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Abstract

Linear sets generalise the concept of subgeometries in a projective
space. They have many applications in finite geometry. In this paper
we address two problems for linear sets: the equivalence problem and the
intersection problem. We consider linear sets as quotient geometries and
determine the exact conditions for two linear sets to be equivalent. This is
then used to determine in which cases all linear sets of rank 3 of the same
size on a projective line are (projectively) equivalent. In [3], the intersec-
tion problem for subgeometries of PG(n, q) is solved. The intersection of
linear sets is much more difficult. We determine the intersection of a sub-
line PG(1, q) with a linear set in PG(1, qh) and investigate the existence
of irregular sublines, contained in a linear set. We also derive an upper
bound, which is sharp for odd q, on the size of the intersection of two
different linear sets of rank 3 in PG(1, qh).

1 Introduction and preliminaries

Linear sets have been intensively used in recent years in order to classify, con-
struct or characterise various structures related to finite incidence geometry.
Besides their relation to blocking sets (see below), linear sets also appear in
the study of translation ovoids (see e.g. [10]), and are of high relevance in the
theory of semifields (e.g. [7]).

In contrast to the number of papers that make use of linear sets, few papers
have been published in which linear sets are the main object. To our knowledge
the only general treatment of linear sets is by Polverino [11]. Apart from the lack
of knowledge about linear sets, in particular about the possible intersections of
linear sets, the main motivation for this research arose from the study of blocking
sets in finite projective spaces.

If V is a vectorspace, then we denote by PG(V ) the corresponding projective
space. If V has dimension n over the finite field Fq with q elements, then we
also write PG(n− 1, q).

A small minimal k-blocking set is a set B of points in the projective space
PG(n, q), meeting every n − k-space, where |B| ≤ 3(qk + 1)/2 and such that
no proper subset of B is a k-blocking set. The term “linear” was used by
Lunardon to describe a particular construction of a small minimal blocking set
[9], which led to the first construction of small blocking sets that are not of Rédei
type. This construction opened up a new perspective on blocking sets and soon
people conjectured that all small minimal k-blocking sets in PG(n, q) must be
linear. However, it took until 2008 until this so-called “Linearity conjecture” was
formally stated in the literature, see Sziklai [12]. To our knowledge the Linearity
conjecture is still open, apart from various instances. Recently a proof of the
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Linearity conjecture in PG(n, p3), p prime, was given in [8], where the authors
use that an Fq-linear set S of rank 3 and a subline of PG(1, q3), not contained
in S, have at most 3 points in common. This served as an extra motivation
and it is our hope that the results obtained here will bring us closer to solving
the Linearity conjecture for blocking sets. One of the theorems in this paper, of
relevance here, determines the intersection of an Fq-linear set of rank k with a
subline in PG(1, qh).

We also study the possible intersections of two linear sets (Section 5). In the
case where the linear sets are subgeometries this problem was recently solved
in [3] by Durante and Donati (completing a study originated by Bose et al.
in 1980) showing that the intersection of two subgeometries is necessarily the
union of subgeometries in independent subspaces. The intersection of linear sets
is considerably more difficult, and it is not necessarily the union of linear sets
in independent subspaces.

Let V be an r-dimensional vectorspace over a finite field F. A set S of points
of PG(V ) is called a linear set (of rank t) if there exists a subset U of V that
forms a (t-dimensional) Fq-vectorspace for some Fq ⊂ F, such that S = B(U),
where

B(U) := {〈u〉F : u ∈ U \ {0}}.

If we want to specify the subfield we call S an Fq-linear set. In other words, if
F = Fqn , we have the following diagram

Frqn ←→ Frnq ⊇ U

l l l

B(U) ⊆ PG(r − 1, qn) ←→ PG(rn− 1, q) ⊇ PG(U)

It should be clear that any subset T of Frnq or PG(rn − 1, q) induces a subset
in PG(r − 1, qn) in this way. In what follows we will use the same notation
B(π) for the set of points of PG(r− 1, qn) induced by π, regardless of π being a
subspace or a subset of Frnq or PG(rn− 1, q). Since the points of PG(r − 1, qn)
correspond to 1-dimensional subspaces of Frqn , and by field reduction to n-
dimensional subspaces of Frnq , they correspond to a set D of (n−1)-dimensional
subspaces of PG(rn− 1, q), which partitions the pointset of PG(rn− 1, q). The
set D is called a Desarguesian spread, and we have a one-to-one correspondence
between the points of PG(r − 1, qn) and the elements of D. This gives us a
more geometric perspective on the notion of a linear set; namely, an Fq-linear
set is a set S of points of PG(r − 1, qn) for which there exists a subspace π
in PG(rn − 1, q) such that the points of S correspond to the elements of D
that have a non-trivial intersection with π. Also in what follows, we will often
identify the elements of D with the points of PG(r − 1, qn), which allows us to
view B(π) as a subset of D. This is illustrated by the following diagram, where
P denotes the set of points of PG(r − 1, qn).

PG(r − 1, qn) ←→ PG(rn− 1, q) ⊇ π

↓ ↓ ⇓

B(π) ⊆ P ←→ D ⊇ B(π)
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If P is a point of B(π) in PG(r− 1, qn), where π is a subspace of PG(rn− 1, q),
then we define the weight of P as wt(P ) := dim(P ∩π)+1, where P is identified
with an element of D. This makes a point have weight 1 if its corresponding
spread element intersects π in a point. Note that if π = PG(U), then wt(P ) =
dim〈{v ∈ U | PG(v) = P}〉. If α is a collineation of PG(r − 1, qn), then α is
induced by a non-singular semi-linear map ϕ of V (r, qn). Let 〈v1, . . . , vwt(P )〉 be
a basis for 〈{v ∈ U | PG(v) = P}〉. The vectors vϕi are linearly independent and
clearly belong to 〈{v ∈ Uϕ | PG(v) = Pα}〉, hence, wt(P ) ≤ wt(Pα). Repeating
this argument for the collineation α−1 shows that wt(P ) = wt(Pα), hence, a
collineation preserves the weight of a point.

2 Equivalent linear sets

Two subsets S and T of PG(n, q) are called projectively equivalent if there is an
element φ ∈ PGL(n + 1, q) such that φ(S) = T , and equivalent if there is an
element φ ∈ PΓL(n+ 1, q) such that φ(S) = T .

