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Abstract

In this note we classify 8-dimensional rank two commutative semi-
fields (R2CS) over finite fields.

1 Introduction and motivation

A semifield is a possibly non-associative algebra with a one and without
zero divisors. Finite semifields are well studied objects in combinatorics and
finite geometry and have many connections to other interesting geometric
structures. They play a central role in the theory of projective planes ([12]),
generalised quadrangles ([26]), and polar spaces ([32]), and have applications
to perfect nonlinear functions and cryptography ([5]), and maximum rank
distance codes ([9]). We refer to the chapter [19] and the references contained
therein for background, definitions and more details about these connections.

Of particular interest are commutative semifields which are of rank two over
their middle nucleus, so-called Rank Two Commutative Semifields (R2CS)
(see [8], [3], [19, Section 5]). The property of being commutative implies
that these semifields have applications to perfect nonlinear functions (see
e.g. [6] for a survey on planar functions and commutative semifields and
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for further references). Moreover, R2CS are equivalent to semifield flocks
of a quadratic cone in a 3-dimensional projective space. We refer to the
introduction of [21] for an excellent historical overview of the theory of flocks
in finite geometry. Consequently, R2CS are also equivalent to translation
ovoids of Q(4, q), the parabolic quadric in 4-dimensional projective space. We
refer to [11], [22], [14], [13], [2], [15] for further details on these connections.
Another, rather remarkable, application of R2CS concerns the theory of eggs
and translation generalized quadrangles, see [26, Section 8.7]. As of now
the only known examples of eggs in PG(4n − 1, q) are either “elementary”,
i.e. obtained from an oval or an ovoid by applying the technique of field
reduction ([20]), or they are obtained from a R2CS (up to dualising) (see
e.g. [13, Chapter 3], [14]).

In this paper we present a computational classification of 8-dimensional rank
two commutative finite semifields (that is, 8-dimensional over their centre).
This classification relies on the bounds obtained in [1] and [16] on the size of
the centre in function of the dimension. Previous classification results have
been obtained for 2-dimensional semifields ([10]), for 3-dimensional semi-
fields ([24] and [1]), for 4-dimensional rank two semifields ([7]) and for 6-
dimensional rank two semifields with an extra assumption on the size of one
of the other nuclei ([23]). Computational classification results have been ob-
tained in [28], and [29]. For an overview and further classification results in
the theory of finite semifields we refer to [17, Section 1] and [19, Section 6].

We begin in Section 2 by establishing some basic terminology and giving
details on the known examples; we then explain the geometric model we use
to search for new examples of rank two commutative semifields. In Section 3
we determine which fields Fq satisfy a necessary condition to be the centre
of an 8-dimensional R2CS, and in Sections 4 and 5 we give the results of
our exhaustive search for new examples for the field orders which meet this
necessary condition. Finally in Section 6 we give the corresponding existence
results for semifield flocks in PG(3, qn), translation ovoids of Q(4, qn), and
eggs in PG(4n− 1, q).

2 Preliminaries

We use the notation and terminology from [19]. Given a finite semifield S
with multiplication (x, y) 7→ x ◦ y, it is natural to consider the following
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substructures. The left nucleus N(S) is the set of elements x ∈ S such that
for all y, z ∈ S: x ◦ (y ◦ z) = (x ◦ y) ◦ z. Analogously, one defines the middle
and right nucleus. The intersection of these three subsets of S is called the
nucleus of S and the intersection of the nucleus of S with the commutative
centre of S is called the centre of S. When we mention the dimension of
a semifield, we are referring to the dimension over its centre. Restricting
the addition and multiplication to any of these substructures one obtains a
field. The rank of S is the dimension of S as a vector space over its middle
nucleus. Hence a rank two commutative semifield (R2CS) is a semifield with
commutative multiplication and which is a two-dimensional vector space over
its middle nucleus. A semifield S is commutative if and only if Sd = S, and
a semifield is called symplectic if and only if [St] = [S].

