A proof of the linearity conjecture for k-blocking sets in $\operatorname{PG}\left(n, p^{3}\right), p$ prime

M. Lavrauw * L. Storme G. Van de Voorde *

Abstract

In this paper, we show that a small minimal k-blocking set in $\operatorname{PG}\left(n, q^{3}\right)$, $q=p^{h}, h \geq 1, p$ prime, $p \geq 7$, intersecting every $(n-k)$-space in $1(\bmod q)$ points, is linear. As a corollary, this result shows that all small minimal k-blocking sets in $\operatorname{PG}\left(n, p^{3}\right), p$ prime, $p \geq 7$, are \mathbb{F}_{p}-linear, proving the linearity conjecture (see [7]) in the case $\mathrm{PG}\left(n, p^{3}\right), p$ prime, $p \geq 7$.

1 Introduction and preliminaries

Throughout this paper $q=p^{h}, p$ prime, $h \geq 1$ and $\mathrm{PG}(n, q)$ denotes the n dimensional projective space over the finite field \mathbb{F}_{q} of order q. A k-blocking set B in $\operatorname{PG}(n, q)$ is a set of points such that any $(n-k)$-dimensional subspace intersects B. A k-blocking set B is called trivial when a k-dimensional subspace is contained in B. If an $(n-k)$-dimensional space contains exactly one point of a k-blocking set B in $\operatorname{PG}(n, q)$, it is called a tangent $(n-k)$-space to B. A k-blocking set B is called minimal when no proper subset of B is a k-blocking set. A k-blocking set B is called small when $|B|<3\left(q^{k}+1\right) / 2$.

Linear blocking sets were first introduced by Lunardon [3] and can be defined in several equivalent ways.

In this paper, we follow the approach described in [1]. In order to define a linear k-blocking set in this way, we introduce the notion of a Desarguesian spread. Suppose $q=q_{0}^{t}$, with $t \geq 1$. By "field reduction", the points of $\operatorname{PG}(n, q)$ correspond to $(t-1)$-dimensional subspaces of $\mathrm{PG}\left((n+1) t-1, q_{0}\right)$, since a point of $\operatorname{PG}(n, q)$ is a 1 -dimensional vector space over \mathbb{F}_{q}, and so a t-dimensional vector space over $\mathbb{F}_{q_{0}}$. In this way, we obtain a partition \mathcal{D} of the pointset of $\mathrm{PG}\left((n+1) t-1, q_{0}\right)$ by $(t-1)$-dimensional subspaces. In general, a partition of the point set of a projective space by subspaces of a given dimension d is called a spread, or a d-spread if we want to specify the dimension. The spread obtained by field reduction is called a Desarguesian spread. Note that the Desarguesian spread satisfies the property that each subspace spanned by spread elements is partitioned by spread elements.

Let \mathcal{D} be the Desarguesian $(t-1)$-spread of $\mathrm{PG}\left((n+1) t-1, q_{0}\right)$. If U is a subset of $\operatorname{PG}\left((n+1) t-1, q_{0}\right)$, then we define $\mathcal{B}(U):=\{R \in \mathcal{D} \| U \cap R \neq \emptyset\}$, and we identify the elements of $\mathcal{B}(U)$ with the corresponding points of $\operatorname{PG}\left(n, q_{0}^{t}\right)$. If U is subspace of $\mathrm{PG}\left((n+1) t-1, q_{0}\right)$, then we call $\mathcal{B}(U)$ a linear set or an $\mathbb{F}_{q_{0}}$-linear

[^0]set if we want to specify the underlying field. Note that through every point in $\mathcal{B}(U)$, there is a subspace U^{\prime} such that $\mathcal{B}\left(U^{\prime}\right)=\mathcal{B}(U)$ since the elementwise stabiliser of the Desarguesian spread \mathcal{D} acts transitively on the points of a spread element of \mathcal{D}. If U intersects the elements of \mathcal{D} in at most a point, i.e. $|B(U)|$ is maximal, then we say that U is scattered with respect to \mathcal{D}; in this case $\mathcal{B}(U)$ is called a scattered linear set. We denote the element of \mathcal{D} corresponding to a point P of $\operatorname{PG}\left(n, q_{0}^{t}\right)$ by $\mathcal{S}(P)$. If U is a subset of $\operatorname{PG}(n, q)$, then we define $\mathcal{S}(U):=\{\mathcal{S}(P)| | P \in U\}$. Analogously to the correspondence between the points of $\operatorname{PG}\left(n, q_{0}^{t}\right)$, and the elements \mathcal{D}, we obtain the correspondence between the lines of $\mathrm{PG}(n, q)$ and the $(2 t-1)$-dimensional subspaces of $\mathrm{PG}\left((n+1) t-1, q_{0}\right)$ spanned by two elements of \mathcal{D}, and in general, we obtain the correspondence between the $(n-k)$-spaces of $\operatorname{PG}(n, q)$ and the $((n-k+1) t-1)$-dimensional subspaces of $\operatorname{PG}\left((n+1) t-1, q_{0}\right)$ spanned by $n-k+1$ elements of \mathcal{D}. With this in mind, it is clear that any $t k$-dimensional subspace U of $\operatorname{PG}\left(t(n+1)-1, q_{0}\right)$ defines a k-blocking set $\mathcal{B}(U)$ in $\mathrm{PG}(n, q)$. A (k-)blocking set constructed in this way is called a linear (k-)blocking set, or an $\mathbb{F}_{q_{0}}$-linear (k-)blocking set if we want to specify the underlying field.

By far the most challenging problem concerning blocking sets is the so-called linearity conjecture. Since 1998 it has been conjectured by many mathematicians working in the field. The conjecture was explicitly stated in the literature by Sziklai in [7].
(LC) All small minimal k-blocking sets in $\operatorname{PG}(n, q)$ are linear.
Various instances of the conjecture have been proved; for an overview we refer to [7]. In this paper we prove the linearity conjecture for small minimal k-blocking sets in $\mathrm{PG}\left(n, p^{3}\right), p \geq 7$, as a corollary of the following main theorem:
Theorem 1. A small minimal k-blocking set in $\operatorname{PG}\left(n, q^{3}\right), q=p^{h}$, p prime, $h \geq 1, p \geq 7$, intersecting every $(n-k)$-space in $1(\bmod q)$ points is linear.

1.1 Known characterisation results

In this section we mention a few results, that we will rely on in the sequel of this paper. First of all, observe that a subspace intersects a linear set of $\operatorname{PG}\left(n, p^{h}\right)$ in $1(\bmod p)$ or zero points. The following result of Szőnyi and Weiner shows that this property holds for all small minimal blocking sets.
Result 2. [8, Theorem 2.7] If B is a small minimal k-blocking set of $\operatorname{PG}(n, q)$, $p>2$, then every subspace intersects B in $1(\bmod p)$ or zero points.

Result 2 answers the linearity conjecture in the affirmative for $\operatorname{PG}(n, p)$. For $\operatorname{PG}\left(n, p^{2}\right)$, the linearity conjecture was proved by Weiner (see [9]). For 1blocking sets in $\mathrm{PG}\left(n, q^{3}\right)$, we have the following theorem of Polverino $(n=2)$ and Storme and Weiner $(n \geq 3)$.
Result 3. [5][6] A minimal 1-blocking set in $\operatorname{PG}\left(n, q^{3}\right), q=p^{h}, h \geq 1$, p prime, $p \geq 7, n \geq 2$, of size at most $q^{3}+q^{2}+q+1$, is linear.

In Theorem 8 we show that this implies the linearity conjecture for small minimal 1-blocking sets $\operatorname{PG}\left(n, q^{3}\right), p \geq 7$, that intersect every hyperplane in 1 $(\bmod q)$ points.

The following Result by Szőnyi and Weiner gives a sufficient condition for a blocking set to be minimal.