The proofs in this section make use of yet another perspective on linear sets,
namely as the quotient geometry of a canonical subgeometry. If G is a frame in
PG(m, qn), then the set of points (and subspaces) obtained by restricting the
coordinates with respect to G to Fq is called a canonical subgeometry PG(m, q)
of PG(m, qn). It should be clear that a canonical subgeometry is a linear set,
but not conversely. However, the following theorem by Lunardon and Polverino
shows that every linear set is a projection of a canonical subgeometry. Let
Σ = PG(m, q) be a canonical subgeometry of Σ∗ = PG(m, qn) and suppose
there exists an (m − r)-dimensional subspace Ω∗ of Σ∗ disjoint from Σ. Let
Ω = PG(r − 1, qn) be an (r − 1)-dimensional subspace of Σ∗ disjoint from Ω∗,
and let Γ be the projection of Σ from Ω∗ to Ω. Let pΩ∗,Ω denote the map defined
by x 7→ 〈Ω∗, x〉 ∩ Ω for each point x ∈ Σ∗ \ Ω∗.

Theorem 1. [10] If Γ is a projection of PG(m, q) into Ω = PG(r − 1, qn),
then Γ is an Fq-linear set of rank m + 1 and 〈Γ〉 = Ω. Conversely, if L is an
Fq-linear set of Ω of rank m + 1 and 〈L〉 = Ω = PG(r − 1, qn), then either L
is a canonical subgeometry of Ω or there are an (m − r)-dimensional subspace
Ω∗ of Σ∗ = PG(m, qn) disjoint from Ω and a canonical subgeometry Σ of Σ∗

disjoint from Ω∗ such that L = pΩ∗,Ω(Σ).

If we consider the quotientspace Σ∗/Ω∗ instead of the projection we obtain
the following.

Theorem 2. If Γ is the quotient of PG(m, q) in Σ∗/Ω∗ ∼= PG(r− 1, qn), then
Γ is an Fq-linear set of rank m + 1 and 〈Γ〉 = Σ∗/Ω∗. Conversely, if L is an
Fq-linear set of rank m+ 1 and 〈L〉 = PG(r− 1, qn), then there are an (m− r)-
dimensional subspace Ω∗ of Σ∗ = PG(m, qn) and a canonical subgeometry Σ of
Σ∗ disjoint from Ω∗ such that L is the quotient of Σ in Σ∗/Ω∗ ∼= PG(r−1, qn).

Using this perspective on linear sets we derive the following equivalences
which will be used in this section.

Theorem 3. Let π1, π2 ⊂ PG(rn− 1, q) and let B(π1), respectively B(π2), be a
linear set of rank m+1 in PG(r−1, qn), where B(π1), respectively B(π2), is the
quotient of PG(m, q) in Σ∗/Ω∗1 ∼= PG(r − 1, qn), respectively the quotient of
PG(m, q) in Σ∗/Ω∗2 ∼= PG(r− 1, qn). The following statements are equivalent.
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(i) There exists an element α ∈ PΓL(r, qn) such that B(π1)α = B(π2).

(ii) There exists an element β ∈ Aut(Σ∗) ∼= PΓL(m+1, qn) such that PG(m, q)β =
PG(m, q) and (Ω∗1)β = Ω∗2.

Proof. Put Σ := PG(m, q).
(ii)⇒(i) Define α : B(π1) 7→ B(π2), 〈Ω∗1, x〉/Ω∗1 7→ 〈Ω∗2, xβ〉/Ω∗2 with x ∈ Σ.

The map α is well defined: every element of B(π1) can be written as 〈Ω∗1, z〉/Ω∗1
for some z ∈ Σ. Suppose that 〈Ω∗1, z〉/Ω∗1 = 〈Ω∗1, z′〉/Ω∗1 for some z, z′ in Σ,
then, since dim〈z, z′,Ω∗1〉 = dim〈zβ , z′β , (Ω∗1)β〉, (〈Ω∗1, z〉/Ω∗1)α = (〈Ω∗1, z′〉/Ω∗1)α.
The map α is a collineation: if 〈Ω∗1, z〉/Ω∗1, 〈Ω∗1, z′〉/Ω∗1, 〈Ω∗1, z′′〉/Ω∗1 are collinear,
then dim〈z, z′, z′′,Ω∗1〉 = m−r+2 = dim〈zβ , z′β , z′′β ,Ω∗2〉, hence, (〈Ω∗1, z〉/Ω∗1)α,
(〈Ω∗1, z′〉/Ω∗1)α, (〈Ω∗1, z′′〉/Ω∗1)α are collinear. Moreover, B(π1)α = (〈Ω∗1,Σ〉/Ω∗1)α =
〈Ω∗2,Σ〉/Ω∗2 = B(π2).

(i)⇒ (ii) Let τi, i = 1, 2 be a subspace of Σ∗ \ Ω∗i and let Ωi, be an (r − 1)-
dimensional subspace, skew to Σ, and skew to Ω∗i . The projection of τi from
Ω∗i onto Ωi is denoted by pi(τi). Define for every point x of Σ the subspace
σi(x) := 〈Ω∗i , x〉 ∩ Σ. We define a map γ on the subspaces σ1(x) with x ∈ Σ as
σ1(x) 7→ σ2(y) if p1(σ1(x))α = p2(σ2(y)). The map γ maps subspaces σ1(x) of
dimension d to subspaces σ2(y) of dimension d since the weight of p1(σ1(x)) is
preserved by the collineation α. We define a map δ on Σ and show that δ is a
collineation.

Assume first that there is a point P in Σ with σ1(P ) = P . Define P δ := P γ .
Let x 6= P be a point in Σ. Define xδ := σ1(x)γ∩t, where t is the unique transver-
sal line through P δ to the set {σ1(s)γ |s ∈ Px}. Note that for all points x with
σ1(x) = x, xδ = xγ . Let z 6= P be a point of Σ. Define zδ

′
= zδ, and for all x 6=

z ∈ Σ define xδ
′

:= σ1(x)γ∩t, where t is the unique transversal line through zδ to
the set {σ1(s)γ |s ∈ zx}. We show that for all y ∈ Σ, yδ = yδ

′
. Suppose that yδ 6=

yδ
′

and that dim〈P δ, zδ, yδ, yδ′〉 = 3. The 3-dimensional space 〈P δ, zδ, yδ, yδ′〉 is
projected onto the plane 〈p2(σ1(y)γ), p2(P δ), p2(σ1(z)γ)〉. This is only possible
if every point p2(z) with z ∈ 〈P δ, zδ, yδ, yδ′〉 has weight 2, a contradiction since
p2(P ) has weight one. Suppose that yδ 6= yδ

′
and that dim〈P δ, zδ, yδ, yδ′〉 = 2.

