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Abstract

In this paper, we study rank two semifields of order q6 that are of scattered type. The known
examples of such semifields are some Knuth semifields, some Generalized Twisted Fields and the
semifields recently constructed in [12] for q ≡ 1(mod 3). Here, we construct new infinite families of
rank two scattered semifields for any q odd prime power, with q ≡ 1(mod 3); for any q = 22h, such
that h ≡ 1(mod 3) and for any q = 3h with h ≡/ 0 (mod 3). Both the construction and the proof
that these semifields are new, rely on the structure of the linear set and the so-called pseudoregulus
associated to these semifields.
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1 Introduction

A nonassociative division algebra over a finite field is called a finite semifield. During the last decade
the theory of finite semifields has received a lot of attention. This has no doubt been stimulated by
the interesting connections between semifields and other areas, such as finite geometry and coding the-
ory. In this paper we use a geometric approach to this theory. We refer to [5] for definitions and notations.

The semifields that we study here are six-dimensional Fq-algebras, which have at least one nucleus of
order q3: rank two semifields of order q6. The Knuth orbit of such a semifield contains an isotopism class
[S], whose left nucleus has size q3, and with the semifield S, there is associated an Fq-linear set L(S) of
rank six, disjoint from a hyperbolic quadric Q in PG(3, q3). The isotopy class [S] corresponds to the orbit
of L(S) under the subgroup G ≤ PΓO+(4, q3) that fixes the reguli of Q.

These linear sets have been studied in detail in [10] and the corresponding isotopism classes of semi-
fields can be partitioned into six families, Fi (i = 0, 1, . . . , 5), according with the different geometric
configurations of the associated Fq-linear sets. In this paper we study semifields in the class F5, in which
case the linear sets are scattered, i.e., they have maximal size (q6 − 1)/(q − 1). The semifields of class
F5 are called scattered semifields. The known examples of semifields belonging to F5 are some Knuth
semifields (see [10, Proposition 4.7]), some Generalized Twisted Fields (see [10, Proposition 4.8]) and
finally the semifields recently constructed in [12], for q ≡ 1(mod 3).

In this paper we deduce the general form for a new class of scattered semifields and determine the
∗This research has been supported by the Research Foundation Flanders (FWO).
†This work was supported by the Research Project of MIUR (Italian Office for University and Research) “Geometrie su

Campi di Galois, piani di traslazione e geometrie di incidenza” and by the Research group GNSAGA of INDAM.
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nuclei of such a semifield in terms of its parameters. Next, we face with the existence issue for this
class, and prove that it contains infinitely many examples. In fact, it contains examples for any odd
prime power q, with q ≡ 1(mod 3); for any q = 22h, such that h ≡ 1(mod 3) and for any q = 3h with
h ≡/ 0 (mod 3).

2 Preliminary results

In [10], the authors associate to any scattered Fq–linear set L of rank 6 of PG(3, q3), a geometric object
P(L), called an Fq–pseudoregulus, consisting of q3 +1 lines of PG(3, q3) intersecting L in q2 +q+1 points.
An Fq–pseudoregulus has exactly two transversal lines and the above mentioned q3 + 1 (q2 + q + 1)–
secants to L are the unique lines of PG(3, q3) intersecting L in that number of points. A way to construct
scattered Fq-linear sets of rank 6 in PG(3, q3) is the following. Let r and r′ be two disjoint lines of
PG(3, q3) = PG(V ), say r = PG(U) and r′ = PG(U ′), with V = U ⊕ U ′. Let φf : r 7→ r′ be a strictly
semilinear collineation between r and r′ having as companion automorphism σ an Fq3–automorphism over
Fq (i.e. σ ∈ {q, q2}), induced by the semilinear invertible map f : U 7→ U ′. Let Wρ = {u+ ρf(u) : u ∈ U}
with ρ ∈ F∗q3 . Then Wρ is an Fq–vector subspace of V of dimension 6 and if ρ 6= 0, Wρ is not an Fq3–vector
subspace of V . It is easy to see that

L(Wρ) = {〈u+ ρf(u)〉Fq3 : u ∈ U \ {0}}

is a scattered Fq–linear set or rank 6 of PG(3, q3). Also, for any point P ∈ r we have that

〈P, Pφf 〉 ∩ L(Wρ) = {〈λu+ λσf(u)〉Fq3 : λ ∈ F∗q3}.

So for each P ∈ r the lines 〈P, Pφf 〉 are (q2 + q + 1)–secants to L(Wρ). Hence, the Fq–pseudoregulus
associated with L(Wρ) is P(L(Wρ)) = {〈P, Pφf 〉 : P ∈ r} and the lines r and r′ are its transversal lines.
Also, note that L(Wρ)∩L(Wρ′) 6= ∅ if and only if ρq

2+q+1 = ρ′q
2+q+1; in fact in this case L(Wρ) = L(Wρ′),

and for any ρ ∈ F∗q3 , L(Wρ) is disjoint from both r and r′. So, we end up with q − 1 disjoint linear sets
which together with the lines r and r′ partition the pointset of the Fq–pseudoregulus. In [10, Proposition
2.7] it has been proven that scattered Fq–linear sets of rank 6 of PG(3, q3) are projectively equivalent
with respect to the action of PΓL(4, q3). As a consequence of this theorem the above arguments prove
the following result.