Semifields are studied up to the isotopism and their Knuth orbit. Two semi-
fields S1 and S2 are isotopic if there exist non-singular linear maps F , G, H
from S1 to S2 such that xF ◦2 yG = (x ◦1 y)H for all x, y ∈ S1. The isotopism
class of S is denoted by [S]. The Knuth orbit of a semifield S is a set of at
most six isotopism classes K(S) = {[S], [St], [Sd], [Std], [Sdt], [Stdt]}, where the
operations t and d denote the transpose and dual operations obtained from
the action of the transpositions in the symmetric group S3 on the indices of
the cubical array of structure constants of the semifield.

To fix notation when considering a R2CS S, we will denote the centre by Fq,
the finite field with q elements, and we will assume the left nucleus is Fqn .
This makes S into a 2n-dimensional R2CS of size q2n.

There are only three known examples of R2CS.(Note that by the above def-
inition a finite field is not a R2CS, but in some papers the finite field is
also considered as an R2CS.) We give a representation of the corresponding
multiplications as binary operations defined on Fqn × Fqn and denoted by
juxtaposition ◦. Also note that n is necessarily at least 2 since for n = 1 one
obtains a 2-dimensional semifield which, by Dickson [10], is a field.

The first example goes back to a construction by Dickson in [10] and exists
for each odd prime power q and n ≥ 2:

(x, y) ◦ (u, v) = (xv + yu, yv +mxσuσ), (1)

where σ ∈ Aut(Fqn/Fq) and m is a non-square in Fqn .
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The second family of R2CS was constructed by Cohen and Ganley [8] and
exists for q = 3 and n ≥ 2:

(x, y) ◦ (u, v) = (xv + yu+ x3u3, yv + ηx9u9 + η−1xu), (2)

where η is a non-square in F3n . The third family is the example found by
Penttila and Williams [27] for q = 3 and n = 5 and has multiplication:

(x, y) ◦ (u, v) = (xv + yu+ x27u27, yv + x9u9). (3)

Cohen and Ganley [8] showed that R2CS in even characteristic don’t exist
(again note that with our definition the finite field is not an R2CS) and that
any R2CS in odd characteristic arises from what we will refer to as a Cohen–
Ganley pair of functions (f, g): a pair of Fq-linear functions satisfying the
property that g2(t) − 4tf(t) is a non-square for all nonzero t ∈ Fqn , q odd.
Each Cohen–Ganley pair of functions (f, g) gives rise to a semifield S(f, g)
with multiplication

(x, y) ◦ (u, v) = (xv + yu+ f(xu), yv + g(xu)). (4)

The condition that g2(t) − 4tf(t) is a non-square for all nonzero t ∈ Fqn is
equivalent to the existence of an Fq-linear setW of rank n whose points have
coordinates (t, f(t), g(t)), t ∈ F∗qn , contained in the set of internal points of
the conic with equation X2

2 − 4X0X1 = 0.

If W is contained in a line then the R2CS is of Dickson type. So we are
interested in examples whereW contains an Fq-subplane of PG(2, qn). Using
a computer search, we complete the classification of 8-dimensional R2CSs.
This is equivalent to classifying the semifield flocks in PG(3, q4) having kernel
containing Fq, the translation ovoids of Q(4, q4) with kernel containing Fq,
and good eggs in PG(15, q). We also classify the 10-dimensional R2CS with
center F3, the semifield flocks in PG(3, 35) with kernel F3, the translation
ovoids in Q(4, 35) with kernel F3, and the good eggs of PG(19, 3). These
applications are detailed in Section 6.

Our work relies on bounds given on the size of the centre, as a function of the
dimension, that were first given in [1] and later improved in [16] by showing
that in order for an Fq-subplane contained in I(C) to exist, there must be an
Fq-subline contained in an external line of C and made up entirely of points
of I(C).
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Theorem 2.1 ([16]). There are no Fq-sublines contained in ` ∩ I(C), where
C is a conic in PG(2, qn) and ` is an external line to C, for

q ≥ 4n2 − 8n+ 2,

and for
q > 2n2 − (4− 2

√
3)n+ (3− 2

√
3)

when q is prime.

Corollary 2.2 ([16]). No Fq-subplane contained in I(C) exists, where C is a
conic in PG(2, qn), for

q ≥ 4n2 − 8n+ 2,

and for
q > 2n2 − (4− 2

√
3)n+ (3− 2

√
3)

when q is prime.