The line yδ
′
zδ and the line P δyδ meet in a point, hence, there is a subspace σ1(t)

such that Py meets σ1(t) in t and zy meets σ1(t) in r. The space 〈P δ, zδ, rδ, tδ〉
has dimension 3 since otherwise σ2(yδ) and σ2(tδ) would meet. Moreover it is
projected from Ω∗2 onto a plane, again a contradiction since p2(P ) has weight
one. The map δ is a collineation: if x, y, z are points on a line L of Σ through
P , it is clear from the definition of δ that xδ, yδ and zδ are collinear. Let x, y, z
be collinear points on a line L of Σ not through P . In the previous part, we
have showed that we can define δ as xδ := σ1(x)γ ∩ t, where t is the unique
transversal line through wδ to the set {σ1(s)γ |s ∈ wx} for some point w of L.
By this definition, it is clear that xδ, yδ, zδ are collinear.

Next assume that there is no point P in Σ for which σ1(P ) = P and let P ′

be a point in σ1(P ). Choose a subspace Σ′ ⊂ Σ for which σ1(P ) ∩ Σ′ = P .
In Σ′, we can define a collineation δ̃ as before. Define P δ := P δ̃ and define
xδ for all x ∈ Σ \ σ1(P ) as σ1(x)γ ∩ t where t is the unique transversal line
through P δ to the set {σ1(s)γ |s ∈ Px}. Define (P ′)δ, P ′ ∈ σ1(P ) as σ1(P ′)γ ∩ t
where t is the unique transversal line through zδ to the set {σ1(s)γ |s ∈ zx}, for
some z /∈ σ1(P ). Let δ′ be the map defined by xδ

′
:= σ1(x)γ ∩ t, where t is

the unique transversal line through P ′δ to the set {σ1(s)γ |s ∈ P ′x} and suppose
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that yδ 6= yδ
′

for some y /∈ σ1(P ). The 3-dimensional space 〈P δ, (P ′)δ, yδ, yδ′〉 is
mapped onto the line 〈p2(σ1(P )γ), p2(σ1(y))γ〉, a contradiction since p2(σ1(P )γ)
and p2(σ1(y))γ have weight 2. The map δ is a collineation of Σ: let x, y, z be
collinear points on the line L. If L contains P , it is clear from the definition of
δ that xδ, yδ, zδ are collinear. If 〈L,P 〉 ∩ σ1(P ) = P , xδ = xδ̃, yδ = yδ̃, zδ = zδ̃

are collinear since δ̃ is a collineation. If 〈L,P 〉 ∩ σ1(P ) is a line M , there is a
point P ′ ∈ σ1(P ) on L. Since the map δ defined by P and the map δ′ defined
by P ′ coincide on points outside of σ1(P ), xδ, yδ, zδ are collinear. In the same
way as the map δ defined by taking the intersection with the transversal line
through P δ, the map δ defined by taking the intersections with the transversal
lines through zδ maps collinear points x, y, z, not in σ1(z), to collinear points.
Hence, if L ⊂ σ1(P ), xδ, yδ, zδ are collinear.

Since δ is a collineation of Σ, it corresponds to a semi-linear map x 7→ Bxθ,
with θ ∈ Aut(Fq). The map α corresponds to a semi-linear map x 7→ Axφ

with φ ∈ Aut(Fqn). Let x, y, z, w be collinear points of Σ. The cross ratio µ =
(x, y; z, w) ∈ Fq is preserved by projection, hence, µ = (p1(x), p1(y); p1(z), p1(w)).
Moreover, (xδ, yδ; zδ, wδ) = µθ and (p1(x)α, p1(y)α; p1(z)α, p1(w)α) = µσ. But
(p2(xδ), p2(yδ); p2(zδ), p2(wδ)) = (p1(x)α, p1(y)α; p1(z)α, p1(w)α). This shows
that θ|Fq

= σ|Fq
, hence, φ = θψ with ψ ∈ Aut(Fqn/Fq).

Now we define β on Σ∗ as x 7→ Bxφ. Then, since ψ fixes the points of Σ
pointwise, Σβ = Σδ = Σ, and since β is a collineation, it maps the (m−r)-space
Ω∗1 to an (m−r)-space. Since 〈Σ〉 = Σ∗, a point R of Ω1 can be written as a linear
combination

∑m
i=0 aixi, of points xi of Σ, with ai ∈ Fqn . The point R is mapped

by β to Rβ =
∑
aφi x

β
i =

∑
aφi yi with xβi = yi, hence, p1(xi)α = p2(yi). Since

R = p1(R), Rα =
∑
aφi p1(xi)α =

∑
aφi p2(yi). This implies that p2(Rβ) = Rα.

Define oi(π) := 〈π,Ω∗i 〉 ∩ Σ for a subspace π of Ωi. Now Ω∗1 = ∩〈Ω∗1, π〉,
where the intersection is taken over all subspaces π of Ω1 with dim o1(π) =
dim Ω∗1. Suppose that there is a point P /∈ Ω∗1, contained in this intersection,
then the line through a point Q in B(π1) ∈ Ω1 and p1(P ) would meet Ω∗1, a
contradiction. The space Ω∗β1 = ∩〈Ω∗1, π〉β = ∩〈o1(π), π〉β = ∩〈o1(π)β , πβ〉,
where the intersection is taken over all subspaces π of Ω1 with dim o1(π) =
dim Ω∗1 . Since 〈Ω∗2, πβ〉 = 〈Ω∗2, πα〉 and o1(π)β = 〈πα,Ω∗2〉 ∩ Σ = o2(πα), the
image Ω∗β1 is equal to ∩〈Ω∗2, πα〉, for all subspaces πα of Ω2 with dim o2(πα) =
dim Ω∗2. This shows that Ω∗β1 = Ω∗2.

We turn our attention to the Fq-linear sets of rank 3 in PG(1, qh). Let D be
the Desarguesian plane-spread in PG(2h − 1, q). Consider the linear set B(π),
with π /∈ D a plane of PG(2h−1, q). If there is a spread element H intersecting
π in a line, using the terminology introduced by Fancsali and Sziklai in [4], then
B(π) is called a club and H is called the head. If all elements of D intersecting
π, intersect π in a point, then B(π) is a scattered linear set of rank 3.

In general, if all elements of D intersect a k-space µ in at most a point, then
µ is called scattered with respect to D and B(µ) is a scattered linear set of rank
k + 1 (see [2] for more on scattered spaces).