Result 4. [8, Lemma 3.1] Let B be a k-blocking set of $\mathrm{PG}(n, q)$, and suppose that $|B| \leq 2 q^{k}$. If each $(n-k)$-dimensional subspace of $\mathrm{PG}(n, q)$ intersects B in $1(\bmod p)$ points, then B is minimal.

1.2 The intersection of a subline and an \mathbb{F}_{q}-linear set

The possibilities for an \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(1, q^{3}\right)$, other than the empty set, a point, and the set $\mathrm{PG}\left(1, q^{3}\right)$ itself are the following: a subline $\mathrm{PG}(1, q)$ of $\operatorname{PG}\left(1, q^{3}\right)$, corresponding to the a line of $\operatorname{PG}(5, q)$ not contained in an element of \mathcal{D}; a set of $q^{2}+1$ points of $\operatorname{PG}\left(1, q^{3}\right)$, corresponding to a plane of $\operatorname{PG}(5, q)$ that intersects an element of \mathcal{D} in a line; a set of $q^{2}+q+1$ points of $\operatorname{PG}\left(1, q^{3}\right)$, corresponding to a plane of $\operatorname{PG}(5, q)$ that is scattered w.r.t. \mathcal{D}.

The following results describe the possibilities for the intersection of a subline with an \mathbb{F}_{q}-linear set in $\operatorname{PG}\left(1, q^{3}\right)$, and will play an important role in this paper.
Result 5. [2] A subline $\cong \operatorname{PG}(1, q)$ intersects an \mathbb{F}_{q}-linear set of $\operatorname{PG}\left(1, q^{3}\right)$ in $0,1,2,3$, or $q+1$ points.

Result 6. [4, Lemma 4.4, 4.5, 4.6] Let q be a square. A subline $\operatorname{PG}(1, q)$ and a Baer subline $\mathrm{PG}(1, q \sqrt{q})$ of $\mathrm{PG}\left(1, q^{3}\right)$ share at most a subline $\operatorname{PG}(1, \sqrt{q})$. A Baer subline $\operatorname{PG}(1, q \sqrt{q})$ and an \mathbb{F}_{q}-linear set of $q^{2}+1$ or $q^{2}+q+1$ points in $\operatorname{PG}\left(1, q^{3}\right)$ share at most $q+\sqrt{q}+1$ points.

2 Some bounds and the case $k=1$

The Gaussian coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ denotes the number of $(k-1)$-subspaces in $\operatorname{PG}(n-1, q)$, i.e.,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)}
$$

Lemma 7. If B is a subset of $\mathrm{PG}\left(n, q^{3}\right), q \geq 7$, intersecting every $(n-k)$-space, $k \geq 1$, in $1(\bmod q)$ points, and π is an $(n-k+s)$-space, $s \leq k$, then either

$$
|B \cap \pi|<q^{3 s}+q^{3 s-1}+q^{3 s-2}+3 q^{3 s-3}
$$

or

$$
|B \cap \pi|>q^{3 s+1}-q^{3 s-1}-q^{3 s-2}-3 q^{3 s-3} .
$$

Proof. Let π be an $(n-k+s)$-space of $\operatorname{PG}\left(n, q^{3}\right)$, and put $B_{\pi}:=B \cap \pi$. Let x_{i} denote the number of $(n-k)$-spaces of π intersecting B_{π} in i points. Counting the number of $(n-k)$-spaces, the number of incident pairs (P, σ) with $P \in B_{\pi}, P \in \sigma, \sigma$ an $(n-k)$-space, and the number of triples $\left(P_{1}, P_{2}, \sigma\right)$, with $P_{1}, P_{2} \in B_{\pi}, P_{1} \neq P_{2}, P_{1}, P_{2} \in \sigma, \sigma$ an $(n-k)$-space yields:

$$
\begin{align*}
\sum_{i} x_{i} & =\left[\begin{array}{c}
n-k+s+1 \\
n-k+1
\end{array}\right]_{q^{3}} \tag{1}\\
\sum_{i} i x_{i} & =\left|B_{\pi}\right|\left[\begin{array}{c}
n-k+s \\
n-k
\end{array}\right]_{q^{3}} \tag{2}\\
\sum i(i-1) x_{i} & =\left|B_{\pi}\right|\left(\left|B_{\pi}\right|-1\right)\left[\begin{array}{c}
n-k+s-1 \\
n-k-1
\end{array}\right]_{q^{3}} . \tag{3}
\end{align*}
$$

Since we assume that every $(n-k)$-space intersects B in $1(\bmod q)$ points, it follows that every $(n-k)$-space of π intersect B_{π} in $1(\bmod q)$ points, and hence $\sum_{i}(i-1)(i-1-q) x_{i} \geq 0$. Using Equations (1), (2), and (3), this yields that

$$
\begin{gathered}
\left|B_{\pi}\right|\left(\left|B_{\pi}\right|-1\right)\left(q^{3 n-3 k}-1\right)\left(q^{3 n-3 k+3}-1\right)-(q+1)\left|B_{\pi}\right|\left(q^{3 n-3 k+3 s}-1\right)\left(q^{3 n-3 k+3}-1\right) \\
+(q+1)\left(q^{3 n-3 k+3 s+3}-1\right)\left(q^{3 n-3 k+3 s}-1\right) \geq 0
\end{gathered}
$$

Putting $\left|B_{\pi}\right|=q^{3 s}+q^{3 s-1}+q^{3 s-2}+3 q^{3 s-3}$ or $\left|B_{\pi}\right|=q^{3 s+1}-q^{3 s-1}-q^{3 s-2}-$ $3 q^{3 s-3}$ in this inequality, with $q \geq 7$, gives a contradiction. Hence the statement follows.

Theorem 8. A small minimal 1-blocking set in $\mathrm{PG}\left(n, q^{3}\right), p \geq 7$, intersecting every hyperplane in $1(\bmod q)$ points, is linear.

Proof. Lemma 7 implies that a small minimal 1-blocking set B in $\operatorname{PG}\left(n, q^{3}\right)$, intersecting every hyperplane in $1(\bmod q)$ points, has at most $q^{3}+q^{2}+q+3$ points. Since every hyperplane intersects B in $1(\bmod q)$ points, it is easy to see that $|B| \equiv 1(\bmod q)$. This implies that $|B| \leq q^{3}+q^{2}+q+1$. Result 3 shows that B is linear.

Corollary 9. A small minimal 1-blocking set in $\mathrm{PG}\left(n, p^{3}\right)$, p prime, $p \geq 7$, is \mathbb{F}_{p}-linear.

Proof. This follows from Result 2 and Theorem 8.
For the remaining of this section, we use the following assumption:
(B) B is small minimal k-blocking set in $\operatorname{PG}\left(n, q^{3}\right), p \geq 7$, intersecting every $(n-k)$-space in $1(\bmod q)$ points.

For convenience let us introduce the following terminology. A full line of B is a line which is contained in B. An $(n-k+s)$-space $S, s<k$, is called large if S contains more than $q^{3 s+1}-q^{3 s-1}-q^{3 s-2}-3 q^{3 s-3}$ points of B, and S is called small if it contains less than $q^{3 s}+q^{3 s-1}+q^{3 s-2}+3 q^{3 s-3}$ points of B.