Theorem 2.1. If L is a scattered Fq–linear set of rank 6 of PG(3, q3) whose associated Fq–pseudoregulus
P(L) has transversal lines r = PG(U, q3) and r′ = PG(U ′, q3), then there exist an element ρ of F∗q3 and
a semilinear collineation φf between r and r′ having as companion automorphism either σ = q or σ = q2

such that
L = L(Wρ) = {〈u+ ρf(u)〉 : u ∈ U \ {0}} and P(L) = {〈P, Pφf 〉 : P ∈ r}.

If S is a semifield belonging to class F5, then the associated linear set L(S) in PG(3, q3) is a scattered
Fq–linear set of rank 6. Hence, there exists an Fq–pseudoregulus P(L(S)) := P(S) associated with L(S).
If S and S′ are two isotopic semifields in class F5 then the corresponding scattered linear sets L(S) and
L(S′) belong to the same orbit of the group G ≤ PΓO+(4, q3) fixing the reguli of the quadric Q. Hence,
the associated pseudoreguli P(S) and P(S′) and the related transversal lines are G–equivalent. This
means that semifields in class F5, whose associated pseudoreguli have transversals not equivalent under
the G-action, are not isotopic. The only known examples of semifields belonging to F5 are
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a) some Knuth semifields (see [10, Property 4.7]);

b) some Generalized Twisted Fields (see [10, Property 4.8]);

c) semifields constructed in [12] for q ≡ 1(mod 3).

The corresponding Fq–pseudoregulus has the transversal lines both contained in Q in Case a), both
external to Q and pairwise polar in Case b) and one external and the other one contained in Q in Case
c). In the next section we study Fq–pseudoreguli for which at least one of the transversal lines is external
to the quadric Q, in order to construct scattered Fq–linear sets of PG(3, q3) which are not G–isomorphic
to any linear set associated with a semifield of type a), b) or c). This leads to the construction of new
semifields in the family F5.

3 Semifields from pseudoreguli with at least one external transver-
sal line

Let V ∼= F4
q3 denote the Fq3–vector space with elements {(x, y) : x, y ∈ Fq6}. We use the notation 〈x, y〉

for the points of P = PG(V). Let Q be the hyperbolic quadric of P whose associated orthogonal polarity
⊥ is induced by the symmetric bilinear form

b((x, y), (x′, y′)) = xq
3
x′ + xx′q

3
− yq

3
y′ − yy′q

3
,

i.e.,
Q : Xq3+1 − Y q

3+1 = 0.

Let N : Fq6 → Fq3 : x 7→ xq
3+1 denote the norm function of Fq6 over Fq3 and, as before, let G be the

subgroup of PΓO+(4, q3), fixing the reguli R1 and R2 of the quadric Q, where R1 and R2 consist of the
lines {Lε : ε ∈ Fq6 , N(ε) = 1} and {Mε : ε ∈ Fq6 , N(ε) = 1}, respectively, with

Lε := {〈y, yε〉 : y ∈ F∗q6}, and Mε := {〈y, yq
3
ε〉 : y ∈ F∗q6}.

The linear collineations of P fixing the reguli of Q are

〈x, y〉 7→ 〈ACx+BDq3xq
3

+ADq3y +BCyq
3
, ADx+BCq

3
xq

3
+ACq

3
y +BDyq

3
〉 (1)

where A,B,C and D are elements of Fq6 with Aq
3+1 6= Bq

3+1 and Cq
3+1 6= Dq3+1.

Let Trq3/q denote the trace function of Fq3 over Fq; the map Trq3/q ◦ b is a non–degenerate Fq–bilinear
form of V, when V is regarded as an Fq–vector space. Starting from a semifield S of order q6, 2–
dimensional over the left nucleus, using the form Trq3/q ◦ b, we get a (pre)semifield1 of order q6, whose
associated semifield is 2–dimensional over its left nucleus, as well. This (pre)semifield is the translation
dual of S and it is denoted by S⊥. For further details on the translation dual of a semifield see [6], [8] and
[4, Chapter 85]. In [10, Prop. 3.1], it has been proven that the family F5 is closed under the translation
dual operation.

Let S be a semifield belonging to class F5 and denote by P(S) its associated Fq–pseudoregulus in P, with
transversal lines r and r′ and suppose that r is an external line to the hyperbolic quadric Q. Since the

1A presemifield satisfies all the axioms of a semifield except (possibly) the existence of the identity element. Each
presemifield is isotopic to a semifield.
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group G acts transitively on the set of lines of P which are external to Q we can suppose, up to the
G–action, that

r := {〈y, 0〉 : y ∈ F∗q6}.