Remark 1.6 of [4] states without proof that a club in PG(1, q3) is projectively
equivalent to the set of points {x ∈ Fq3 ||Tr(x) = x + xq + xq

2
= 0} ∪ {∞}. In

Corollary 5, we show that indeed in the case h = 3, all clubs of PG(1, qh) are
projectively equivalent, and that all scattered linear sets of rank 3 are projec-
tively equivalent too.
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If h > 3 however, the situation is different and linear sets of the same size
are not necessarily (projectively) equivalent (see Theorem 5).

Lemma 4. Let H ≤ PΓL(3, q3) denote the setwise stabiliser of a subplane
π ∼= PG(2, q) of PG(2, q3), and put H ′ := H ∩ PGL(3, q), let T denote the set
of points that do not lie on a secant line of π, and let S denote the set of points
of PG(2, q3) \ π that lie on a secant line of π.

(i) For each point X of π, the stabiliser H ′X of X in H ′ acts sharply transitive
on the set T , and for each point R of T , the stabiliser H ′R of R in H ′ acts
transitively on the points of π.

(ii) The group H ′ acts transitively on the set S. The stabiliser H ′Z of a point
Z ∈ S acts transitively on the points of π not lying on the secant line
through Z.

Proof. (i) The set T has size

t := q6 + q3 + 1− (q2 + q + 1)− (q2 + q + 1)(q3 − q) = q6 − q5 − q4 + q3.

Let X ∈ π. Since H ′ acts transitively on the points of π and has size (q2+q+1)t,
we have |H ′X | = t. We show that H ′X acts sharply transitive on the points of
T , by proving that |H ′XY | is trivial, for each Y ∈ T . An element of H ′XY
corresponds to a matrix A with entries in Fq with an eigenvalue in Fq, with
eigenvector X, and an eigenvalue in Fq3 \ Fq, corresponding to Y . But Y q and
Y q

2
, are also fixed by A. Since Y ∈ T , Y, Y q and Y q

2
are linearly independent.

Since a matrix A can have at most three eigenvalues which correspond to linearly
independent points, and there are already three linearly independent points with
eigenvalue in Fq3 \Fq, there cannot be an eigenvector with eigenvalue in Fq. This
implies that H ′XY is trivial.

For each pointR ∈ T , there exists an element α ∈ PGL(3, q) of order q2+q+1
(generating a Singer cycle) that fixes R. This implies that the size of H ′R is at
least q2+q+1. Since the stabiliser H ′RX of a point X ∈ π is trivial, and the orbit
of a point of π can have length at most q2 + q + 1, from |H ′R| = |H ′RX ||XH′R |,
we derive that |XH′R | = q2 + q + 1. So H ′R acts transitively on the points of π.

(ii) The number of points in S is equal to

s := (q2 + q + 1)(q3 − q).

Let Z be a point of S, and let L be the secant line to PG(2, q) through Z.
Since an element of H ′Z fixes three different points Z,Zq, Zq

2
on L, it must

fix L pointwise. It follows that an element of H ′ZX , with X ∈ π \ L, is a
homology with centre X and axis L, and each homology with center X and
axis L clearly belongs to H ′ZX . It follows that |H ′ZX | = q − 1. Since the
group of elations of π with axis L acts transitively on the points not on L,
|XH′Z | = q2. Now |H ′Z | = |H ′ZX ||XH′Z | = (q − 1)q2, |H ′| = |H ′Z ||ZH

′ | and
|H ′| = (q2 + q + 1)(q6 − q5 − q4 + q3), hence |ZH′ | = (q2 + q + 1)(q3 − q) = s.
This implies that H ′ acts transitively on the points of U .

Theorem 5. (i) All clubs in PG(1, q3) and all scattered linear spaces in
PG(1, q3) are projectively equivalent.
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(ii) All clubs and all scattered linear sets of rank 3 in PG(1, 25) are equivalent,
but there exist projectively inequivalent clubs and projectively inequivalent
scattered linear spaces of rank 3 in PG(1, 25).

(iii) There exist inequivalent clubs and inequivalent scattered linear sets of rank
3 in PG(1, qh) with h 6= 3 and (h, q) 6= (5, 2).

Proof. Let H be the setwise stabiliser in PΓL(3, qh) of a subplane π ∼= PG(2, q)
of PG(2, qh). Let T denote the set of points that do not lie on a secant line
of π, and let S denote the set of points of PG(2, q3) \ π that lie on a secant
line of π. By the equivalent perspective on linear sets using quotient geometries
and Theorem 3 it suffices to study the transitivity of the action of H on the
sets T and S. Since the group PGL(3, q) acts sharply transitive on the frames
of PG(2, q) and the only element of PGL(3, qh) fixing a frame is the identity
element, it follows that

|H| = h|PΓL(3, q)| = hkq3(q3 − 1)(q2 − 1),

where q = pk, p prime. Calculating the size of T and S we get

|T | = q2h − qh+2 − qh+1 + q3 and |S| = qh+2 + qh+1 + qh − q3 − q2 − q.

Using Theorem 3 it follows that there are inequivalent scattered linear sets of
rank 3 in PG(1, qh), h ≥ 6 and in PG(1, q5), for q > 2, and that there are
inequivalent clubs in PG(1, qh), h > 7, and in PG(1, q7) for q > 5. If H acts
transitively on S, then |S| has to divide |H|. If h = 5, this yields that p2k + 1
has to divide 5k(pk − 1). This is only possible in the cases k = 1, p = 2, 3. If
h = 7, this argument yields that p4k+p2k+1 has to divide 7k(p3k−pk), which is
not possible. If h is not a prime, then by the induced action of H on subplanes
containing π, it follows that H does not act transitively on S neither on T . If
h = 3, then H acts transitively on both T and S by Lemma 4. This leaves only
the cases PG(2, q5) with q = 2, 3. Let Z be a point of S on a secant L of π.
Since HZ fixes Z,Zq, Zq

2
, Zq

3
, Zq

4
on L, L is fixed pointwise. The elements of

HZ consist of an element φ of PGL(3, q) and an element α of Aut(Fqh) and since
Z is fixed pointwise, α is trivial and HZ = H ′Z , with H ′ = PGL(3, q). As in the
proof of Lemma 4, one shows that the size of H ′Z is equal to (q−1)q2. If qh = 25,
then |H| = 840 = |HZ |.|ZH | = 4.|ZH |. Since |S| = 210, H acts transitively on
the points of S. Together with Theorem 3 this shows that all clubs in PG(1, 25)
are equivalent. Since |HZ | = |H ′Z | = 4 and |H ′| = 168, |ZH′ | = 42 < 210,
hence, not all clubs in PG(1, 25) are projectively equivalent.

If q = 35, then |HZ | = 18 and |H| = 28080, from which it follows that
|ZH | = 1560 < |S| = 3120, which implies that there are inequivalent clubs in
PG(1, 35).

