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Abstract

Tensor products play an important role in both mathematics and
physics, with applications in e.g. complexity theory, algebraic statis-
tics, tensor networks in quantum information theory, and representa-
tion theory. A good recent reference is the book ”Tensor products:
Geometry and Applications”, by J. M. Landsberg [8].

Although there are still many interesting open problems, tensor
products are well studied objects. However, most of the research on
tensor products (including [8]) only considers tensor products over the
complex numbers. Sometimes this is extended to general algebraically
closed fields, but few consider the case where the ground field is finite.

In this paper, we will focus on tensor products over finite fields,
explain the connections with Galois geometries, and survey what is
known, including some recent results concerning rank, decomposition
and orbits, from [10, 11, 12].

1 Introduction

Consider the tensor product
⊗

i∈I Vi (I = {1, . . . ,m}, m ≥ 2), where the
vector spaces Vi are assumed to have finite dimension ni over a field F. The
Vi are called the factors of

⊗m
i=1 Vi, and the fundamental tensors (or pure

tensors) of
⊗m

i=1 Vi are the tensors that can be written as v1 ⊗ . . . ⊗ vm,
vi ∈ Vi. A general element τ ∈

⊗
i∈I Vi can be written as a sum of the

fundamental tensors
τ =

∑
i

v1i ⊗ . . .⊗ vmi.
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For each tensor τ ∈
⊗m

i=1 Vi, by choosing bases for the factors Vi we obtain
a hypercube (ai1i2...im) associated to τ , where

τ =
∑

i1,...,im

ai1i2...ime1i1 ⊗ . . .⊗ emim .

Obviously, hypercubes generalize the concept of a matrix (a hypercube with
m = 2). Also, one verifies that

Ψ : v1 ⊗ v2 7→ [v∨1 7→ v∨1 (v1)v2] (1)

defines an isomorphism between the vector spaces V1⊗V2 and Hom(V ∨1 , V2).
For example, if τ =

∑
ij aijei ⊗ fj then τΨ : v∨1 7→

∑
ij aijv

∨
1 (ei)fj, and in

particular

τΨ : e∨k 7→
∑
ij

aije
∨
k (ei)fj =

∑
j

akjfj.

Using an analogous isomorphism for tensor products with more than two
factors one obtains an isomorphism between the tensor product

⊗m
i=1 Vi and

the vector space of multilinear maps.
As is well established, considering linear transformations can be preferable

to matrices. Even more so, the coordinate free approach of tensor products
with more than two factors is preferable to hypercubes.

Amongst the numerous applications of the theory of tensor products we
mention: computational complexity theory; quantum mechanical systems
(entanglement); data analysis; signal processing and source separation; psy-
chometrics. See [8] for more details.

The main problems that turn up from the applications are concerned with
the decomposition

τ =
k∑
i=1

v1i ⊗ . . .⊗ vmi (2)

of a tensor τ ∈
⊗m

i=1 Vi. In particular we distinguish the following four
essential issues.

(E) Existence: given a tensor τ and an integer k, does there exist an ex-
pression of the form (2)?

(U) Uniqueness: given an expression of the form (2) for a tensor τ , is this
expression essentially unique?
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(A) Algorithm: given a tensor τ and an integer k, does there exist an
algorithm that decomposes τ into an expression of the form (2) (in the
case where it exists)?

(O) Orbits: can we determine the number of orbits and describe the orbits
of the natural group action of GL(V1)× . . .×GL(Vm) on

⊗m
i=1 Vi?

In this paper we will focuss on the issues (E) (Section 2) and (O) (Section
3) with particular focus on the relationship with finite fields and Galois Ge-
ometry.

We end the introduction with the geometry and groups relevant for what
follows.

The Segre embedding is defined by

σ : PG(V1)× PG(V2)× . . .× PG(Vm) → PG(
⊗
i

Vi)

: (〈v1〉, 〈v2〉, . . . , 〈vm〉) 7→ 〈v1 ⊗ v2 ⊗ . . .⊗ vm〉, (3)

and its image Sn1,n2,...,nm(F) = Im(σ) is called the Segre variety.
An element (g1, g2, . . . gm) of GL(V1) × GL(V2) × . . . × GL(Vm) acts on

points of the Segre variety as follows:

〈v1 ⊗ v2 ⊗ . . .⊗ vm〉 7→ 〈vg11 ⊗ v
g2
2 ⊗ . . .⊗ vgm

m 〉.

If Vi = V = V (n,F) for all i, then we also have an action of Sm:

π : 〈v1 ⊗ v2 ⊗ . . .⊗ vm〉 7→ 〈vπ(1) ⊗ vπ(2) ⊗ . . .⊗ vπ(m)〉.