Let q be odd, and consider the conic C in PG(2, qn) defined by the quadratic
form Q : X0X1−X2

2 . Notice that the point (0, 0, 1) lies on the tangent [1, 0, 0],
so this point is external. Since Q(0, 0, 1) = −1, we have that the internal
points I(C) are those for which −Q(v) ∈���. The stabilizer G = PGO(3, qn)
of C in PGL(3, qn) has order qn(q2n − 1), and contains all matrices of the
form  a2 b2 ab

c2 d2 cd
2ac abd ad+ bc


where ad− bc 6= 0 (vector multiplication is from the left).

We have the following, due to Payne [25]:

Theorem 2.3.

1. G is sharply triply transitive on the points of C;

2. G is transitive on I(C);

3. G is transitive on E(C);

4. G is sharply triply transitive on the tangent lines to C;
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5. G is transitive on the external lines to C;

6. G is transitive on the secant lines to C;

7. G is transitive on the point-line pairs (p, `), where p is an external
point on the exterior (resp., secant) line `. The subgroup of G fixing
such a pair has order 4.

8. G is transitive on the point-line pairs (p, `), where p is an internal
point on the exterior (resp., secant) line `. The subgroup of G fixing
such a pair has order 4.

3 Existence of sublines contained in I(C)

Our first goal is to determine precisely the values of q for which there exists an
Fq-subline contained in an external line to a conic C in PG(2, qn) consisting
entirely of internal points of C. To accomplish this we choose η so that −η ∈
��� and −η − 1 ∈ �; then x = (1, η, 0) ∈ I(C) and `e = 〈(1, η, 0), (0,−2η, 1)〉
is an external line. The stabilizer in G of x has order 2(qn + 1), and contains
the following (normalized) matrices:

Gx =


1 0 0

0 1 0
0 0 ±1

 ∪

 a2 1 a

1
η2

a2 −a
η

±2a
η
∓2a ±

(
1
η
− a2

)
 : a ∈ E


Now considering the external line `e = 〈(1, η, 0), (0,−2η, 1)〉 on x, the sub-
group of G stabilizing both x and `e has order 4 and is given by

Gx,`e =

〈 0 1 0
1
η2

0 0

0 0 − 1
η

 ,
 1 1 1

1
η2

1 − 1
η

2
η
−2

(
1
η
− 1
)
〉 .

Note that the second generator given for this group fixes `e pointwise.

Since G acts transitively on pairs (p, `), where p is an internal point on an
external line `, it is sufficient to look for sublines of `e containing x and
contained in I(C). A subline is determined by three collinear points; so
a subline of `e contained in I(C) is determined by x, y, and x + µy for
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some y ∈ (`e ∩ I(C)) \ {x} and µ ∈ F∗qn satisfying −Q(x + λµy) ∈ ���
for all λ ∈ Fq. The subline determined by these three points is given by
{y} ∪ {x+ λµy : λ ∈ Fq}.
Using the basis {v1 = (1, η, 0), v2 = (0,−2η, 1)}, we can associate `e with
PG(1, qn) having the induced quadratic form Q`e(x1v1 + x2v2) = ηx21 −
2ηx1x2 − x22 (this form is anisotropic, and is just used to separate the points
of `e into I(C) and E(C)).
We want to take a point in (`e ∩ I(C)) \ {x}. Since −Q(v2) = 1 ∈ �,
v2 6∈ I(C); therefore we will define yb = v1 + bv2 with b 6= 0. Now we will
have yb ∈ I(C) as long as b satisfies b2 + 2ηb− η ∈���. Let B = {s : s ∈ Fqn |
s2 + 2ηs− η ∈���}, then we have that

(`e ∩ I(C)) = {x} ∪ {yb : b ∈ B}.