Let X be a point if T in PG(2, 25). An element of HX corresponds to a 3×3-
matrix A with entries in Fq, having 5 eigenvectors, 3 of which are independent,
each corresponding to an eigenvalue of A in F25 \ F2, a contradiction unless A
is the identity matrix. Hence, |HX | = 1 and |XH | = |H| = 840 = |T |. So
H acts transitively on the points of T , and by Theorem 3 all scattered linear
sets of rank 3 in PG(1, 25) are equivalent. Since H ′X < HX and HX is trivial,
|H ′| = 168 = |XH′ | < 840 hence, there are scattered linear sets of rank 3 in
PG(1, 25) that are projectively inequivalent.
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3 The intersection of a subline and an Fq-linear
set in PG(1, qh)

The intersection of a subline and a club of PG(1, qh) was already investigated
in [4]. However, in this proof, the authors use that all clubs of PG(1, qh) are
projectively equivalent, which is in general not true (see Corollary 5). Theorem
8 shows that their result is correct and Lemma 6 gives a description of the
geometric structure of the intersection points of the subline and the linear set.
Consider a subline ` ∼= PG(1, q) of PG(1, qh). Using the notation introduced
above, ` is an Fq-linear set of PG(1, qh) of rank two. In the spread representation
` = B(L), where L is a line in PG(2h− 1, q) not contained in an element of D,
i.e. an Fq-subline ` of PG(1, qh) corresponds to an (h − 1)-regulus B(L) in
PG(2h− 1, q).

Lemma 6. Let R = {σ1, . . . , σq+1} be an (h− 1)-regulus in PG(2h− 1, q), and
let π be a plane in PG(2h − 1, q) such that π ∩ σi is a point Pi, i = 1, . . . , 4,
where no three points of {P1, P2, P3, P4} are collinear. Then π∩σi is a point Pi
for all 1 ≤ i ≤ q + 1 and {P1, . . . , Pq+1} are the points of a conic in π.

Proof. Let R = {σ1, . . . , σq+1} be a regulus, and let π be a plane such that
π ∩ σi is a point Pi, i = 1, . . . , 4, where no three points of {P1, P2, P3, P4}
are collinear. Let t be the transversal line to R through P1. Let P ′j be the
points σj ∩ t, j = 2, 3, 4. The 3-dimensional space 〈t, π〉 intersects σj in the line
`j = PjP

′
j , j = 2, 3, 4. Hence, t is a transversal line to the 1-regulus R(`2, `3, `4).

The transversal line t′ through P2 to the regulus R(`2, `3, `4) intersects the
spreadelements σi in points Pi, i = 5, . . . , q + 1, and intersects σ1, in the point
P ′1. This implies that the line P ′iPi, contained in σi, i = 1, . . . , q+ 1, is a line of
the regulus R(`2, `3, `4). Hence, the elements of R intersect the 3-dimensional
space 〈t, π〉 in the lines of a regulus of a hyperbolic quadric. Since π is a plane
of 〈t, π〉, not containing a line of an element of R, {P1, . . . , Pq+1} are the points
of a conic.

Lemma 7. If a (2k − 1)-space π intersects 3 elements of an (h− 1)-regulus in
a (k − 1)-dimensional subspace, it intersects π in a (k − 1)-regulus.

Proof. Let σi, with i = 1, 2, 3, be the 3 elements of B(L), with B(L) an (h− 1)-
regulus, intersecting some (2k − 1)-space π in a (k − 1)-space Si. The spaces
S1, S2, S3 determine a unique (k− 1)-regulus R. Let Sk be an element of R. A
transversal line t through a point P of Sk to R intersects the elements σi, i =
1, 2, 3 in a point of Si. Hence, t is the unique transversal line through P to B(L)
and it follows that every element of the regulus through S1, S2, S3 is contained in
an element of the regulus B(L), and conversely every element of B(L) contains
an element of the regulus through S1, S2, S3.

Theorem 8. A subline PG(1, q) intersects an Fq-linear set of rank k of PG(1, qh)
in 0, 1, . . . , k or q + 1 points.

Proof. We proceed by induction on the rank k. For k = 2, the theorem follows
from the observation that 3 points determine a unique subline. So now suppose
k > 2 and assume that the statement holds for k′ < k. Let π be a (k − 1)-
dimensional space. Let B(L1) be a subline of PG(1, qh), intersecting B(π) in
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at least k + 1 points. Let σ1, . . . , σk+1 be elements of B(L1), intersecting π.
We may choose L1 to go through a point R1 of σ1 ∩ π. Let Ri be a point in
σi ∩ π. If one of the intersections σi ∩ π, say σ2 ∩ π contains a line M , then the
space µ = 〈R1, R3, . . . , . . . , Rk〉 intersects M in a point, and we have that B(L1)
intersects B(µ), which has rank k − 1, in k + 1 points. By induction, B(L1) is
contained in B(µ) ⊂ B(π).

So from now on, we assume that all intersections σi ∩ π, i = 1, . . . , k + 1,
are points Ri. Suppose that r+ 1 points of {R1, . . . , Rk+1} are contained in an
r− 1-dimensional subspace ν of π, r < k, then again by induction on k, B(L) is
contained in B(ν) ⊂ B(π).

Hence, from now on, we also assume that no r+ 1 points of {R1, . . . , Rk+1}
are contained in an (r − 1)-dimensional space, r < k.

Let Li be the transversal line through Ri, i = 2, . . . , k − 2, to the regulus
B(L1).

Let φi be the space 〈L1 ∩ σi, . . . , Lk−2 ∩ σi〉, with dimφi = k − 3 − x, for
all 1 ≤ i ≤ q + 1. The (k − 3)-space ψ = 〈R1, . . . , Rk−2〉 is contained in the
(2k − 2x − 5)-space 〈φ1, φ2〉. Hence, if x > 0, φi ⊂ σi meets ψ ⊂ π for all
i ≤ q + 1, so, B(L) ⊂ B(π).

Assume that dimφi = k − 3. If one of the points Rj ∈ φj for some j ∈
{k−1, k, k+1}, then dim〈π, L1 . . . , Lk−2〉 ≤ 2k−4, and hence π intersects each
φi, i.e., B(L) ⊂ B(π).