Now, any line r′ of P disjoint from r is of type r′ = {〈g(y), y〉 : y ∈ F∗q6}, where g : Fq6 7→ Fq6 is an
Fq3–linear map of Fq6 , i.e.

r′ = rλ,µ = {〈λy + µyq
3
, y〉 : y ∈ F∗q6},

where λ, µ are two elements of Fq6 . If λ = µ = 0, then r′ = r⊥ where ⊥ is the polarity defined by Q;
whereas, the line r′ is contained in Q if and only if either λ = 0 and N(µ) = 1 or N(λ) = 1 and µ = 0.
Denote by G the linear part of the group G. In what follows we will determine the stabilizer Gr of the
transversal line r of P(S), with respect to the action of G. Then we study the action of Gr on the lines
r′ skew to r.

Proposition 3.1. Two lines rλ,µ and rλ′,µ′ disjoint from r belong to the same orbit under the action of
Gr if and only if N(λ′) = N(λ) and N(µ′) = N(µ).

Proof. Taking (1) into account, it is easy to show that a projectivity of P, fixing the reguli of Q and
leaving invariant the line r is either

φ`,ε : 〈x, y〉 7→ 〈`x, `εy〉

or
φ′`,ε : 〈x, y〉 7→ 〈`εxq

3
, `yq

3
〉,

where ` ∈ F∗q6 and εq
3+1 = 1. Hence,

φ`,ε(rλ,µ) = {〈`(λy + µyq
3
), `εy〉 : y ∈ F∗q6} = {〈λ

ε
z +

ε

`q3−1
µzq

3
, z〉 : z ∈ F∗q6}

and

φ′`,ε(rλ,µ) = {〈`ε(λq
3
yq

3
+ µq

3
y), `yq

3
〉 : y ∈ F∗q6} = {〈λq

3
εz +

ε

`q3−1
µq

3
zq

3
, z〉 : z ∈ F∗q6},

where ` ∈ F∗q6 and εq
3+1 = 1. The result easily follows from these expressions.

Now, we determine the generic form of an Fq–pseudoregulus having as its transversals the lines r and
r′ = rλ,µ. By Theorem 2.1 we need a strictly semilinear invertible map φf between r′ and r. Any such
map has the following form:

φf : 〈λy + µyq
3
, y〉 ∈ r′ 7→ 〈f(y), 0〉 ∈ r, (2)

where f : Fq6 7→ Fq6 is a strictly Fq3–semilinear invertible map of Fq6 with companion automorphism an
Fq6–automorphism σ over Fq; i.e., f(αy) = ασf(y) for each α ∈ Fq3 and y ∈ Fq6 . A direct calculation
shows that

f : y 7→ lyσ +myσq
3
, (3)

where l and m are two elements of Fq6 such that N(l) 6= N(m) and σ ∈ {q, q2, q4, q5}. Indeed, since f is
Fq–linear, we can write

f(y) =
5∑
i=0

aiy
qi

,
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with ai ∈ Fq6 . Now, since f(αy) = ασf(y) for any α ∈ Fq3 and for any y ∈ Fq6 , we have

∀ α ∈ Fq3 ∀i = 0, . . . , 5 : ai(αq
i

− ασ) = 0.

It follows that f must assume Form (3).

This allows us to prove the following

Theorem 3.2. Up to the action of the group G, the generic form for a scattered Fq–linear set L of rank
6 of PG(3, q3) disjoint from the hyperbolic quadric Q and whose associated Fq–pseudoregulus has at least
one of its transversal lines being external to Q, is the following

L = L(λ, µ, α, β, σ) := {〈λy + µyq
3

+ αyσ + βyσq
3
, y〉 : y ∈ F∗q6},

where λ, µ, α and β are elements of Fq6 such that N(α) 6= N(β), σ ∈ {q, q2, q4, q5} and

∀y ∈ F∗q6 : N(y) 6= N(λy + µyq
3

+ αyσ + βyσq
3
). (4)

Also, the elements λ and µ can be taken up to their norms, i.e., if N(λ) = N(λ′) and N(µ) = N(µ′),
then

L(λ, µ, α, β, σ)G = L(λ′, µ′, α, β, σ)G .

Proof. By the previous arguments we can suppose

r = {〈y, 0〉 : y ∈ F∗q6}.

and
r′ = rλ,µ = {〈λy + µyq

3
, y〉 : y ∈ Fq6},

where λ, µ ∈ F∗q6 and λ and µ can be taken up to their Fq3–norms. Also, by Theorem 2.1, P(L) =
{〈P, Pφf 〉 : P ∈ r′}, where φf is a semilinear map between r′ and r as described in (2) and (3) and
L = L(Wρ) (ρ ∈ F∗q3), where

Wρ = {(λy + µyq
3

+ ρ(lyσ +myσq
3
), y) : y ∈ Fq6},

with N(l) 6= N(m). Putting α = lρ and β = mρ we have that

L = {〈λy + µyq
3

+ αyσ + βyσq
3
, y〉 : y ∈ F∗q6}, (5)

for some λ, µ, α, β ∈ Fq6 , such that N(α) 6= N(β). Finally, since L ∩Q = ∅,

∀y ∈ F∗q6 : N(y) 6= N(λy + µyq
3

+ αyσ + βyσq
3
).