Lemma 10. Let L be a line such that $1<|B \cap L|<q^{3}+1$.
(1) For all $i \in\{1, \ldots, n-k\}$ there exists an i-space π_{i} on L such that $B \cap \pi_{i}=B \cap L$.
(2) Let N be a line, skew to L. For all $j \in\{1, \ldots k-2\}$, there exists a small $(n-k+j)$-space π_{j} on L, skew to N.
Proof. (1) It follows from Result 2 that every subspace on L intersects $B \backslash L$ in zero or at least p points. We proceed by induction on the dimension i. The statement obviously holds for $i=1$. Suppose there exists an i-space π_{i} on L such that $\pi_{i} \cap B=L \cap B$, with $i \leq n-k-1$. If there is no $(i+1)$-space intersecting B only on L, then the number of points of B is at least

$$
|B \cap L|+p\left(q^{3(n-i)-3}+q^{3(n-i)-6}+\ldots+q^{3}+1\right)
$$

but by Lemma $7|B| \leq q^{3 k}+q^{3 k-1}+q^{3 k-2}+3 q^{3 k-3}$. If $i<n-k-1$ this is a contradiction. If $i=n-k-1$ then in the above count we may replace the factor p by a factor q, using the hypothesis (B), and hence also in this case we get a contradiction. We may conclude that there exists an i-space π_{i} on L such that $B \cap L=B \cap \pi_{i}, \forall i \in\{1, \ldots, n-k\}$.
(2) Part (1) shows that there is an $(n-k-1)$-space π_{n-k-1} on L, skew to N, such that $B \cap L=B \cap \pi_{n-k-1}$. If an ($n-k$)-space through π_{n-k-1} contains an extra element of B, it contains at least q^{2} extra elements of B, since a line containing 2 points of B contains at least $q+1$ points of B. This implies that there is an $(n-k)$-space π_{n-k} through π_{n-k-1} with no extra points of B, and skew to N.

We proceed by induction on the dimension i. Lemma 12(1) shows that there are at least $\left(q^{3 k}-1\right) /\left(q^{3}-1\right)-q^{3 k-5}-5 q^{3 k-6}+1>q^{3}+1$ small $(n-k+1)$-spaces through π_{n-k} which proves the statement for $i=1$.

Suppose that there exists an $(n-k+t)$-space π_{n-k+t} on L, skew to N, such that $B \cap \pi_{n-k+t}$ is a small minimal t-blocking set of π_{n-k+t}. An $(n-k+$ $t+1)$-space through π_{n-k+t} contains at most $\left(q^{3 t+4}-1\right)(q-1)$ or more than $q^{3 t+4}-q^{3 t+2}-q^{3 t+1}-3 q^{3 t}$ points of B (see Lemmas 7 and 13).

Suppose all $\left(q^{3 k-3 t}-1\right)\left(q^{3}-1\right)-q^{3}-1(n-k+t)$-spaces through $\pi_{n-k+t-1}$, skew to N, contain more than $q^{3 t+4}-q^{3 t+2}-q^{3 t+1}-3 q^{3 t}$ points of B. Then the number of points in B is larger than $q^{3 k}+q^{3 k-1}+q^{3 k-2}+3 q^{3 k-3}$ if $t \leq k-3$, a contradiction.

We may conclude that there exists an $(n-k+j)$-space π_{j} on L such that $B \cap \pi_{j}$ is a small minimal i-blocking set, skew to $N, \forall j \in\{1, \ldots, k-2\}$.

Theorem 11. A line L intersects B in a linear set.
Proof. Note that it is enough to show that L is contained in a subspace of $\operatorname{PG}\left(n, q^{3}\right)$ intersecting B in a linear set. If $k=1$, then B is linear by Theorem 8 , and the statement follows. Let $k>1$, let L be a line, not contained in B, intersecting B in at least two points. It follows from Lemma 10 that there exists an $(n-k)$-space π_{L} such that $B \cap L=B \cap \pi_{L}$. If each of the $\left(q^{3 k}-1\right) /\left(q^{3}-1\right)$ ($n-k+1$)-spaces through π_{L} is large, then the number of points in B is at least

$$
\frac{q^{3 k}-1}{q^{3}-1}\left(q^{4}-q^{2}-q-3-q^{3}\right)+q^{3}>q^{3 k}+q^{3 k-1}+q^{3 k-2}+3 q^{3 k-3},
$$

a contradiction. Hence, there is a small $(n-k+1)$-space π through L, so $B \cap \pi$ is a small 1-blocking set which is linear by Theorem 8. This concludes the proof.

Lemma 12. Let π be an $(n-k)$-space of $\operatorname{PG}\left(n, q^{3}\right), k>1$.
(1) If $B \cap \pi$ is a point, then there are at most $q^{3 k-5}+4 q^{3 k-6}-1$ large $(n-k+1)$ spaces through π.
(2) If π intersects B in $(q \sqrt{q}+1), q^{2}+1$ or $q^{2}+q+1$ collinear points, then there are at most $q^{3 k-5}+5 q^{3 k-6}-1$ large $(n-k+1)$-spaces through π.
(3) If π intersects B in $q+1$ collinear points, then there are at most $3 q^{3 k-6}-$ $q^{3 k-7}-1$ large $(n-k+1)$-spaces through π.

Proof. Suppose there are y large $(n-k+1)$-spaces through π. Then the number of points in B is at least

$$
y\left(q^{4}-q^{2}-q-3-|B \cap \pi|\right)+\left(\left(q^{3 k}-1\right) /\left(q^{3}-1\right)-y\right) x+|B \cap \pi|, \quad(*)
$$

where x depends on the intersection $B \cap \pi$.
(1) In this case, $x=q^{3}$ and $|B \cap \pi|=1$. If $y=q^{3 k-5}+4 q^{3 k-6}$, then (*) is larger than $q^{3 k}+q^{3 k-1}+q^{3 k-2}+3 q^{3 k-3}$, a contradiction.
(2) In this case $x=q^{3}$ and $|B \cap \pi| \leq q^{2}+q+1$. If $y=q^{3 k-5}+5 q^{3 k-6}$, then $(*)$ is larger than $q^{3 k}+q^{3 k-1}+q^{3 k-2}+3 q^{3 k-3}$, a contradiction.
(3) By Result 3 we know that an $(n-k+1)$-space π^{\prime} through π intersects B in at least $q^{3}+q^{2}+1$ points, since a $(q+1)$-secant in π^{\prime} implies that the intersection of π^{\prime} with B is non-trivial and not a Baer subplane, hence $x=$ $q^{3}+q^{2}-q$, and $|B \cap \pi|=q+1$. If $3 q^{3 k-6}-q^{3 k-7}$, then $(*)$ is larger than $q^{3 k}+q^{3 k-1}+q^{3 k-2}+3 q^{3 k-3}$, a contradiction.

3 The proof of Theorem 1

In the proof of the main theorem, we distinguish two cases. In both cases we need the following two lemmas.

We continue with the following assumption
(B) B is small minimal k-blocking set in $\operatorname{PG}\left(n, q^{3}\right), p \geq 7$, intersecting every $(n-k)$-space in $1(\bmod q)$ points;
and we consider the following properties:
$\left(H_{1}\right) \forall s<k$: every small minimal s-blocking set, intersecting every $(n-s)$-space in $1(\bmod q)$ points, not containing a $(q \sqrt{q}+1)$-secant, is \mathbb{F}_{q}-linear;
$\left(H_{2}\right) \forall s<k$: every small minimal s-blocking set, intersecting every $(n-s)$-space in $1(\bmod q)$ points, containing a $(q \sqrt{q}+1)$-secant, is $\mathbb{F}_{q \sqrt{q}}$-linear.
Lemma 13. If $\left(H_{1}\right)$ or $\left(H_{2}\right)$, and S is a small $(n-k+s)$-space, $0<s<k$, then $B \cap S$ is a small minimal linear s-blocking set in S, and hence $|B \cap S| \leq$ $\left(q^{3 s+1}-1\right) /(q-1)$.
Proof. Clearly $B \cap S$ is an s-blocking set in S. Result 2 implies that $B \cap S$ intersects every $(n-k+s-s)$-space of S in $1(\bmod p)$ points, and it follows from Result 4 that $B \cap S$ is minimal. Now apply $\left(H_{1}\right)$ or $\left(H_{2}\right)$.