If Rj /∈ φj for all j ∈ {k − 1, k, k + 1}, the (k − 2)-spaces 〈Ri, φi〉, i =
k− 1, k, k+ 1, contained in the (2k− 3)-space ν = 〈π, L1, . . . , Lk−2〉, determine
a (k − 2)-regulus {τ1, . . . , τq+1}, by Lemma 7. Since for all 1 ≤ i ≤ q + 1, the
(k − 2)-space τi ⊂ σi and the (k − 1)-space π, contained in the (2k − 3)-space
ν, intersect in a point, B(L1) ⊂ B(π).

Theorem 9. For every subline L ∼= PG(1, q) of PG(1, qh), there is a linear set
S of rank k, k ≤ h, intersecting L in exactly j points, for all 1 ≤ j ≤ k.

Proof. The statement is trivial for j ∈ {1, 2}, so fix 3 ≤ j ≤ k. Let B(L) =
{σ1, . . . , σq+1} be a subline of PG(1, qh). Let tP denote the transversal line
to B(L) through a point P . Let P1 be the point σ1 ∩ L, let Pi be a point
in σi \ 〈tP1 , . . . , tPi−1〉, for 2 ≤ i ≤ j − 1, and let πj be a (k − j)-space in
σj \ 〈tP1 , . . . , tPj−1〉. Let π be the space 〈P1, . . . , Pj−1, πj〉, hence B(π) is a
linear set of rank k. We show that B(π) = {σ1, . . . , σj}.

Suppose that one extra element of B(L), say σj+1, is contained in B(π)
and let Pj+1 be a point in the intersection of σj+1 with π. The j − 1-space
µ = 〈P1, . . . , Pj−1, Pj+1〉 meets the k− j-space πj , both contained in the k− 1-
space π in the point Pj+1. Hence, the j − 1-space µ meets j + 1 elements of
{σ1, . . . , σq+1}, and it follows from Theorem 8 that B(L) is contained in B(µ).

The intersection of the (2j−3)-space 〈µ, tP1 , tP2 , . . . , tPj−2〉 with the elements
σi forms a (j − 2)-regulus. Hence, the transversal line T through Pj−1 to this
regulus meets σj in a point Q. Since T is a transversal to B(L) through Pj−1,
Q has to be the intersection point of tPj−1 with σj , a contradiction.

4 Sublines contained in a linear set

Throughout this section, we let D = {σ1, . . . , σqh+1} denote the Desarguesian
(h−1)-spread of PG(2h−1, q) and by a subline, we mean an Fq-subline PG(1, q).
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If π is a subspace of PG(2h− 1, q) and s and r are points of π, then the subline
B(rs) is clearly contained in B(π). In this section, we investigate the possibility
of other sublines through B(r) and B(s), contained in B(π). A subline B(L) of
B(π) is called irregular if there is no line M of π such that B(M) = B(L).

Lemma 10. Let π be a 3- dimensional space in PG(2h−1, q). The intersection
of the elements of D with π is one of the following:

1. π is contained in an element of D

2. π is scattered with respect to D

3. one element of D intersects π in a plane, q3 elements of D intersect π in
a point

4. one or two elements of D intersect π in a line and the other elements of
D that intersect π, intersect π in a point

5. q + 1 elements of D intersect π in a line, q3 − q elements of D intersect
π in a point. In this case, the q + 1 lines that are the intersection of an
element of D with π form a (line-)regulus in π

6. all elements of D, intersecting π, intersect π in a line and in this case,
the elements intersecting π form a PG(1, q2).

Moreover, if h is odd, possibility 6 cannot occur and if h = 3, only the possibil-
ities 3 and 5 occur.

Proof. If π contains a plane of D, it is clear that all other intersections of an
element of D with π are points. Suppose now that only lines and points occur
as intersection of an element of D with π. Let L1, L2, L3 be three lines in π that
occur as intersection of σ1, σ2, σ3 ∈ D with π and let t be a transversal line to
L1, L2, L3, which exists since the lines Li are contained in a 3-dimensional space.
The line t is a transversal line to σ1, σ2, σ3, hence, intersects q − 2 other spread
elements of D, say σ4, . . . , σq+1. A transversal line t′ 6= t to B(t) intersects
σ1, σ2, σ3, hence, also σ4, . . . , σq+1, which implies that the intersection of σi
with π is a line Li, and that the lines Li form a regulus. Suppose now that
there is a line M 6= Li contained in π, with B(M) ∩ π = M . Since the regulus
through three of the lines {L1, . . . , Lq+1,M} is contained in π, we easily see
that in that case, every element of D intersects π in a line. The q2 + 1 elements
of D intersecting π in the Desarguesian linespread form a PG(1, q2), embedded
in PG(1, qh), hence, h is even.

Let A be the number of elements of D intersecting π in a line, and suppose
that no element of D intersects π in a line. If h = 3, then A(q+1)+(q3+1−A) =
q3 +q2 +q+1 since all q3 +1 elements of the plane spread D in PG(5, q) intersect
the 3-dimensional space π. If follows that A = q + 1.

4.1 Sublines contained in a club

In this subsection, we show that there are no irregular sublines contained in a
club S 6∼= PG(1, q2).

Lemma 11. If S ∼= PG(1, q2), then there are exactly q + 1 different sublines
through two points of S, contained in S.
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Proof. If S = B(π) ∼= PG(1, q2), then there is a 3-dimensional space µ through
π such that D intersects µ in q2 + 1 lines. Let B(r) and B(s) be two different
points of S, with r, s ∈ π, and let B(s)∩µ be the line L. Any of the q+1 lines ti
through r and a point of L intersects D in q + 1 elements of B(S), hence, B(ti)
is contained in S. If B(ti) = B(tj) for some i 6= j, then ti = tj since ti and tj
are transversal lines to the regulus B(ti) through the point r.

Lemma 12. Let π be a plane in PG(2h − 1, q), such that B(π) 6∼= PG(1, q2).
If there is an irregular subline B(L) contained in B(π), then π is scattered with
respect to D.

Proof. Suppose that π is a plane such that B(π) 6∼= PG(1, q2) and that L is a
line, intersecting π in exactly one point, such that B(L) ⊂ B(π). This implies
that at least q + 1 elements of D intersect 〈π, L〉 in a line. But then there are
exactly q + 1 elements of D intersecting µ in a line (see Lemma 10), where the
q + 1 intersection lines form a regulus R = {L1, . . . , Lq+1}. Suppose that there
is a line Li of R contained in π, then P = π∩L ∈ Li. The plane π contains one
line Li of a regulus R, hence, it has to contain a transversal line to R through
P , a contradiction since L /∈ π is the transversal line through P to R.

Hence, no line of R is contained in π, so π is scattered.