Let S be a presemifield in class F5 and let L(S) be the associated scattered Fq–linear set of rank 6 in
PG(3, q3). By Theorem 3.2, up to the G–action we have

L(S) = L(λ, µ, α, β, σ) = {〈λy + µyq
3

+ αyσ + βyσq
3
, y〉 : y ∈ F∗q6}.
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By [8], the G-orbit corresponding to the isotopism class [St] of the transpose semifield St of S is obtained
by an element of PΓO+(4, q3) interchanging the reguli R1 and R2, for instance 〈x, y〉 7→ 〈x, yq3〉; indeed
[St] corresponds to the G-orbit L(St)G with

L(St) = {〈µz + λzq
3

+ βzσ + αzσq
3
, z〉 : z ∈ F∗q6} = L(µ, λ, β, α, σ). (6)

Also, direct computation shows that the orthogonal complement of the projective space L(S) over Fq,
with respect to the Fq–bilinear form Trq3/q ◦ b, described at the beginning of this section, is

{〈z, g(z)〉 : z ∈ F∗q6}, where g(z) = λq
3
z + µzq

3
+ ασ

−1q3zσ
−1

+ βσ
−1
zσ
−1q3 .

Using the collineation 〈x, y〉 7→ 〈y, x〉 of G, we get that the G-orbit corresponding to the isotopism class
of the translation dual S⊥ of S is L(S⊥)G , with

L(S⊥) = {〈λq
3
z + µzq

3
+ ασ

−1q3zσ
−1

+ βσ
−1
zσ
−1q3 , z〉 : z ∈ F∗q6} = L(λq

3
, µ, ασ

−1q3 , βσ
−1
, σ−1).

Hence, by [2, Theorem 2.1], by Theorem 3.2 and by the previous arguments it follows

Theorem 3.3. Up to isotopism, the multiplication for a presemifield S = (Fq6 ,+, ?) belonging to the
class F5 and whose associated Fq–pseudoregulus has one of its transversal lines external to the quadric
Q can be written in the following fashion

x ? y = (λy + µyq
3

+ αyσ + βyσq
3
)x+ yxq

3
, (7)

where λ, µ, α, β ∈ Fq6 , σ ∈ {q, q2, q4, q5} and N(α) 6= N(β); such that

∀y ∈ F∗q6 : N(y) 6= N(λy + µyq
3

+ αyσ + βyσq
3
). (8)

Also, the elements λ and µ can be taken up to their norms over Fq3 . We denote such a semifield by
S = S(λ, µ, α, β, σ). The isotopism class of the transposed presemifield is given by

[St] = [S(λ, µ, α, β, σ)t] = [S(µ, λ, β, α, σ)].

The isotopism class of the translation dual S⊥ of S is given by

[S⊥] = [S(λ, µ, α, β, σ)⊥] = [S(λq
3
, µ, ασ

−1q3 , βσ
−1
, σ−1)].

Remark 3.4. Note that S(λ, µ, α, β, σ) = S(λ, µ, β, α, σq3).

4 Nuclei

The definition of nuclei of a semifield can be found, for instance, in [5]. If S is a presemifield, then S
turns out to be isotopic to a semifield, say S′. Since the size of the center as well as the size of the nuclei
of a semifield are invariant under isotopy, we will say that a presemifield S has left (respectively, middle
and right) nucleus of order q′, and we write q′ = |Nl(S)| (respectively, |Nm(S)| and |Nr(S)|) if the left
(respectively, middle and right) nucleus of a semifield S′ isotopic to it has order q′ (see [12, Thm. 2.1 and
Remark 2.2]).
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Let S be a presemifield belonging to the class F5 and whose associated Fq–pseudoregulus has one of its
transversal lines external to the quadric Q. Then by Theorem 3.3, up to isotopism, the multiplication of
S = S(λ, µ, α, β, σ) is

x ? y = (λy + µyq
3

+ αyσ + βyσq
3
)x+ yxq

3
,

where λ, µ, α, β ∈ Fq6 , σ ∈ {q, q2, q4, q5} and N(α) 6= N(β); such that

∀y ∈ F∗q6 : N(y) 6= N(λy + µyq
3

+ αyσ + βyσq
3
).

Let S = S(λ, µ, α, β, σ) = {ϕy : x 7→ (λy + µyq
3

+ αyσ + βyσq
3
)x + yxq

3} be the spread set of linear
maps associated with the presemifield S. Then S is contained in the 4–dimensional vector space V =
EndFq3 (Fq6) of the endomorphisms of Fq6 over Fq3 .
By [11, Property 2.1], the right nucleus of a semifield isotopic to S is isomorphic to the largest subfield
of the space V whose elements ϕA,B : x 7→ Ax+Bxq

3
, with A,B ∈ Fq6 , satisfy the property

ϕA,B ◦ ϕy ∈ S, for each ϕy ∈ S.