Lemma 14. Suppose $\left(H_{1}\right)$ or $\left(H_{2}\right)$. Let $k>2$ and let π_{n-2} be an ($\left.n-2\right)$-space such that $B \cap \pi_{n-2}$ is a non-trivial small linear $(k-2)$-blocking set, then there are at least $q^{3}-q+6$ small hyperplanes through π_{n-2}.
Proof. Applying Lemma 13 with $s=k-2$, it follows that $B \cap \pi_{n-2}$ contains at most $\left(q^{3 k-5}-1\right) /(q-1)$ points. On the other hand, from Lemmas 7 and 13 with $s=k-1$, we know that a hyperplane intersects B in at most $\left(q^{3 k-2}-1\right) /(q-1)$ points or in more than $q^{3 k-2}-q^{3 k-4}-q^{3 k-5}-3 q^{3 k-6}$ points. In the first case, a hyperplane H intersects B in at least $q^{3 k-3}+1+\left(q^{3 k-3}+q\right) /(q+1)$ points, using a result of Szőnyi and Weiner [8, Corollary 3.7] for the $(k-1)$-blocking set $H \cap B$. If there are at least $q-4$ large hyperplanes, then the number of points in B is at least

$$
\begin{gathered}
(q-4)\left(q^{3 k-2}-q^{3 k-4}-q^{3 k-5}-3 q^{3 k-6}-\frac{q^{3 k-5}-1}{q-1}\right)+ \\
\left(q^{3}-q+5\right)\left(q^{3 k-3}+1+\frac{q^{3 k-3}+q}{q+1}-\frac{q^{3 k-5}-1}{q-1}\right)+\frac{q^{3 k-5}-1}{q-1}
\end{gathered}
$$

which is larger than $q^{3 k}+q^{3 k-1}+q^{3 k-2}+3 q^{3 k-3}$ if $q \geq 7$, a contradiction. Hence, there are at most $q-5$ large hyperplanes through π_{n-2}.

3.1 Case 1: there are no $q \sqrt{q}+1$-secants

In this subsection, we will use induction on k to prove that small minimal k blocking sets in $\operatorname{PG}\left(n, q^{3}\right)$, intersecting every $(n-k)$-space in $1(\bmod q)$ points and not containing a $(q \sqrt{q}+1)$-secant, are \mathbb{F}_{q}-linear. The induction basis is Theorem 8. We continue with assumptions $\left(H_{1}\right)$ and
$\left(B_{1}\right) B$ is small minimal k-blocking set in $\operatorname{PG}\left(n, q^{3}\right), p \geq 7$, intersecting every $(n-k)$-space in $1(\bmod q)$ points, not containing a $(q \sqrt{q}+1)$-secant.

Lemma 15. If B is non-trivial, there exist a point $P \in B$, a tangent $(n-k)$ space π at the point P and small $(n-k+1)$-spaces H_{i}, through π, such that there is a $(q+1)$-secant through P in $H_{i}, i=1, \ldots, q^{3 k-3}-2 q^{3 k-4}$.
Proof. Since B is non-trivial, there is at least one line N with $1<|N \cap B|<$ $q^{3}+1$. Lemma 10 shows that there is an $(n-k)$-space π_{N} through N such that $B \cap N=B \cap \pi_{N}$. It follows from Theorem 11 and Lemma 12 that there is at least one $(n-k+1)$-space H through π_{N} such that $H \cap B$ is a small minimal linear 1-blocking set of H. In this non-trivial small minimal linear 1-blocking set, there are $(q+1)$-secants (see Result 3). Let M be one of those $(q+1)$-secants of B. Again using Lemma 10, we find an $(n-k)$-space π_{M} through M such that $B \cap M=B \cap \pi_{M}$.

Lemma 12(3) shows that through π_{M}, there are at least $\frac{q^{3 k}-1}{q^{3}-1}-3 q^{3 k-6}+$ $q^{3 k-7}+1$ small $(n-k+1)$-spaces. Let P be a point of M. Since in each of these intersections, P lies on at least $q^{2}-1$ other $(q+1)$-secants, a point P of M lies in total on at least $\left(q^{2}-1\right)\left(\frac{q^{3 k}-1}{q^{3}-1}-3 q^{3 k-6}+q^{3 k-7}+1\right)$ other $(q+1)$-secants. Since each of the $\frac{q^{3 k}-1}{q^{3}-1}-3 q^{3 k-6}+q^{3 k-7}+1$ small $(n-k+1)$-spaces contains at least $q^{3}+q^{2}-q$ points of B not on M, and $|B|<q^{3 k}+q^{3 k-1}+q^{3 k-2}+3 q^{3 k-3}$ (see Lemma 7), there are less than $2 q^{3 k-2}+6 q^{3 k-3}$ points of B left in the large $(n-k+1)$-spaces. Hence, P lies on less than $2 q^{3 k-5}+6 q^{3 k-6}$ full lines.

Since B is minimal, P lies on a tangent $(n-k)$-space π. There are at most $q^{3 k-5}+4 q^{3 k-6}-1$ large $(n-k+1)$-spaces through π (Lemma 12(1)). Moreover, since at least $\frac{q^{3 k}-1}{q^{3}-1}-\left(q^{3 k-5}+4 q^{3 k-6}-1\right)-\left(2 q^{3 k-5}+6 q^{3 k-6}\right)(n-k+1)$-spaces through π contain at least $q^{3}+q^{2}$ points of B, and at most $2 q^{3 k-5}+6 q^{3 k-6}$ of the small $(n-k+1)$-spaces through π contain exactly $q^{3}+1$ points of B, there are at most $2 q^{3 k-2}+23 q^{3 k-3}$ points of B left. Hence, P lies on at most $2 q^{3 k-3}+23 q^{3 k-4}$ $(q+1)$-secants of the large $(n-k+1)$-spaces through π. This implies that there are at least $\left(q^{2}-1\right)\left(\frac{q^{3 k}-1}{q^{3}-1}-3 q^{3 k-6}+q^{3 k-7}+1\right)-\left(2 q^{3 k-3}+23 q^{3 k-4}\right)(q+1)$ secants through P left in small $(n-k+1)$-spaces through π. Since in a small $(n-k+1)$-space through π, there can lie at most $q^{2}+q+1(q+1)$-secants through P, this implies that there are at least $q^{3 k-3}-2 q^{3 k-4}(n-k+1)$-spaces H_{i} through π such that P lies on a $(q+1)$-secant in H_{i}.

Lemma 16. Let π be an $(n-k)$-dimensional tangent space of B at the point P. Let H_{1} and H_{2} be two $(n-k+1)$-spaces through π for which $B \cap H_{i}=\mathcal{B}\left(\pi_{i}\right)$, for some 3 -space π_{i} through $x \in \mathcal{S}(P), \mathcal{B}(x) \cap \pi_{i}=\{x\}(i=1,2)$ and $\mathcal{B}\left(\pi_{i}\right)$ not contained in a line of $\mathrm{PG}\left(n, q^{3}\right)$. Then $\mathcal{B}\left(\left\langle\pi_{1}, \pi_{2}\right\rangle\right) \subseteq B$.
Proof. Since $\left\langle\mathcal{B}\left(\pi_{i}\right)\right\rangle$ is not contained in a line of $\operatorname{PG}\left(n, q^{3}\right)$, there is at most one element Q of $\mathcal{B}\left(\pi_{i}\right)$ such that $\langle\mathcal{S}(P), Q\rangle$ intersects π_{i} in a plane. If there is such a plane, then we denote its pointset by μ_{i}, otherwise we put $\mu_{i}=\emptyset$.

Let M be a line through x in $\pi_{1} \backslash \mu_{1}$, let $s \neq x$ be a point of $\pi_{2} \backslash \mu_{2}$, and note that $\mathcal{B}(s) \cap \pi_{2}=\{s\}$.

