv, pg and A from Example 1. The space pg has
n points. Among these we have m points of rank 1, which gives a 38-order of
magnitude number of possible 3-combinations of points of rank 1, which might
generate a plane containing A. This reflects how hard it would be to compute
the rank without this algorithm.
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