Put `(y) = λy + µyq
3

+ αyσ + βyσq
3
; then y 7→ `(y) is an additive map from Fq6 → Fq6 and

ϕA,B ◦ ϕy : x 7→ (A`(y) +Byq
3
)x+ (Ay +B`(y)q

3
)xq

3
.

Then
ϕA,B ◦ ϕy ∈ S ⇔ ∀y ∈ Fq6 : A`(y) +Byq

3
= `(Ay +B`(y)q

3
)⇔

∀y ∈ Fq6 : A(λy + µyq
3

+ αyσ + βyσq
3
) +Byq

3
= `(Ay) + `(B`(y)q

3
). (9)

We now look at Equation (9) as a polynomial equation in the variable y. On the left hand side, y appears
with degrees 1, q3, σ and σq3 while it is easy to check that on the right hand side the variable y appears
with degrees 1, q3, σ, σq3, σ2 and σ2q3. Since σ2 ∈ {q2, q4} and σ2q3 ∈ {q, q5}, Equation (9) implies the
two conditions

ασq
3+1Bσ + β1+σBσq

3
= 0 (10)

and
Bσβσq

3
α+Bσq

3
βασ = 0. (11)

Since N(α) 6= N(β), from Equations (10) and (11) we get B = 0, and taking this into account, Equation
(9) can be written as

∀y ∈ Fq6 : A(λy + µyq
3

+ αyσ + βyσq
3
) = λAy + µAq

3
yq

3
+ αAσyσ + βAσq

3
yσq

3
. (12)

From (12) we get
µ(A−Aq

3
) = 0, (13)

α(A−Aσ) = 0, (14)

β(A−Aσq
3
) = 0. (15)

If µ 6= 0, since (α, β) 6= (0, 0), from Conditions (13), (14) and (15) we get A ∈ Fq. If µ = 0, α 6= 0 and
β = 0, we have A = Aσ and, hence, A ∈ Fq2 if σ ∈ {q2, q4}, whereas A ∈ Fq if σ ∈ {q, q5}. If, on the
other hand, µ = 0, α = 0 and β 6= 0 then A = Aσq

3
and, hence, A ∈ Fq2 if σ ∈ {q, q5}, whereas A ∈ Fq if

σ ∈ {q2, q4}. Finally, if µ = 0, α 6= 0 and β 6= 0 then A ∈ Fq. Hence, we can prove the following result.
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Theorem 4.1. Let S = (Fq6 ,+, ?) be a presemifield as in Theorem 3.3, then |Nr(S)|, |Nm(S)| ∈ {q, q2}
and one of the following holds true:

i) |Nm(S)| = q and |Nr(S)| = q2 ⇔

 µ = β = 0, α 6= 0 and σ ∈ {q2, q4}
or

µ = α = 0, β 6= 0 and σ ∈ {q, q5}

ii) |Nm(S)| = q2 and |Nr(S)| = q ⇔

 λ = α = 0, β 6= 0 and σ ∈ {q2, q4}
or

λ = β = 0, α 6= 0 and σ ∈ {q, q5}

iii) |Nm(S)| = |Nr(S)| = q in the remaining cases.

Proof. By the previous arguments it follows that |Nr(S)| ∈ {q, q2}. In particular |Nr(S)| = q2 if and only
if µ = β = 0, α 6= 0 and σ ∈ {q2, q4} or µ = α = 0, β 6= 0 and σ ∈ {q, q5}. Since [St] = [S(λ, µ, α, β, σ)t] =
[S(µ, λ, β, α, σ)] and since the transpose operation permutes the sizes of the right and the middle nuclei and
leaves invariant the sizes of the left nucleus and of the center ([7] and [9]), we have that |Nm(S)| ∈ {q, q2}
and if |Nr(S)| = q2, then |Nr(S)| = q. Also, Statement ii) holds true. Finally, when the parameters
(λ, µ, α, β, σ) assume values different from those listed in i) and ii), we have |Nr(S)| = |Nm(S)| = q.

5 New constructions of semifields S(λ, 0, λ, 0, q2)

As mentioned in the introduction, the only known examples of semifields in class F5, for which the
corresponding Fq–pseudoregulus has at least one transversal line external to Q are the examples b) and
c) listed in Section 2, since the Knuth semifields of type a) have both transversals contained in Q. These
correspond to the following parameter sets (λ, µ, α, β, σ):

b) If λ = µ = β = 0 or λ = µ = α = 0 the multiplication of S = S(λ, µ, α, β, σ) is given by

x ? y = αyσx+ yxq
3

or
x ? y = βyσq

3
x+ yxq

3
,

respectively, and hence the semifield S is a Generalized Twisted Field (see [3, p. 241]). In such a
case the associated Fq–pseudoregulus has both transversal lines external to Q and pairwise polar
([10, Property 4.8]).