Together the wreath product GL(V )oSm induces a subgroupGm of PGL(nm,F).
Clearly Gm stabilizes X := Sn,...,n and the set of maximal subspaces of X,
for example σ(PG(V1)× 〈v2〉 × . . .× 〈vm〉).

2 Existence

2.1 The rank of a tensor

As before, we consider a tensor product
⊗m

i=1 Vi, where all factors are finite
dimensional over some field F. The “Existence” problem mentions above
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(E), naturally gives rise to the notion of ”rank” of a tensor: the rank of a
tensor τ ∈

⊗m
i=1 Vi (notation rk(τ)) is the minimum natural number k such

that an expression of the form (2) exists. This notion was introduced by F.
L. Hitchcock in 1927 [5]. It is not difficult to see that the rank of a tensor
in a two-fold tensor product is equal to the rank of any matrix associated to
the tensor. However, while determining the rank of a matrix (naively) takes
about n · n3 multiplications, in general computing the rank of a tensor in an
m-fold tensor product with m ≥ 3 is very difficult, and no algorithms are
available.

A very interesting problem which is equivalent to a rank problem is the
computational complexity of matrix multiplication. If Mn,n,n ∈ Bil(Fn2 ×
Fn2

,Fn2
) denotes the bilinear form associated to the multiplication of n× n-

matrices, then to Mn,n,n corresponds a tensor in the three fold tensor product
(Fn2

)∨⊗ (Fn2
)∨⊗Fn2

, as the image under the isomorphism between Bil(A×
B,C) and A∨ ⊗B∨ ⊗ C defined by

α⊗ β ⊗ c 7→ [(α, β) 7→ α(a)β(b)c]. (4)

If we denote the rank of this tensor by R(Mn,n,n), then from the above iso-
morphism it follows that R(Mn,n,n) measures the number of multiplications
in the underlying field that are required to perform the multiplication. This
is a central open problem in complexity theory. It’s intriguing nature is
illustrated by the following. While the usual multiplication of 2 × 2 matri-
ces takes 8 multiplications, Strassen [14] showed that R(M2,2,2) ≤ 7, and
Winograd [15] proved that R(M2,2,2) = 7. We note that the algorithm that
Strassen provided can also be applied to larger matrices, by dividing the
matrices into blocks of 2 × 2-matrices. For more on complexity theory and
matrix multiplication we refer to [2] and [8, Chapter 11].

2.2 The rank of a subspace and contractions

Generalizing the rank of a tensor, we can define the rank of a subspace as
follows. If U is subspace of

⊗m
i=1 Vi, then the rank of U is the minimum

number of fundamental tensors needed to span a subspace containing U .
An important proposition concerning the rank of a subspace requires the
following definition. For every u∨i ∈ V ∨i , we define the contraction u∨i (τ) of
τ = v1 ⊗ v2 ⊗ . . .⊗ vm by

u∨i (τ) = u∨i (vi) v1 ⊗ . . .⊗ vi−1 ⊗ vi+1 ⊗ . . .⊗ vm. (5)
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Extending this definition linearly, we obtain the notion of a contraction

u∨i :
m⊗
i=1

Vi → V1 ⊗ . . . Vi−1 ⊗ Vi+1 ⊗ Vm. (6)

The following proposition is often useful in determining the rank.

Proposition 2.1 If τ ∈
⊗m

i=1 Vi, then for each j ∈ {1, . . . ,m}, we have
rk(τ) = rk(Tj), where Tj := 〈u∨j (τ) : u∨j ∈ V ∨j 〉.
Proof: First suppose rk(τ) = r, with τ =

∑r
i=1 v1i ⊗ . . . ⊗ vmi. Then for

any u∨j ∈ V ∨j ,

u∨j (τ) =
∑
i

u∨j (vji)v1i ⊗ . . .⊗ vj−1,i ⊗ vj+1,i ⊗ . . .⊗ vmi,

which is contained in

〈v1i ⊗ . . .⊗ vj−1,i ⊗ vj+1,i ⊗ . . .⊗ vmi : i = 1, . . . , r〉,

and so rk(Tj) ≤ rk(τ).
Conversely, suppose rk(Tj) = s and Tj ≤ 〈v1i⊗ . . .⊗ vj−1,i⊗ vj+1,i⊗ . . .⊗

vmi : i = 1, . . . , s〉. Let {e1, . . . , enj
} be a basis for Vj and {e∨1 , . . . , e∨nj

} its
dual basis. Then there exists scalars αik such that

e∨k (τ) =
s∑
i=1

αikv1i ⊗ . . .⊗ vj−1,i ⊗ vj+1,i ⊗ . . .⊗ vmi.