If B(π) is a club 6∼= PG(1, q2) with head H and B(r) and B(s), r, s ∈ π are
two non-head points, then the line rs meets H in a point p. Hence, the subline
B(rs) through B(r) and B(s) always contains the head H. As a corollary to the
previous lemma, we show that every subline contained in B(π) is regular and
contains the head.

Corollary 13. If S is a club of PG(1, qh), where S 6∼= PG(1, q2), then there are
no irregular sublines contained in S. Hence, through 2 non-head points of a club
S 6∼= PG(1, q2) of PG(1, qh), there is exactly one subline contained in S, which
contains the head of the club.

4.2 Sublines contained in a scattered linear set of rank 3

In this subsection, we show that there are irregular sublines contained in a linear
set of rank 3.

Lemma 14. Let π be a plane in PG(2h−1, q), let B(r) and B(s) be two different
points of B(π), with r, s ∈ π. Then the following statements hold.

1. There is exactly one 3-dimensional space µ through π such that µ intersects
B(r) and B(s) in a line.

2. If there is a line L through r, L /∈ π, such that B(s) ∈ B(L) and B(L) is
contained in π, then 〈π, L〉 intersects B(s) and B(r) in a line.

Proof. (1) Let π be a plane in PG(2h− 1, q), let B(r) and B(s) be two different
points of B(π), with r, s ∈ π. Since 〈B(s), π〉 is a (h+ 1)-space, it intersects the
(h − 1)-space B(r) in a subspace Lr of dimension at least 1. It is not possible
that 〈B(s), π〉 ∩ B(r) has dimension more than one, because then the spread
elements B(r) and B(s) would intersect, so Lr is a line.

Now 〈Lr, π〉 meets B(s) in a line Ls since the 3-dimensional space 〈Lr, π〉
is contained in the h + 1-space 〈π,B(s)〉 and B(s) is h − 1-dimensional. Using

11



the same reasoning as above, we get that 〈Lr, π〉 ∩ B(s) cannot have dimension
larger than one. Hence, 〈π, Lr〉 intersects both B(s) and B(r) in a line. Suppose
that there is a 3-dimensional space µ′, intersecting B(r) in the line L′r and B(s)
in the line L′s, then L′r is the intersection Lr of 〈B(s), π〉 with B(r) and L′s is
the intersection Ls of 〈B(r), π〉 with B(s). Hence, µ is uniquely determined.

(2) Suppose that there is a line L through r, L /∈ π, such that B(s) ∈ B(L)
and B(L) is contained in π. An element B(x) ∈ B(L) intersects 〈π, L〉 in the line
Lx = 〈L∩B(x), π∩B(x)〉. The q lines Lx, x ∈ L\{r} belong to a 1-regulus with
transversal line L, so B(r) ∈ B(L) intersects 〈π, L〉 in a line too. (see Lemma
10).

Corollary 15. Through two points of a scattered linear set B(π) of rank 3 in
PG(1, qh), q > 2, there are at most two sublines contained in B(π). If h = 3,
through two points of B(π), there are exactly two sublines contained in B(π).

Proof. Let B(π) be a scattered linear set of rank 3 and let r, s ∈ π. The sub-
line B(rs) is contained in B(π). By Lemma 14(1), there is a unique space
3-dimensional space 〈Lr, Ls〉, Lr ∈ B(r), Ls ∈ B(s) through π. If there are
exactly two elements of D that intersect the space 〈Lr, Ls〉 in a line, there are
no irregular sublines, if there are q + 1 elements of D that intersect the space
〈Lr, Ls〉 there is an irregular subline through B(r) and B(s). Lemma 14 (2)
shows that if there is an irregular subline, this irregular subline is unique.

Lemma 10 shows that if h = 3, there are always q + 1 elements of D inter-
secting 〈Lr, Ls〉 in a line.

Remark 16. Through two points of a scattered linear set B(π) of rank 3 in
PG(1, 2h), there are exactly 5 sublines contained in S. Let P,R be two points
of B(π). Through every of the 5 points Qi, different from P and R, contained
in B(π), there is exactly one subline containing P,R and Qi. Since q = 2, this
subline only contains the points P,R,Qi, hence, is completely contained in S.

4.3 Irregular sublines as the projection of a subconic in
PG(2, q3)

Using Theorem 1, we see that a linear set S of rank 3 in PG(2, q3) is the
projection of a subplane PG(2, q) from a point in PG(2, q3) \ PG(2, q). The
projection of a line of PG(2, q) is a subline of S. The irregular sublines are
sublines that are not the projection of a line of PG(2, q). In this section, we
show that an irregular subline is the projection of a conic, and we investigate
when the projection of a conic is a subline.

Theorem 17. [6, Chapter 6] The points (0, 0, 1), (0, 1, x1), (0, 1, x2), (0, 1, x3)
of PG(2, qt), q = ph are contained in a subline over Fq iff x2−x1

x3−x1
∈ Fq.

Lemma 18. The quotient space C/P of an irreducible conic in PG(2, q) over
a point P , where P lies on C∗, and not on an extended line of PG(2, q), where
C∗ denotes the extension of C to PG(2, q3) in PG(2, q3) \PG(2, q) is a subline.

Proof. Let C be an irreducible conic in PG(2, q). There is an element φ of
PΓL(3, q) that maps C onto the conic C ′ : (1, a, a2) ∪ (0, 0, 1), where a ∈ Fq.
We will project C ′ on the line X0 = 0 from a point P = (1, α, α2) on C∗, where
α ∈ Fq3 \ Fq.
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The projection of C ′ from P on the line X0 = 0 consists of the points
(0, α−x, α2−x2)∪(0, 0, 1) for all x ∈ Fq, which equals (0, 1, α+x)∪(0, 0, 1), since
α 6= x. Result 17 shows that the 4 points (0, 0, 1), (0, 1, α + x1), (0, 1, α + x2),
and (0, 1, α+ x3) are on a subline iff

α+ x2 − α− x1

α+ x3 − α− x1
∈ Fq.

Since this equality holds for all xi ∈ Fq, the lemma follows.

Corollary 19. (i) The quotient space C/P of an irreducible conic C in PG(2, q)
over a point P , not on an extended line of PG(2, q3) in PG(2, q3) \PG(2, q), is
a subline if and only if P lies on C∗, where C∗ denotes the extension of C to
PG(2, q3).

(ii) The quotient space C/P of an irreducible conic C in PG(2, q) over a
point P in PG(2, q3)\PG(2, q) on an extended line of PG(2, q), is not a subline.

Proof. (i) Corollary 15, with h = 3, shows that there is exactly one irregular
subline through 2 points Q and R of a scattered linear set S of rank 3. It is
clear that the subline through the pre-images Q′ and R′ in PG(2, q) of Q and
R by the projection from P , is projected onto a subline L through Q and R,
contained in S.