c) If µ = β = 0, λ = 1, α 6= 0 and σ ∈ {q2, q4} or λ = α = 0, µ = 1, β 6= 0 and σ ∈ {q2, q4}, the
multiplication of S = S(λ, µ, α, β, σ) is given by

x ? y = (y + αyσ)x+ yxq
3

or
x ? y = (yq

3
+ βyσq

3
)x+ yxq

3
,

respectively. These correspond to the examples constructed in [12] for α1+q2+q4 = 1, or β1+q2+q4 =
1, and q ≡ 1(mod 3). In such a case the associated Fq–pseudoregulus has the other transversal line
contained in Q ([12, Sec. 4]).
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In what follows we show that there exist other choices for the parameter sets (λ, µ, α, β, σ) producing
semifields not isotopic to those of examples b) and c). Choose µ = β = 0, λ = α 6= 0, with N(λ) 6= 1 and
σ = q2. In this way

S = S(λ, 0, λ, 0, q2) : x ? y = λ(y + yq
2
)x+ yxq

3

and the non–singularity condition becomes

∀y ∈ F∗q6 :
1

N(λ)
6= N

(y + yq
2

y

)
. (16)

Remark 5.1. Since λ 6= 0 and N(λ) 6= 1, the line r′ = rλ,0 is external to Q and r′ 6= r⊥. This means
that the ensuing semifields, whenever they exist, are not isotopic to the known semifields belonging to
F5 (listed as a), b), c) in Section 2).

We start by proving the following

Lemma 5.2. Let q be an odd prime power, q ≡ 1(mod 3) and let ξ be a primitive 6th root of unity in Fq.
Then

2(1− ξ) /∈
{(y + yq

2

y

)q3+1

: y ∈ F∗q6
}
. (17)

Proof. First note that since q is odd and q ≡ 1(mod 3), we have that q ≡ 1(mod 6) and so Fq contains
6th roots of unity. Let ξ be a primitive 6th root of unity over Fq and let ρ ∈ Fq such that ρ

q−1
6 = ξ.

Now, let u ∈ Fq6 be a solution of the equation x6 = ρ.

Since ρ
q2−1

6 = ξ2 and ρ
q3−1

6 = ξ3, we have u /∈ (Fq2 ∪ Fq3). Also uq
i

= ξiu, i ∈ {1, . . . , 5}; indeed
uq = uuq−1 = u (u6)

q−1
6 = uρ

q−1
6 = ξu. Since {1, u, u2, u3, u4, u5} is an Fq–basis of Fq6 , each element

y ∈ Fq6 can be written uniquely as y =
∑5
i=0 aiu

i, ai ∈ Fq. Taking into account that uq
3

= ξ3u = −u,
we have that

N(y) = yq
3+1 = a2

0+ρ(−a2
3+2a2a4−2a1a5)+(a2

4ρ+2a0a2−a2
1−2a3a5ρ)u2+(a2

2+2a0a4−a2
5ρ−2a1a3)u4.

Moreover,

N(y + yq
2
) = 4a2

0 + ρ(−4a2
3 + 2a2a4(ξ2 + 1)(1− ξ)− 2a1a5(ξ2 + 1)(1− ξ))+

+[a2
4(ξ2 + 1)2ρ+ 4a2a0(1− ξ)− a2

1(ξ2 + 1)2 − 4a3a5(1− ξ)ρ]u2+

+[a2
2(1− ξ)2 + 4a0a4(ξ2 + 1)− ρa2

5(1− ξ)2 − 4a1a3(ξ2 + 1)]u4.

Since ρ
q−1
2 = ξ3 = −1 and since {1, u2, u4} is an Fq–basis of Fq3 , straightforward computations show that

2(1− ξ)N(y) = N(y + yq
2
) if and only if y = 0; this implies (17).

Now, we can prove

Theorem 5.3. Let q be an odd prime power, q ≡ 1(mod 3) and let ξ be a primitive 6th root of unity over
Fq; then the multiplications

x ? y = λ(y + yq
2
)x+ yxq

3
and x ?′ y = λ(yq

3
+ yq

5
)x+ yxq

3
,
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where λ ∈ Fq6 such that N(λ) = 1
2(1−ξ) , define the presemifields S = (Fq6 ,+, ?) and S′ = (Fq6 ,+, ?′) with

|Nr(S)| = |Nm(S′)| = q2 and |Nm(S)| = |Nr(S′)| = q, belonging to the class F5. Also, [St] = [S′], the
presemifields S and S′ are not isotopic and are not isotopic to any previously known semifield.