Now for our choices of µ, instead of letting µ range over all possible values
in F∗qn , it is sufficient to consider a set S of representatives of F∗qn/F∗q. Notice
that

x + λµyb = v1 + λµ(v1 + bv2) = (1 + λµ)v1 + λµbv2;

normalizing this vector to v1 + λµ
1+λµ

bv2, we see that it is contained in I(C)
if and only if λµ

1+λµ
b ∈ B. This is equivalent to having

(2b− 1)µ2ηλ2 + 2(b− 1)µηλ+ b2 − η ∈���

for all λ ∈ Fq.
To find sublines efficiently, we compute the set B and, for each value of µ ∈ S,
the sequence [ λµ

1+λµ
: λ ∈ F∗q]. Then for each pair (b, µ) ∈ B × S, we check

whether λµ
1+λµ

b ∈ B for all λ ∈ Fq. In this way, we obtain the number of

Fq-sublines of `e containing x and completely contained in I(C) for C a conic
in PG(2, qn) for n = 3 and n = 4. We also obtain some partial results for
n = 5, however it was impossible for us to complete our computations for
q ∈ {37, 41, 43, 49} in this case. Our results for n = 3 agree with those found
in [4]. Notice that from the bounds given by Theorem 2.1, when n = 3 we
only need to consider q < 14; for n = 4 we only need to consider q < 30;
and when n = 5 we only need to consider q < 47, along with q = 49. In the
table, a 0 indicates that no subline was found, while a dash indicates that
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Number of sublines on `e
q n = 3 n = 4 n = 5

3 12 120 1200
5 12 600 15072
7 24 912 52080
9 0 1040 91880

11 0 744 115572
13 0 504 102340
17 - 72 ≥ 1
19 - 80 ≥ 1
23 - 0 ≥ 1
25 - 0 ≥ 1
27 - 0 ≥ 1
29 - 0 ≥ 1
31 - - ≥ 1

the existence is ruled out by the theoretical bound.

Our computational results show the following.

Theorem 3.1. If there exists an Fq-subline in PG(2, q4) contained in `∩I(C)
for some conic C, where ` is an external line to C, then q ≤ 19.

4 Finding subplanes

Our next goal is to determine, given the existence of the necessary Fq-
subline, when there exist Fq-subplanes of PG(2, qn) contained in I(C). An
Fq-subplane is completely determined by a quadrangle, so more generally,
two Fq-sublines that are not contained in a common line of PG(2, qn) will
determine an Fq-subplane of PG(2, qn).

To determine the existence of Fq-subplanes contained in I(C), we first fix the
point x and then find all of the Fq-sublines containing x which are completely
contained in I(C) (those spanning an external line to C as well as those
spanning a secant line). Then, for each pair of Fq-sublines through x (not
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Sublines for 34 ((b, µ) pairs) containing x = (1, α, 0)
Minimal polynomial of α: x4 + 2x3 + 2

b µ b µ b µ

α2: α54, α56 α5: α27, α48 α6: α
α11: α2 α13: α49 α14: α27

α15: α30 α16: α10 α17: α27

α18: α27, α72 α20: α, α37, α48 α21: α5, α58

α23: α5, α49 α28: α12 α30: α23, α54

α32: α10 α38: α56 α43: α30

α44: α38 α45: α15, α66 α46: α13

α47: α22 α49: α30 α50: α5

α51: α23, α49 α54: α27, α75 α55: α66

α57: α10 α58: α30 α60: α54

α67: α56 α68: α2, α27, α54 α70: α5, α10, α73

α72: α27 α73: α39 α75: α75

α76: α27

contained in a common line of PG(2, qn)), we test whether the Fq-subplane
they determine is a subset of I(C).
In the previous section we give details on finding the Fq-sublines of the exter-
nal line `e on x which are contained in I(C). Once we have these sublines, we
compute their images under Gx to get all of the Fq-sublines on x contained
in I(C) generating an external line to C. We then repeat this process begin-
ning with the secant line `s = 〈(1, 0, 0), (0, 1, 0)〉 on x. Since all Fq-sublines
are assumed to contain x, and an Fq-subline is determined by 3 points, we
save the sublines as an ordered pair {@y, z@} where {x,y, z} determines
the subline.

The real computationally intensive aspect of our work concerns the deter-
mination of whether two sublines form a compatible pair, that is, if the two
sublines determine a rank 3 Fq-linear set which is contained in I(C). For two
Fq sublines `1 and `2 generated by {x,y1, z1} and {x,y2, z2}, respectively,
we first compute values µ1 and µ2 so that the Fq-subplane spanned by these
two lines is given by 〈x, µ1y1, µ2y2〉q. Then we test that λµ1y1+y2 ∈ I(C) for
all λ ∈ F∗q, and that x + λ1µ1y1 + λ2µ2y2 ∈ I(C) for all λ1, λ2 ∈ F∗q. If these
conditions are satisfied, then `1 and `2 generate an Fq-subplane contained in
I(C).
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Our computational work proves the following.