Let vji =
∑
αikek. Then

τ =
s∑
i=1

v1i ⊗ . . .⊗ vmi

and rk(τ) ≤ s = rk(Tj), and hence rk(τ) = rk(Tj), as claimed. 2

2.3 The rank in Fn ⊗ Fn ⊗ Fn

Here we focus on the maximum rank of a tensor in a three-fold tensor product
(m = 3), being the first nontrivial case, since m = 1 is trivial and m = 2
corresponds to the rank of linear maps. The rank depends on the dimensions
of the factors and on the ground field. We will focus on the case where all
factors have the same dimension, i.e. n1 = n2 = n3 =: n. If follows from the
Proposition above that n2 is a trivial upper bound. Atkinson and Stephens
showed the following.
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Theorem 2.2 (Atkinson-Stephens [1]) If τ ∈ Cn⊗Cn⊗Cn then rk(τ) ≤
1
2
n2 +O(n).

As far as we know, this is still the best result of its kind. The proof uses
the fact that C is algebraically closed and separable. For general fields one
easily verifies that the rank of a tensor in F2 ⊗ F2 ⊗ F2 is at most 3, since
each line of PG(3,F) lies in a plane spanned by three points of S2,2(F). To
our knowledge, the best result for general fields is the following.

Theorem 2.3 ([7]) If τ ∈ Fn ⊗ Fn ⊗ Fn then rk(τ) ≤ 3n
2
dn

2
e. If |F| is large

enough, then rk(τ) ≤ 3n2

4
.

For n = 3 we have the following recent result, and we give a sketch of the
proof.

Theorem 2.4 (ML - A. Pavan - C. Zanella [11]) The rank of a 3×3×3
tensor is at most six over any field.

The proof basically proceeds as follows. We need to prove that each point
of 〈S3,3,3(F)〉 is contained in a subspace spanned by six points of S3,3,3(F).
Contracting τ ∈ U ⊗ V ⊗W in the first factor we obtain N = 〈u∨i (τ) : i =
1, 2, 3〉 ⊂ PG(V ⊗W ). Since N is contained in a plane of 〈S3,3(F)〉 it follows
that N = 〈α,L〉, where α ∈ V ⊗W , for some line L. Next we choose bases
v1, v2, v3 and w1, w2, w3 s.t.

α ∈ 〈v1 ⊗ w1, v2 ⊗ w2, v3 ⊗ w3〉 =: D,

and finally we show that L is contained in the span of D and at most three
other points of S3,3(F), completing the proof.

Similarly to the tensor associated to matrix multiplication, one can as-
sociate a tensor to any algebra, in particular to a field. It was shown by
Winograd in 1979 and de Groote in 1983, that the rank of the tensor associ-
ated to a finite field of order qn considered as an Fq-algebra is at least 2n−1,
with equality if and only if q ≥ 2n − 2. Hence for n = 3, the rank of F23

and F33 is six, which shows that the above bound in the theorem from [11]
cannot be improved in general.
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3 Orbits

In this section we study the orbit structure of
⊗m

i=1 Vi. In the projective
setting, the aim is to determine the orbits on the points of PG(

⊗m
i=1 Vi)

under the action of Gm. Since the rank is invariant, the number of orbits
is at least the maximum rank in

⊗m
i=1 Vi. In this section we will deal with

the orbits in F2 ⊗ F2 ⊗ F2, and determine the orbits in a geometric way, in
relation to the Segre variety product of three projective lines (from [10]). We
will need the notion of nonsingular tensor, which we introduce below.

3.1 Nonsingular tensors, semifields and projective planes

A tensor τ (or a point 〈τ〉) is called nonsingular if applying any m−1 consec-
utive nonzero contractions to τ never returns the zero vector. Otherwise the
tensor (or point) is called singular. Clearly also singularity of a tensor (or
point) is an invariant. The nonsingular tensors correspond to non-associative
division algebras, called semifields, and hence to semifield planes. These are
translation planes (i.e. projective planes with a special line and associated
translation group, see e.g. [6]) which are also dual translation planes. For
more on semifields, we refer to the chapter [9] and the references therein.
Following Liebler [13], in [12] a tensor TS is associated to each presemifield
S, and the following theorem is proved.

Theorem 3.1 (from [12]) (i) The tensor TS is nonsingular.
(ii) To every nonsingular tensor T ∈ V1 ⊗ V2 ⊗ V3 there corresponds a pre-
semifield S for which T = TS.
(iii) The map S 7→ TS is injective.