Proof. By Lemma 5.2, if λ is an element of Fq6 such that N(λ) = 1
2(1−ξ) , the non–singularity condition

(16) is satisfied and hence we get a presemifield S = (Fq6 ,+, ?) = S(λ, 0, λ, 0, q2), where x ? y = λ(y +
yq

2
)x+yxq

3
, belonging to the family F5 and with |Nm(S)| = q and |Nr(S)| = q2 (see Theorem 4.1). Also,

the associated Fq–pseudoregulus has both the transversal lines r and r′ = rλ,0 external to the quadric Q
(indeed λ 6= 0 and N(λ) 6= 1 for each q ≡ 1(mod 3)) and r′ 6= r⊥. Hence, by Remark 5.1, the presemifield
S is not isotopic to any previously known semifield. By Theorem 3.3, [S′] = [St] = [S(0, λ, 0, λ, q2)] and
by using Theorem 4.1 and by Remark 5.1, the remaining parts of the statement follow.

Now we focus on the case q even, starting from the following technical lemma.

Lemma 5.4. If q = 22h and h ≡ 1(mod 3), then q−1
3 ≡ 1(mod 3).

Proof. If q = 22h and h = 1 + 3k, then q−1
3 = 43k + 43k−1 + . . .+ 42 + 4 + 1 ≡ 1(mod 3).

Lemma 5.5. Let q = 22h, such that h ≡ 1(mod 3), η be a primitive 3th root of unity over Fq and let
u ∈ Fq3 \ Fq such that u3 = η. Then

η(1 + u) /∈
{(y + yq

2

y

)q3+1

: y ∈ F∗q6
}
. (18)

Proof. Since q ≡ 1(mod 3), the finite field Fq contains a primitive 3th root of unity, say η. Since h ≡
1(mod 3) we have q−1

3 ≡ 1(mod 3), by the previous lemma. Hence, there exists an element u ∈ Fq3 \ Fq
such that u3 = η and uq = uuq−1 = u (u3)

q−1
3 = uη

q−1
3 = uη. Since {1, u, u2} is an Fq2–basis of Fq6 ,

any element y ∈ Fq6 can be uniquely written as y = α+ βu+ γu2, with α, β, γ ∈ Fq2 . Condition (18) is
equivalent to show that

η(1 + u)N(y) = N(y + yq
2
) if and only if y = 0. (19)

Moreover, Condition (19) corresponds to

η(1 + u)[α1+q + (βγq + βqγ)η + (αβq + αqβ + γ1+qη)u+ (αγq + αqγ + βq+1)u2]

= (βγq + βqγ)η + η2γ1+qu+ β1+qη2u2

if and only if (α, β, γ) = (0, 0, 0), namely

[α1+q + (βγq + βqγ)η + (αγq + αqγ + βq+1)η] + [αβq + αqβ + γ1+qη + α1+q + (βγq + βqγ)η]u
+[αγq + αqγ + βq+1 + αβq + αqβ + γ1+qη]u2 = (βγq + βqγ) + ηγ1+qu+ β1+qηu2. (20)

If γ = 0, since {1, u, u2} is an Fq–basis, from (20) we get αq+1 + βq+1η = 0
αqβ + βqα+ αq+1 = 0
βq+1 + αqβ + βqα = βq+1η
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and hence α = β = 0, i.e. y = 0.
Suppose, on the other hand, that γ 6= 0. Dividing Equation (20) by γq+1 and replacing α/γ by α and
β/γ by β, Equation (20) is equivalent to the following systemβ + βq = α1+q + (β + βq)η + (α+ αq + β1+q)η

0 = αβq + αqβ + α1+q + η(β + βq)
β1+qη = α+ αq + β1+q + αβq + αqβ + η.

(21)

Now, let ξ ∈ Fq2 \ Fq such that ξ2 + ξ + ρ = 0, with ρ ∈ Fq and Trq/2(ρ) = 1. So, writing α = x + yξ
and β = z + tξ, with x, y, z, t ∈ Fq and taking into account that α + αq = y, αq+1 = x2 + xy + y2ρ and
αqβ + βqα = xt+ yz, System (21) becomes t = x2 + xy + y2ρ+ tη + η(y + z2 + zt+ t2ρ)

0 = xt+ yz + x2 + xy + y2ρ+ ηt
(z2 + zt+ t2ρ)η = y + z2 + zt+ t2ρ+ xt+ yz + η.

(22)

Now, the assertion is proven if we show that System (22) has no solution (x, y, z, t) ∈ F4
q. To this aim we

start by noting that if (x, y, z, 0) were a solution of (22), then by adding the three equations of (22), and
multiplying by η we obtain

y = ηz2 + η2.