We claim that there is a line T through s in π_{2} and an $(n-2)$-space π_{M} through $\langle\mathcal{B}(M)\rangle$ such that there are at least 4 points $t_{i} \in T, t_{i} \notin \mu_{2}$, such that $\left\langle\pi_{M}, \mathcal{B}\left(t_{i}\right)\right\rangle$ is small and hence has a linear intersection with B, with $B \cap \pi_{M}=M$ if $k=2$ and $B \cap \pi_{M}$ is a small minimal $(k-2)$-blocking set if $k>2$.

If $k=2$, the existence of π_{M} follows from Lemma 10(1), and we know from Lemma $12(1)$ that there are at most $q+3$ large hyperplanes through π_{M}. Denote the set of points of $\mathcal{B}\left(\pi_{2}\right)$, contained in one of those hyperplanes by F. Hence, if Q is a point of $\mathcal{B}\left(\pi_{2}\right) \backslash F,\left\langle Q, \pi_{M}\right\rangle$ is a small hyperplane.

Let T_{1} be a line through s in $\pi_{2} \backslash \mu_{2}$ and not through x, and suppose that $\mathcal{B}\left(T_{1}\right)$ contains at least $q-3$ points of F.

Let T_{2} be a line in $\pi_{2} \backslash \mu_{2}$, through s, not in $\left\langle x, T_{1}\right\rangle$, not through x. There are at most $q+3-(q-3)$ reguli through x of $\mathcal{S}(F)$, not in $\left\langle x, T_{1}\right\rangle$, and if $\mu \neq \emptyset$ one element of $\mathcal{B}\left(\mu_{2}\right)$ is contained $\mathcal{B}\left(T_{2}\right)$. Since it is possible that $\mathcal{B}(s)$ is an element of F, this gives in total at most 8 points of $\mathcal{B}\left(T_{2}\right)$ that are contained in F. This implies, if $q>11$, that at least 5 of the hyperplanes $\left\{\left\langle\pi_{M}, \mathcal{B}(t)\right\rangle \| t \in T_{2}\right\}$ are small.

If $q=11$, it is possible that $\mathcal{B}\left(T_{2}\right)$ contains at least 8 points of F. If T_{3} is a line in $\pi_{2} \backslash \mu_{2}$, through $s,\left\langle x, T_{1}\right\rangle,\left\langle x, T_{2}\right\rangle$ and not through x, then there are at least 5 points t of T_{3} such that $\left\langle\pi_{M}, \mathcal{B}(t)\right\rangle$ is a small hyperplane.

If $q=7$ and if $\mathcal{B}(s) \in \mathcal{B}(F)$, it is possible that $\mathcal{B}\left(T_{2}\right), \mathcal{B}\left(T_{3}\right)$, and $\mathcal{B}\left(T_{4}\right)$, with T_{i} a line through s in $\pi_{2} \backslash \mu_{2}$, not in $\left\langle x, T_{j}\right\rangle, j<i$, not through x, contain 4 points of F. A fifth line T_{5} through s in $\pi_{2} \backslash \mu_{2}$, not in $\left\langle x, T_{j}\right\rangle, j<i$, not through x, contains at least 5 points t such that $\left\langle\pi_{M}, \mathcal{B}(t)\right\rangle$ is a small hyperplane.

If $k>2$, let T be a line through s in $\pi_{2} \backslash \mu_{2}$, not through x. It follows from Lemma $10(2)$ that there is an $(n-2)$-space π_{M} through $\langle\mathcal{B}(M)\rangle$ such that $B \cap \pi_{M}$ is a small minimal $(k-2)$-blocking set of $\mathrm{PG}\left(n, q^{3}\right)$, skew to $\mathcal{B}(T)$. Lemma 14 shows that at most $q-5$ of the hyperplanes through π_{M} are large. This implies that at least 5 of the hyperplanes $\left\{\left\langle\pi_{M}, \mathcal{B}(t)\right\rangle \| t \in \mathcal{B}(T)\right\}$ are small. This proves our claim.

Since $B \cap\left\langle\mathcal{B}\left(t_{i}\right), \pi_{M}\right\rangle$ is linear, also the intersection of $\left\langle\mathcal{B}\left(t_{i}\right), \mathcal{B}(M)\right\rangle$ with B is linear, i.e., there exist subspaces $\tau_{i}, \tau_{i} \cap \mathcal{S}(P)=\{x\}$, such that $\mathcal{B}\left(\tau_{i}\right)=$ $\left\langle\mathcal{B}\left(t_{i}\right), \mathcal{B}(M)\right\rangle \cap B$. Since $\tau_{i} \cap\langle\mathcal{B}(M)\rangle$ and M are both transversals through x to the same regulus $\mathcal{B}(M)$, they coincide, hence $M \subseteq \tau_{i}$. The same holds for $\tau_{i} \cap\left\langle\mathcal{B}\left(t_{i}\right), \mathcal{S}(P)\right\rangle$, implying $t_{i} \in \tau_{i}$. We conclude that $\mathcal{B}\left(\left\langle M, t_{i}\right\rangle\right) \subseteq \mathcal{B}\left(\tau_{i}\right) \subseteq B$.

We show that $\mathcal{B}(\langle M, T\rangle) \subseteq B$. Let L^{\prime} be a line of $\langle M, T\rangle$, not intersecting M. The line L^{\prime} intersects the planes $\left\langle M, t_{i}\right\rangle$ in points p_{i} such that $\mathcal{B}\left(p_{i}\right) \in B$. Since $\mathcal{B}\left(L^{\prime}\right)$ is a subline intersecting B in at least 4 points, Result 5 shows that $\mathcal{B}\left(L^{\prime}\right) \subset B$. Since every point of the space $\langle M, T\rangle$ lies on such a line L^{\prime}, $\mathcal{B}(\langle M, T\rangle) \subseteq B$.

Hence, $\mathcal{B}(\langle M, s\rangle) \subseteq B$ for all lines M through x, M in $\pi_{1} \backslash \mu_{1}$, and all points $s \neq x \in \pi_{2} \backslash \mu_{2}$, so $\mathcal{B}\left(\left\langle\pi_{1}, \pi_{2}\right\rangle \backslash\left(\left\langle\mu_{1}, \pi_{2}\right\rangle \cup\left\langle\mu_{2}, \pi_{1}\right\rangle\right)\right) \subseteq B$. Since every point of $\left\langle\mu_{1}, \pi_{2}\right\rangle \cup\left\langle\mu_{2}, \pi_{1}\right\rangle$ lies on a line N with $q-1$ points of $\left\langle\pi_{1}, \pi_{2}\right\rangle \backslash\left(\left\langle\mu_{1}, \pi_{2}\right\rangle \cup\left\langle\mu_{2}, \pi_{1}\right\rangle\right)$, Result 5 shows that $\mathcal{B}(N) \subset B$. We conclude that $\mathcal{B}\left(\left\langle\pi_{1}, \pi_{2}\right\rangle\right) \subseteq B$.

Theorem 17. The set B is \mathbb{F}_{q}-linear.
Proof. If B is a k-space, then B is \mathbb{F}_{q}-linear. If B is non-trivial small minimal k blocking set, Lemma 15 shows that there exists a point P of B, a tangent $(n-k)$ space π at the point P and at least $q^{3 k-3}-2 q^{3 k-4}(n-k+1)$-spaces H_{i} through
π for which $B \cap H_{i}$ is small and linear, where P lies on at least one $(q+1)$-secant of $B \cap H_{i}, i=1, \ldots, s, s \geq q^{3 k-3}-2 q^{3 k-4}$. Let $B \cap H_{i}=\mathcal{B}\left(\pi_{i}\right), i=1, \ldots, s$, with π_{i} a 3-dimensional space.

Lemma 16 shows that $\mathcal{B}\left(\left\langle\pi_{i}, \pi_{j}\right\rangle\right) \subseteq B, 0 \leq i \neq j \leq s$.
If $k=2$, the set $\mathcal{B}\left(\left\langle\pi_{1}, \pi_{2}\right\rangle\right)$ corresponds to a linear 2-blocking set B^{\prime} in $\operatorname{PG}\left(n, q^{3}\right)$. Since B is minimal, $B=B^{\prime}$, and the Theorem is proven.