Also, the Knuth orbit of a semifield S is represented in the projective space
PG(n3 − 1, q) as the orbit of PS under the group Gm (where PS = 〈TS〉 and
S is an n-dimensional algebra over Fq) (see [12]). In our study of the orbits
of points in PG(F2 ⊗ F2 ⊗ F2), we will use the following characterisation of
singular points.

Theorem 3.2 ([12]) A tensor τ ∈ Fn ⊗ Fn ⊗ Fn is singular if and only if

〈τ〉 ⊂ 〈x1, . . . , xj, Sk1,k2,k3(F)〉

for some j < n points and a Sk1,k2,k3(F) properly contained in Sn,n,n(F).
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3.2 The orbits in F2 ⊗ F2 ⊗ F2

The orbits in F2 ⊗ F2 ⊗ F2 were obtained computationally for F2 by Glynn
et al. in [3], and Havlicek et al. proved this geometrically for F2 in [4]. In
[10] we proved the following.

Theorem 3.3 ([10]) There exist precisely four G3-orbits of singular tensors
in F2 ⊗ F2 ⊗ F2.

We give some indications towards the proof, and refer to [10] for more
details. Put X = S2,2,2. It is well known that every point y = 〈y1 ⊗ y2 ⊗ y3〉
lies on precisely three lines of the Segre variety X, and we denote these lines
by l1, l2, l3, where for example l3(y) := σ(〈y1〉× 〈y2〉×PG(V )). Each pair of
lines lie on a sub-Segre variety which is a hyperbolic quadric, which we call
Q1(y), Q2(y), and Q3(y), for example Q1(y) := σ(〈y1〉 × PG(V ) × PG(V )).
Each quadric spans a 3-space Li(y) := 〈Qi(y)〉. The shamrock of a point y,
denoted by Sh(y), is the union of the three 3-spaces Li(y), and we call Li(y)
a leaf of the shamrock.

Clearly G3 sends a shamrock to a shamrock, a leaf to a leaf etc. The
enumeration of the orbits goes by the rank of the points. We know from
before that the maximum rank in F2 ⊗ F2 ⊗ F2 is three. Also, the rank one
points (i.e. the points of X) form an orbit O1. Any rank 2 point is contained
in a line spanned by two points of X, say 〈y, z〉. Next one needs to show the
following.

Lemma 3.4 ([10]) There exist precisely two orbits of rank two tensors.

Denote these by O2 and O3. Next we consider points of rank three, and
therefore planes π = 〈y, z, w〉, y, z, w ∈ X. We can assume π contains no
lines of X, and that π is not contained in any leaf (as then everything on π
would have rank at most two). We will consider the shamrock of the point
u = 〈y1 ⊗ z2 ⊗ w3〉. Then y ∈ L1(u), etc. We define the type of π to be
(a1, a2, a3), where ai = |{〈yi〉, 〈zi〉, 〈wi〉}|. We need to consider the following
four possibilities for the type: (3, 3, 3), (2, 3, 3), (2, 2, 3), and (2, 2, 2).

The geometric characterization from before implies that every singular
point is contained in the span of a point and a quadric 〈x,Qi(y)〉, and hence
we have the following.
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Corollary 3.5 ([10]) A tensor of rank three is singular if and only if it lies
on a plane of type (a1, a2, a3), with some ai = 2.

Hence, since we are dealing with singular points, we can exclude the case
(3, 3, 3). Every point on a (2, 2, 3)-plane has rank at most 2, since it can be
shown to be contained in a space spanned by two disjoint lines of X.

It can also be shown that every point on a (2, 3, 3)-plane has rank at most
2 or lies on a plane of type (2, 2, 2). Finally it is shown that the rank three
points on (2, 2, 2)-planes form a single orbit O4. This is summarized in the
following theorem.

Theorem 3.6 ([10]) For n = 2, there exist precisely four G3-orbits of sin-
gular tensors over any field.

As orbits of nonsingular tensors in F2 ⊗ F2 ⊗ F2 correspond to Knuth orbits
of two-dimensional semifields one obtains the following corollary.

Corollary 3.7 ([10]) For n = 2, the number of orbits of tensors is

• five if F is finite;

• five if F = R;

• four if F is algebraically closed;

• infinite if F = Q.

Conclusion 3.8 There are various applications of tensor products over the
complex numbers. Similarly, tensor products over finite fields promise many
interesting applications. There remain many fundamental open problems.
We have shown in this article that progress can be made over finite fields
using a geometric approach.
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