Since Lemma 18 shows that the unique conic through the point P , P q and
P q

2
and the two points Q and R is projected onto a subline, different from L,

the statement follows.
(ii) It is shown in Corollary 13 that there is no irregular subline contained

in a club. Hence, the projection of a conic C from a point on an extended line
cannot be a subline.

4.4 Sublines contained in a linear set

In the following theorem, we show that every subline is an irregular subline of
some linear set.

Theorem 20. For every k ≤ h + 1, and for every subline B(L) in PG(1, qh),
there is a linear set B(π) of rank k such that B(L) ⊂ B(π), L 6⊂ π, and such
that B(L) 6⊂ B(π′) for every proper subspace π′ of π.

Proof. Let B(L) = {σ1, . . . , σq+1} be a subline of PG(1, qh). Let tP denote the
transversal line through a point P to B(L). Let P1 be a point of σ1, let P2 be
a point in σ2 \ tP1 , let P3 be a point in σ3 \ 〈tP1 , tP2〉, let Pi, i ≤ k − 1 be a
point in σi \ 〈tP1 , . . . , tPi−1〉. Let Pk be a point in σk ∩ 〈tP1 , . . . , tPk−1〉, not in
〈P1, . . . , Pk−1〉.

The k − 2-dimensional space 〈tP1 ∩ σi, . . . , tPk−1 ∩ σi〉 ⊂ σi and the k − 1-
space π = 〈P1, . . . , Pk〉 are both contained in the 2k − 3-dimensional space
〈〈tP1 ∩ σ1, . . . , tPk−1 ∩ σ1〉, 〈tP1 ∩ σk, . . . , tPk−1 ∩ σk〉〉. Hence, σi meets π for all
i.

Since the points P1, . . . , Pk span the space π and are the intersection points
of σk with π, B(L) cannot be contained in B(π′) with π′ a proper subspace of
π.
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5 The intersection of two linear sets of rank 3

In [5], the authors show that two different linear sets of rank 3 in PG(1, q3)
share at most 2q+ 2 points, where q = ph, p ≥ 7, using coordinates and the fact
that linear sets of the same size in PG(1, q3) are projectively equivalent. Now,
we prove this in a geometrical way and extend this result, at least for odd q, to
PG(1, qh). Moreover, we show that the bound is sharp.

Lemma 21. Let π and π′ be two planes (in PG(rh−1, q)) with π∩π′ = L, L a
line. Let D be a Desarguesian (h− 1)-spread in PG(rh− 1, q). If B(π) 6= B(π′),
then |B(π) ∩ B(π′)| = 1, 2, q + 1, q + 2, q + 3, 2q + 1, 2q + 2.

Proof. By Lemma 10, the number of elements ofD intersecting the 3-dimensional
space 〈π, π′〉 in a line is 1, 2 or q + 1 since B(π) 6= B(π′). If |B(π ∩ π′)| = 1,
this implies that B(π) and B(π′) have 1,2 or q + 1 elements in common. If
|B(π ∩ π′)| = q+ 1, and π or π′ is a club, |B(π)∩B(π′)| = q+ 1, q+ 2 or 2q+ 1.
If |B(π ∩ π′)| = q + 1 and π and π′ is not a club, this implies that B(π) and
B(π′) have q + 1, q + 2, q + 3, 2q + 1 or 2q + 2 elements in common

Theorem 22. Two Fq-linear sets of rank 3 in PG(1, qh), q > 3, intersect in at
most 2q + 2 points if q is odd, and in at most 2q + 3 points if q is even.

Proof. Let D be a Desarguesian (h − 1)-spread in PG(rh − 1, q), q > 3. Let
π and π′ be two planes (in PG(rh − 1, q)) with π ∩ π′ 6= ∅ and suppose that
|B(π) ∩ B(π′)| ≥ 2q + 3. Let X = {P a point ∈ π|B(P ) ⊂ B(π′)} and X ′ =
{P a point ∈ π′|B(P ) ⊂ B(π)}. From Theorem 8, we get that if a line contains
4 points of X (resp. X ′), then this line is contained in X (resp. X ′). If π ∩ π′
is a line, the theorem follows from Lemma 21, hence, suppose that π intersects
π′ in the point P .

Suppose first that there are no lines in X or X ′, say in X. Then every line
in X contains at most 3 points of X. In that case, |X| = 2q + 3, and every line
intersects X in 0 or 3 points and q = 3h. But a maximal arc in a plane of odd
order does not exist (see [1]), a contradiction. Hence, from now on, we assume
that there is a line LX in X and a line LX′ in X ′.

Case 1: |B(LX)| = 1. The elements of B(L′X) meet the plane π in points
of a conic C. Since |X| ≥ 2q+ 3, there is a point P1 contained in X \ {C ∪L′X}
lying on a secant line M to C which meets LX in a point not on C, hence
containing 4 points of X, which implies that M ⊂ X. Now if q > 3, every point
of π lies on a secant line to C, intersecting LX and M in a point. This shows
that π = X.

Case 2: |B(LX)| = q + 1. Hence, the elements of B(LX) meet π′ in the
points of a conic C.

Let P1 be a point of C, and let Q be the point on the line LX such that
B(Q) = B(P1). There is a plane π′′, through P1, such that B(π) = B(π′′),
moreover, the plane π” contains a line L through P1 with B(L) = B(LX). The
elements of B(LX′) meet π” in the points of a conic C ′. Since |X| ≥ 2q + 3,
X contains a point Q, not on L ∪ C ′. If there is a secant line M through Q
to C ′, not through the possible intersection of L with C, containing 4 points of
X, then M is contained in X. It is easy to see that if q > 3, every point R of
π, different from the nucleus n of C ′ if q is even, lies on a secant line through
C ′, meeting M and L. But then R lies on a line with four points of X, and we

14



conclude that X = π. If q is odd, the secant line M always exists. If q is even, it
is possible that Q is the nucleus of C ′. In the latter case, if |X| ≥ 2q+4, there is
a point Q′ ∈ X, lying on a secant line M to C ′ and we can repeat the previous
argument with Q = Q′ to show that X = π. Now the statement follows.

Remark 23. For general q, there are two linear sets of rank 3, intersecting in
2q+2 points. Let π be a 3-dimensional space, such that there are q+1 elements
of D, say σi intersecting π in a line Li. Let M be a line skew to all lines Li.
Let π and π′ be two different planes through M . The sets B(π) and B(π′) have
exactly 2q + 2 points in common.
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