Let $k>2$. Denote the $(n-k+1)$-spaces through π, different from H_{i}, by $K_{j}, j=1, \ldots, z$. It follows from Lemma 15 that $z \leq 2 q^{3 k-4}+\left(q^{3 k-3}-1\right) /\left(q^{3}-1\right)$. There are at least $\left(q^{3 k-3}-2 q^{3 k-4}-1\right) / q^{3}$ different $(n-k+2)$-spaces $\left\langle H_{1}, H_{j}\right\rangle$, $1<j \leq s$. If all $(n-k+2)$-spaces $\left\langle H_{1}, H_{j}\right\rangle$, contain at least $5 q^{2}-49$ of the spaces K_{i}, then $z \geq\left(5 q^{2}-49\right)\left(q^{3 k-3}-2 q^{3 k-4}-1\right) / q^{3}$, a contradiction if $q \geq 7$. Let $\left\langle H_{1}, H_{2}\right\rangle$ be an $(n-k+2)$-spaces containing less than $5 q^{2}-49$ spaces K_{i}.

Suppose by induction that for any $1<i<k$, there is an ($n-k+i$)-space $\left\langle H_{1}, H_{2}, \ldots, H_{i}\right\rangle$ containing at most $5 q^{3 i-4}-49 q^{3 i-6}$ of the spaces K_{i} such that $\mathcal{B}\left(\left\langle\pi_{1}, \ldots, \pi_{i}\right\rangle\right) \subseteq B$.

There are at least $\frac{q^{3 k-3}-2 q^{3 k-4}-\left(q^{3 i}-1\right) /\left(q^{3}-1\right)}{q^{3 i}}$ different $(n-k+i+1)$-spaces $\left\langle H_{1}, H_{2}, \ldots, H_{i}, H\right\rangle, H \nsubseteq\left\langle H_{1}, H_{2}, \ldots, H_{i}\right\rangle$. If all of these contain at least $5 q^{3 i-1}-49 q^{3 i-3}$ of the spaces K_{i}, then

$$
\begin{aligned}
z \geq & \left(5 q^{3 i-1}-49 q^{3 i-3}-5 q^{3 i-4}+49 q^{3 i-6}\right) \frac{q^{3 k-3}-2 q^{3 k-4}-\left(q^{3 i}-1\right) /\left(q^{3}-1\right)}{q^{3 i}} \\
& +5 q^{3 i-4}-49 q^{3 i-6}
\end{aligned}
$$

a contradiction if $q \geq 7$. Let $\left\langle H_{1}, \ldots, H_{i+1}\right\rangle$ be an $(n-k+i+1)$-space containing less than $5 q^{3 i-1}-49 q^{3 i-3}$ spaces K_{i}. We still need to prove that $\mathcal{B}\left(\left\langle\pi_{1}, \ldots, \pi_{i+1}\right\rangle\right) \subseteq B$. Since $\mathcal{B}\left(\left\langle\pi_{i+1}, \pi\right\rangle\right) \subseteq B$, with π a 3 -space in $\left\langle\pi_{1}, \ldots, \pi_{i}\right\rangle$ for which $\mathcal{B}(\pi)$ is not contained in one of the spaces K_{i}, there are at most $5 q^{3 i-4}-49 q^{3 i-6} 6$-dimensional spaces $\left\langle\pi_{i+1}, \mu\right\rangle$ for which $\mathcal{B}\left(\left\langle\pi_{i+1}, \mu\right\rangle\right)$ is not necessarily contained in B, giving rise to at most $\left(5 q^{3 i-4}-49 q^{3 i-6}\right)\left(q^{6}+q^{5}+q^{4}\right)$ points t for which $\mathcal{B}(t)$ is not necessarily contained in B. Let u be a point of such a space $\left\langle\pi_{i+1}, \mu\right\rangle$. Suppose that each of the $\left(q^{3 i+3}-1\right) /(q-1)$ lines through u in $\left\langle\pi_{1}, \ldots, \pi_{i+1}\right\rangle$ contains at least $q-2$ of the points t for which $\mathcal{B}(t)$ is not in B. Then there are at least $(q-3)\left(q^{3 i+3}-1\right) /(q-1)+1>$ $\left(5 q^{3 i-4}-49 q^{3 i-6}\right)\left(q^{6}+q^{5}+q^{4}\right)$ such points t, if $q \geq 7$, a contradiction. Hence, there is a line N through t for which for at least 4 points $v \in N, \mathcal{B}(v) \in B$. Result 5 yields that $\mathcal{B}(t) \in B$. This implies that $\mathcal{B}\left(\left\langle\pi_{1}, \ldots, \pi_{i+1}\right\rangle\right) \subseteq B$.

Hence, the space $\left\langle H_{1}, H_{2}, \ldots, H_{k}\right\rangle$, which spans the space $\operatorname{PG}\left(n, q^{3}\right)$, is such that $\mathcal{B}\left(\left\langle\pi_{1}, \ldots, \pi_{k}\right\rangle\right) \subseteq B$. But $\mathcal{B}\left(\left\langle\pi_{1}, \ldots, \pi_{k}\right\rangle\right)$ corresponds to a linear k-blocking set B^{\prime} in $\operatorname{PG}\left(n, q^{3}\right)$. Since B is minimal, $B=B^{\prime}$.

Corollary 18. A small minimal k-blocking set in $\mathrm{PG}\left(n, p^{3}\right)$, p prime, $p \geq 7$, is \mathbb{F}_{p}-linear.

Proof. This follows from Results 2 and Theorem 17.

3.2 Case 2: there are $(q \sqrt{q}+1)$-secants to B

In this subsection, we will use induction on k to prove that small minimal k blocking sets in $\mathrm{PG}\left(n, q^{3}\right)$, intersecting every $(n-k)$-space in $1(\bmod q)$ points and containing a $q \sqrt{q}+1$-secant, are $\mathbb{F}_{q \sqrt{q}}$-linear. The induction basis is Theorem 8. We continue with assumptions $\left(H_{2}\right)$ and
$\left(B_{2}\right) B$ is small minimal k-blocking set in $\operatorname{PG}\left(n, q^{3}\right)$ intersecting every $(n-k)$ space in $1(\bmod q)$ points, containing a $(q \sqrt{q}+1)$-secant.

In this case, \mathcal{S} maps $\operatorname{PG}\left(n, q^{3}\right)$ onto $\operatorname{PG}(2 n+1, q \sqrt{ })$ and the Desarguesian spread consists of lines.

Lemma 19. If B is non-trivial, there exist a point $P \in B$, a tangent $(n-k)$ space π at P and small $(n-k+1)$-spaces H_{i} through π, such that there is a $(q \sqrt{q}+1)$-secant through P in $H_{i}, i=1, \ldots, q^{3 k-3}-q^{3 k-4}-2 \sqrt{q} q^{3 k-5}$.
Proof. There is a $(q \sqrt{q}+1)$-secant M. Lemma $10(1)$ shows that there is an $(n-k)$-space π_{M} through M such that $B \cap M=B \cap \pi_{M}$.

Lemma 12(3) shows that there are at least $\frac{q^{3 k}-1}{q^{3}-1}-q^{3 k-5}-5 q^{3 k-6}+1$ small ($n-k+1$)-spaces through π_{M}. Moreover, the intersections of these small $(n-k+1)$-spaces with B are Baer subplanes $\mathrm{PG}(2, q \sqrt{q})$, since there is a $(q \sqrt{q}+1)$-secant M. Let P be a point of $M \cap B$.