Theorem 4.1. No Fq-subplane contained in I(C) exists, where C is a conic
in PG(2, q4), unless q = 3.

With n = 4 and q = 3 we find 13 F3-subplanes (up to conjugacy in PΓL(3, 34))
contained in I(C), 10 of which can be embedded in the linear set associated
with the Cohen–Ganley semifield.

5 Linear sets of higher rank

To put together rank 4 Fq-linear sets, we first need to find all the rank 3
linear sets (not just the subplanes). It is fairly easy to find the examples that
are contained in a line. Each rank 3 linear set is saved as an ordered pair of
Fq-linear lines containing x. Then, for each Fq-subline contained in either `e
or `s, we compile the set Π` of rank 3 Fq-linear sets whose first generating
line is `. We form a graph Γ` on Π`, where two planes π1, π2 ∈ Π` are
adjacent if their second generating lines together generate a rank 3 Fq-linear
set contained in I(C). Then a clique of size q(q + 1) in Γ` corresponds to a
rank 4 Fq-linear set contained in I(C).
Running this algorithm using the rank 3 linear sets found in PG(2, 34), we find
174 rank 4 Fq-linear sets contained in I(C) that contain an Fq-subplane. They
are all equivalent up to isomorphism, corresponding to a semifield of Cohen–
Ganley type. We are also able to run this algorithm in PG(2, 35), using an
increased clique size to look for rank 5 Fq-linear sets; here all examples found
correspond to a semifield of Cohen–Ganley type or else to the example due
to Penttila and Williams.

Theorem 5.1. An 8-dimensional R2CS is either a Dickson semifield, or of
Cohen–Ganley type (with center F3).

Theorem 5.2. A 10-dimensional R2CS with center F3 is either a Dickson
semifield, of Cohen–Ganley type, or Penttila–Williams.

6 Implications of our results

There are many connections between R2CS and various geometric objects.
Here we give details on some of these connections, and state the implications
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of our classification of R2CS in these other settings.

6.1 Semifield flocks

A flock of a quadratic cone K of PG(3, qn) having vertex v is a partition of
K \ {v} into qn conics. We let v = (0, 0, 0, 1) and let the conic C in the plane
π = [0, 0, 0, 1] be the base of the cone. Then the planes of the flock can be
written as

{πt : tX0 + f(t)X1 + g(t)X2 +X3 = 0 | t ∈ Fqn}

for some f, g : Fqn → Fqn ; we denote such a flock by F(f, g).

A flock corresponds to a set

W = {(t, f(t), g(t)) | t ∈ Fqn}

of interior points of a conic C ′ in PG(2, qn) (see [30]). If f and g are linear over
a subfield of Fqn (i.e. if (f, g) is a Cohen–Ganley pair) then we say F(f, g)
is a linear flock. The maximal subfield of Fqn for which f and g are linear is
called the kernel of the semifield flock. Notice that if F(f, g) is a semifield
flock of PG(3, qn) with kernel Fq then W is a rank n Fq-linear set contained
in the set of interior points of a conic in PG(2, qn), so such a semifield flock
is equivalent to a 2n-dimensional R2CS with center Fq. Furthermore if W is
contained in a line then F is of Kantor–Knuth type [30]; this corresponds to
a R2CS of Dickson type.

Corollary 6.1. A semifield flock of PG(3, q4) with kernel Fq is of Kantor–
Knuth type or of Cohen–Ganley type (with kernel F3).

Corollary 6.2. A semifield flock of PG(3, 35) with kernel F3 is of Kantor–
Knuth type, of Cohen–Ganley type, or of Penttila–Williams type.

6.2 Ovoids of the parabolic quadric in 4-dimensional
projective space

The parabolic quadric Q(4, s) is the incidence structure of points and lines of
a nondegenerate quadric in PG(4, s). The quadric Q(4, s) is also an example
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of a generalized quadrangle, and is known to be isomorphic to the example
T2(C) constructed from a conic C in PG(2, s), see [26].