Since in any of these intersections, P lies on $q \sqrt{q}$ other $(q \sqrt{q}+1)$-secants, a point P of $M \cap B$ lies in total on at least $q \sqrt{q}\left(\frac{q^{3 k}-1}{q^{3}-1}-q^{3 k-5}-5 q^{3 k-6}+1\right)$ other $(q \sqrt{q}+1)$-secants. Since any of the $\frac{q^{3 k}-1}{q^{3}-1}-q^{3 k-5}-5 q^{3 k-6}+1$ small ($n-k+1$)-spaces through π_{M} contains q^{3} points of B not in π_{M}, and $|B|<$ $q^{3 k}+q^{3 k-1}+q^{3 k-2}+3 q^{3 k-3}$ (see Lemma 7), there are less than $q^{3 k-1}+4 q^{3 k-2}$ points of B left in the other $(n-k+1)$-spaces through π_{M}. Hence, P lies on less than $q^{3 k-4}+4 q^{3 k-5}$ full lines.

Since B is minimal, there is a tangent $(n-k)$-space π through P. There are at most $q^{3 k-5}+4 q^{3 k-6}-1$ large $(n-k+1)$-spaces through π (Lemma 12(1)). Moreover, since at least $\frac{q^{3 k}-1}{q^{3}-1}-\left(q^{3 k-5}+4 q^{3 k-6}-1\right)-\left(q^{3 k-4}+4 q^{3 k-5}\right)$ small ($n-k+1$)-spaces through π contain $q^{3}+q \sqrt{q}+1$ points of B, and at most $q^{3 k-4}+4 q^{3 k-5}$ of the small $(n-k+1)$-spaces through π contain exactly $q^{3}+1$ points of B, there are at most $q^{3 k-1}-q^{3 k-2} \sqrt{q}+4 q^{3 k-2}$ points of B left. Hence, P lies on at most $\left(q^{3 k-1}-q^{3 k-2} \sqrt{q}+4 q^{3 k-2}\right) /(q \sqrt{q}+1)$ different $(q \sqrt{q}+1)$-secants of the large $(n-k+1)$-spaces through π. This implies that there are at least $q \sqrt{q}\left(\frac{q^{3 k}-1}{q^{3}-1}-q^{3 k-5}-5 q^{3 k-6}+1\right)-\left(q^{3 k-1}-q^{3 k-2} \sqrt{q}+4 q^{3 k-2}\right) /(q \sqrt{q}+1)$ different $(q \sqrt{q}+1)$-secants left through P in small $(n-k+1)$-spaces through π. Since in a small $(n-k+1)$-space through π, there lie $q \sqrt{q}+1$ different $(q \sqrt{q}+1)$-secants through P, this implies that there are certainly at least $q^{3 k-3}-q^{3 k-4}-2 \sqrt{q} q^{3 k-5}$ small $(n-k+1)$-spaces H_{i} through π such that P lies on a $(q \sqrt{q}+1)$-secant in H_{i}.

Lemma 20. Let π be an $(n-k)$-dimensional tangent space of B at the point P. Let H_{1} and H_{2} be two $(n-k+1)$-spaces through π for which $B \cap H_{i}=\mathcal{B}\left(\pi_{i}\right)$, for some plane π_{i} through $x \in \mathcal{S}(P), \mathcal{B}(x) \cap \pi_{i}=\{x\}(i=1,2)$ and $\mathcal{B}\left(\pi_{i}\right)$ not contained in a line of $\operatorname{PG}\left(n, q^{3}\right)$. Then $\mathcal{B}\left(\left\langle\pi_{1}, \pi_{2}\right\rangle\right) \subseteq B$.

Proof. Let M be a line through x in π_{1}, let $s \neq x$ be a point of π_{2}.
We claim that there is a line T through s, not through x, in π_{2} and an $(n-2)$-space π_{M} through $\langle\mathcal{B}(M)\rangle$ such that there are at least $q \sqrt{q}-q-2$ points $t_{i} \in T$, such that $\left\langle\pi_{M}, \mathcal{B}\left(t_{i}\right)\right\rangle$ is small and hence has a linear intersection with B, with $B \cap \pi_{M}=M$ if $k=2$ and $B \cap \pi_{M}$ is a small minimal ($k-2$)-blocking set if $k>2$. From Lemma 12(1), we know that there are at most $q+3$ large hyperplanes through π_{M} if $k=2$, and at most $q-5$ if $k>2$ (see Lemma 14).

Let T be a line through s in π_{2}, not through x. The existence of π_{M} follows from Lemma $10(1)$ if $k=2$, and Lemma $10(2)$ if $k>2$. Since $\mathcal{B}(T)$ contains $q \sqrt{q}+1$ spread elements, there are at least $q \sqrt{q}-q-2$ points $t_{i} \in T$ such that $\left\langle\pi_{M}, \mathcal{B}\left(t_{i}\right)\right\rangle$ is small. This proves our claim.

Since $B \cap\left\langle\mathcal{B}\left(t_{i}\right), \pi_{M}\right\rangle$ is linear, also the intersection of $\left\langle\mathcal{B}\left(t_{i}\right), \mathcal{B}(M)\right\rangle$ with B is linear, i.e., there exist subspaces $\tau_{i}, \tau_{i} \cap \mathcal{S}(P)=\{x\}$, such that $\mathcal{B}\left(\tau_{i}\right)=$ $\left\langle\mathcal{B}\left(t_{i}\right), \mathcal{B}(M)\right\rangle \cap B$. Since $\tau_{i} \cap\langle\mathcal{B}(M)\rangle$ and M are both transversals through x to the same regulus $\mathcal{B}(M)$, they coincide, hence $M \subseteq \tau_{i}$. The same holds for $\tau_{i} \cap\left\langle\mathcal{B}\left(t_{i}\right), \mathcal{S}(P)\right\rangle$, implying $t_{i} \in \tau_{i}$. We conclude that $\mathcal{B}\left(\left\langle M, t_{i}\right\rangle\right) \subseteq \mathcal{B}\left(\tau_{i}\right) \subseteq B$.

We show that $\mathcal{B}(\langle M, T\rangle) \subseteq B$. Let L^{\prime} be a line of $\langle M, T\rangle$, not intersecting M. The line L^{\prime} intersects the planes $\left\langle M, t_{i}\right\rangle$ in points p_{i} such that $\mathcal{B}\left(p_{i}\right) \subseteq B$. Since $\mathcal{B}\left(L^{\prime}\right)$ is a subline intersecting B in at least $q \sqrt{q}-q-2$ points, Result 6 shows that $\mathcal{B}\left(L^{\prime}\right) \subseteq B$. Since every point of the space $\langle M, T\rangle$ lies on such a line $L^{\prime}, \mathcal{B}(\langle M, T\rangle) \subseteq B$.

Hence, $\mathcal{B}(\langle M, s\rangle) \subseteq B$ for all lines M through x in π_{2}, and all points $s \neq$ $x \in \pi_{2}$. We conclude that $\mathcal{B}\left(\left\langle\pi_{1}, \pi_{2}\right\rangle\right) \subseteq B$.
Theorem 21. The set B is $\mathbb{F}_{q \sqrt{q}}$-linear.
Proof. Lemma 19 shows that there exists a point P of B, a tangent $(n-k)$ space π at the point P and at least $q^{3 k-3}-q^{3 k-4}-2 \sqrt{q} q^{3 k-5}(n-k+1)$ spaces H_{i} through π for which $B \cap H_{i}$ is a Baer subplane, $i=1, \ldots, s, s \geq$ $q^{3 k-3}-q^{3 k-4}-2 \sqrt{q} q^{3 k-5}$. Let $B \cap H_{i}=\mathcal{B}\left(\pi_{i}\right), i=1, \ldots, s$, with π_{i} a plane.

Lemma 20 shows that $\mathcal{B}\left(\left\langle\pi_{i}, \pi_{j}\right\rangle\right) \subseteq B, 0 \leq i \neq j \leq s$.
If $k=2$, the set $\mathcal{B}\left(\left\langle\pi_{1}, \pi_{2}\right\rangle\right)$ corresponds to a linear 2-blocking set B^{\prime} in $\operatorname{PG}\left(n, q^{3}\right)$. Since B is minimal, $B=B^{\prime}$, and the Theorem is proven.

Let $k>2$. Denote the $(n-k+1)$-spaces trough π different from H_{i} by K_{j}, $j=1, \ldots, z$. There are at least $\left(q^{3 k-3}-q^{3 k-4}-2 \sqrt{q} q^{3 k-5}-1\right) / q^{3}$ different $(n-k+2)$-spaces $\left\langle H_{1}, H_{j}\right\rangle, 1<j \leq s$. If all $(n-k+2)$-spaces $\left\langle H_{1}, H_{j}\right\rangle$, contain at least $2 q^{2}$ of the spaces K_{i}, then $z \geq 2 q^{2}\left(q^{3 k-3}-q^{3 k-4}-2 \sqrt{q} q^{3 k-5}-1\right) / q^{3}$, a contradiction if $q \geq 49$. Let $\left\langle H_{1}, H_{2}\right\rangle$ be an $(n-k+2)$-spaces containing less than $2 q^{2}$ spaces K_{i}.

Suppose, by induction, that for any $1<i<k$, there is an $(n-k+i)$ space $\left\langle H_{1}, H_{2}, \ldots, H_{i}\right\rangle$ containing at most $2 q^{3 i-4}$ of the spaces K_{i}, such that $\mathcal{B}\left(\left\langle\pi_{1}, \ldots, \pi_{i}\right\rangle\right) \subseteq B$.

There are at least $\frac{q^{3 k-3}-q^{3 k-4}-2 \sqrt{q} q^{3 k-5}-\left(q^{3 i}-1\right) /\left(q^{3}-1\right)}{q^{3 i}}$ different $(n-k+i+1)$ spaces $\left\langle H_{1}, H_{2}, \ldots, H_{i}, H\right\rangle, H \nsubseteq\left\langle H_{1}, H_{2}, \ldots, H_{i}\right\rangle$.

If all of these contain at least $2 q^{3 i-1}$ of the spaces K_{i}, then

$$
z \geq\left(2 q^{3 i-1}-2 q^{3 i-4}\right) \frac{q^{3 k-3}-q^{3 k-4}-2 \sqrt{q} q^{3 k-5}-\left(q^{3 i}-1\right) /\left(q^{3}-1\right)}{q^{3 i}}+2 q^{3 i-4}
$$

a contradiction if $q \geq 49$. Let $\left\langle H_{1}, \ldots, H_{i+1}\right\rangle$ be an ($n-k+i+1$)-space containing less than $2 q^{3 i-1}$ spaces K_{i}. We still need to prove that $\mathcal{B}\left(\pi_{1}, \ldots, \pi_{i+1}\right) \subseteq B$.

Since $\mathcal{B}\left(\left\langle\pi_{i+1}, \pi\right\rangle\right) \subseteq B$, with π a plane in $\left\langle\pi_{1}, \ldots, \pi_{i}\right\rangle$ for which $\mathcal{B}(\pi)$ is not contained in one of the spaces K_{i}, there are at most $2 q^{3 i-4} 4$-dimensional spaces $\left\langle\pi_{i+1}, \mu\right\rangle$ for which $\mathcal{B}\left(\left\langle\pi_{i+1}, \mu\right\rangle\right)$ is not necessarily contained in B, giving rise to at most $2 q^{3 i-4}\left(q^{6}+q^{4} \sqrt{q}\right)$ points Q_{i} for which $\mathcal{B}\left(Q_{i}\right)$ is not necessarily in B. Let Q be a point of such a space $\left\langle\pi_{i+1}, \mu\right\rangle$.

There are $\left((q \sqrt{q})^{2 i+2}-1\right) /(q \sqrt{q}-1)$ lines through Q in $\left\langle\pi_{1}, \ldots, \pi_{i+1}\right\rangle \cong$ $\mathrm{PG}(2 i+2, q \sqrt{q})$, and there are at most $2 q^{3 i-4}\left(q^{6}+q^{4} \sqrt{q}\right)$ points Q_{i} for which
$\mathcal{B}\left(Q_{i}\right)$ is not necessarily in B. Suppose all lines through Q in $\left\langle\pi_{1}, \ldots, \pi_{i+1}\right\rangle \cong$ $\mathrm{PG}(2 i+2, q \sqrt{q})$ contain at least $q \sqrt{q}-q-\sqrt{q}$ points Q_{i} for which $\mathcal{B}\left(Q_{i}\right)$ is not necessarily in B, then there are at least $(q \sqrt{q}-q-\sqrt{q}-1)\left((q \sqrt{q})^{2 i+2}-1\right) /(q \sqrt{q}-$ $1)+1>2 q^{3 i-4}\left(q^{6}+q^{4} \sqrt{q}\right)$ points Q_{i} for which $\mathcal{B}\left(Q_{i}\right)$ is not necessarily in B, a contradiction.

Hence, there is a line N through Q in $\left\langle\pi_{1}, \ldots, \pi_{i+1}\right\rangle$ with at most $q \sqrt{q}-q-$ $\sqrt{q}-1$ points Q_{i} for which $\mathcal{B}\left(Q_{i}\right)$ is not necessarily contained in B, hence, for at least $q+\sqrt{q}+2$ points $R \in N, \mathcal{B}(R) \in B$. Result 6 yields that $\mathcal{B}(Q) \in B$. This implies that $\mathcal{B}\left(\left\langle\pi_{1}, \ldots, \pi_{i+1}\right\rangle\right) \subseteq B$.

Hence, the space $\mathcal{B}\left(\left\langle H_{1}, H_{2}, \ldots, H_{k}\right\rangle\right)$ is such that $\mathcal{B}\left(\left\langle\pi_{1}, \ldots, \pi_{k}\right\rangle\right) \subseteq B$. But $\mathcal{B}\left(\left\langle\pi_{1}, \ldots, \pi_{k}\right\rangle\right)$ corresponds to a linear k-blocking set B^{\prime} in $\operatorname{PG}\left(n, q^{3}\right)$. Since B is minimal, $B=B^{\prime}$.

References

[1] M. Lavrauw. Scattered spaces with respect to spreads, and eggs in finite projective spaces. PhD Dissertation, Eindhoven University of Technology, Eindhoven, 2001. viii+115 pp.
[2] M. Lavrauw and G. Van de Voorde. A note on the intersection of \mathbb{F}_{q}-linear subsets of $\operatorname{PG}\left(1, q^{3}\right)$. Preprint.
[3] G. Lunardon. Normal spreads. Geom. Dedicata 75 (1999), 245-261.
[4] K. Metsch and L. Storme. Partial t-spreads in $\operatorname{PG}(2 t+1, q)$. Des. Codes Cryptogr. 18 (1999), 199-216.
[5] O. Polverino and L. Storme. Small minimal blocking sets in $\operatorname{PG}\left(2, q^{3}\right)$. European J. Combin. 23 (2002), no. 1, 83-92.
[6] L. Storme and Zs. Weiner. On 1-blocking sets in $\mathrm{PG}(n, q), n \geq 3$. Des Codes Cryptogr. 21 (2000), no. 1-3, 235-251.
[7] P. Sziklai. On small blocking sets and their linearity. J. Combin. Theory, Ser. A, 115 (2008), no. 7, 1167-1182.
[8] T. Szőnyi and Zs. Weiner. Small blocking sets in higher dimensions. J. Combin. Theory Ser. A 95 (2001), no. 1, 88-101.
[9] Zs. Weiner. Small point sets of $\operatorname{PG}(n, q)$ intersecting each k-space in 1 modulo \sqrt{q} points. Innov. Incidence Geom. 1 (2005), 171-180.

[^0]: ${ }^{*}$ This author's research was supported by the Fund for Scientific Research - Flanders (FWO)