A set of s2 +1 points O of Q(4, s) is called an ovoid if no two points of O are
collinear in Q(4, s). An ovoid O in Q(4, s) is a translation ovoid if there is
a point p ∈ O and a group G of collineations of Q(4, s) stabilizing O, fixing
p, and acting regularly on the points of O\{p}. This group G is necessarily
elementary abelian, and hence is a vector space over some subfield Fq of Fs;
the largest such subfield is called the kernel of the translation ovoid. Put
n = [Fs : Fq], so s = qn.

By [16, Section 3.2], the classification result from Theorem 3.1 has the follow-
ing applications to ovoids of Q(4, q4). Given an ovoid O of Q(4, qn), for each
point p ∈ O, fix some conic Cp contained in the cone p⊥∩Q(4, qn); we will de-
note the plane containing Cp by πp. Then we can consider Q(4, qn) ' T2(Cp).
In this model, p corresponds to the point (∞), and the points of O \ {p}
correspond to a set Vp of q2n affine points. Each two points of Vp span a line
intersecting the plane πp in a point not on Cp. Define

Up = {〈x, y〉 ∩ πp | x, y ∈ Vp}.

If the set Up contains a dual Fq-subline on an internal point with respect to
Cp, then dualising over Fq, we have an Fq-subline spanning an external line
with respect to Cp. This gives us the following.

Corollary 6.3. If O is an ovoid in Q(4, q4), q odd, and Up contains a dual
Fq-subline on an internal point of Cp, for some point p ∈ O, then q ≤ 19.

If O is a translation ovoid of Q(4, qn) with respect to the point p having
kernel Fq, then the set Up is a rank 2n Fq-linear set, and its dual is a rank n
Fq-linear set contained in I(Cp).

Corollary 6.4. A translation ovoid in Q(4, q4) with kernel Fq is either a
Kantor ovoid, or a Thas–Payne ovoid (with q = 3).

Corollary 6.5. A translation ovoid in Q(4, 35) with kernel F3 is either a
Kantor ovoid, a Thas–Payne ovoid, or Penttila–Williams ovoid.

6.3 Eggs

We define an egg E in PG(4n−1, q) to be a partial (n−1)-spread of size q2n+1
such that every 3 elements of E span a (3n− 1)-space and, for every element
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E ∈ E , there exists a (3n−1)-space, denoted TE and called the tangent space
of E at E, containing E and disjoint from every other egg element. An egg is
called good at an element E ∈ E if every (3n− 1)-space containing E and at
least two other elements of E contains exactly qn + 1 elements of E . We say
that an egg E of PG(4n− 1, q) is a good egg if there exists an element E ∈ E
for which E is good at E. The standard example of an egg in PG(4n− 1, q)
is obtained by applying field reduction to an ovoid of PG(3, qn); an egg that
can be obtained in this way is called elementary.

It is shown in [31] (see [18] for a shorter direct proof) that good eggs of
PG(4n − 1, q), q odd, are equivalent to semifield flocks of PG(3, qn) with
kernel containing Fq. This gives us the following result.

Corollary 6.6. If E is a good egg of PG(15, q) with kernel Fq, q odd, then
E is either elementary, of Kantor–Knuth type, or Cohen–Ganley.

Even if we do not assume that the egg E has a good element, it is shown
in [16] that an egg with certain properties implies the existence of an Fq-
subline contained in the set of interior points of a conic C in PG(2, qn) which
spans an external line with respect to C, giving the following result.

Corollary 6.7. Let E be an egg of PG(15, q), q odd. If there exists an
11-space ρ containing an elementary pseudo-oval Oq contained in E corre-
sponding to a conic C of PG(2, q4), and there is a tangent space intersecting
ρ in a 7-space U whose associated Fq-linear set in 〈C〉 ' PG(2, qn) contains
a dual Fq-subline on an internal point w.r.t. C, then q ≤ 19.

Corollary 6.8. If E is a good egg of PG(19, 3) with kernel F3, then E is
either elementary, Kantor–Knuth, Cohen–Ganley, or Penttila–Williams.
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