By substituting this value of y in the third equation of System (22), we get

z3 + η2z2 + ηz + η2 = 0,

which means that z is a solution of the cubic equation

X3 + η2X2 + ηX + η2 = 0,

with coefficients in Fq. Hence, z ∈ {η2 + u, η2 + ηu, η2 + η2u} and so z /∈ Fq; a contradiction.
Now suppose (x, y, z, t) ∈ F4

q with t 6= 0 is a solution of System (22). By adding the three equations of
(22), and multiplying by η, we get

y = ηR+ tη + η2, (23)

where R = z2 + zt+ ρt2. Then by adding the first two equations of (22) and substituting (23) we have

tx = ηRz +R+ ηtz + η2z + ηt+ 1. (24)

Since t 6= 0, by solving (24) in x and substituting in the first equation of System (22) we get

R3 + η2R2t+ ηR2 +Rt2 + ηRt+ t3 + η2R+ ηt2 + t+ η = 0. (25)

Hence, if System (22) admits a solution (x, y, z, t) ∈ F4
q, with t 6= 0 then the algebraic curve Γ of order 6

of the projective plane PG(2,F), where F is the algebraic closure of Fq, defined by Equation (25) has an
Fq–rational point P = (z, t), with t 6= 0. Let φ be the semilinear collineation of PG(2,F) induced by the
Fq–automorphism x 7→ xq; from (25) we have that Γφ = Γ. Moreover, direct computation shows that Γ
is the union of the two cubic curves of PG(2,F), say C3 and C′3, with equations

G(z, t) = z3 + (ξ + 1)z2t+ η2z2 + ξ2zt2 + zt+ ηz + ξρt3 + (ξη + ρη2)t2 + (η2 + ξη)t+ η2 = 0 (26)
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and

G1(z, t) = z3+ξz2t+η2z2+(ξ2+1)zt2+zt+ηz+(ξ+1)ρt3+((ξ+1)η+ρη2)t2+(η2+(ξ+1)η)t+η2 = 0, (27)

respectively. In particular, since ξq = ξ + 1, we get C′3 = Cφ3 and Cφ
2

3 = C3. If P = (z, t), with t 6= 0 were
an Fq–rational point of Γ then P ∈ C3 ∩ C′3 and hence we would have G(z̄, t̄) +G1(z̄, t̄) = 0, i.e.

R̄ = η(t̄+ 1), (28)

where R̄ = z̄2 + z̄t̄+ ρt̄2. Taking into account (28), from (25) we obtain t̄ = 1 and hence z̄2 + z̄ + ρ = 0
and, since Trq/2(ρ) = 1, this again implies that z̄ /∈ Fq, a contradiction. Hence, the assertion follows.

Then, we have the following

Theorem 5.6. Let q = 22h, such that h ≡ 1(mod 3), η be a primitive 3th root of unity over Fq and let
u ∈ Fq3 \ Fq such that u3 = η; then the multiplications

x ? y = λ(y + yq
2
)x+ yxq

3
and x ?′ y = λ(yq

3
+ yq

5
)x+ yxq

3
,

where λ ∈ Fq6 such that N(λ) = 1
η(1+u) , define the presemifields S = (Fq6 ,+, ?) and S′ = (Fq6 ,+, ?′) with

|Nr(S)| = |Nm(S′)| = q2 and |Nm(S)| = |Nr(S′)| = q, belonging to the class F5. Also, [St] = [S′], the
presemifields S and S′ are not isotopic and are not isotopic to any previously known semifield.

Proof. By using Lemma 5.5 and arguing as in the proof of Theorem 5.3, we get the assertion.

Lemma 5.7. Let q = 3h with h ≡/ 0 (mod 3) and let u ∈ Fq3 \ Fq such that u3 = u+ 1. Then,

−(u+ u2) /∈
{(y + yq

2

y

)q3+1

: y ∈ F∗q6
}
. (29)

Proof. First note that, since q = 3h the polynomial x3−x−1 has roots in F33F3, and since h ≡/ 0 (mod 3)
it is irreducible over Fq. This means that it has 3 distinct roots in Fq3 , conjugate over Fq. Hence, there
exists an element u ∈ Fq3 \ Fq such that u3 = u + 1. Also, using the fact that u + uq + uq

2
= 0 and

uq
2+q+1 = 1, straightforward computations show that {uq, uq2} = {1 + u,−1 + u}. In order to take this

fact into account in what follows, we put uq = ε+ u, where ε = ±1, and hence uq
2

= −ε+ u. Note that
Condition (29) is equivalent to show that

−(u+ u2)N(y) = N(y + yq
2
), (30)

if and only if y = 0. Now, since {1, u, u2} is an Fq–basis of Fq3 (and hence an Fq2–basis of Fq6), any
element y ∈ Fq6 can be uniquely written as y = α+ βu+ γu2, where α, β, γ ∈ Fq2 .
As in the proof of Lemma 5.5, we first assume γ = 0. Hence

N(y) = αq+1 + (αβq + αqβ)u+ βq+1u2

and
N(y + yq

2
) = (α+ βε)q+1 + ((α+ βε)βq + (αq + βqε)β)u+ βq+1u2,
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from Equation (30), we get −(αβq + αqβ)− βq+1 = (α+ βε)q+1

β1+q − α1+q − (αβq + αqβ) = (α+ βε)βq + (αq + βqε)β
−α1+q − (αβq + αqβ)− βq+1 = β1+q.

(31)

From the third equation of (31) we get

βq+1 − α1+q − (αβq + αqβ) = 0

and hence from the second equation we have

αβq + αqβ − βq+1ε = 0. (32)

Taking into account (32) in the first equation of (31), we get

αq+1 = −εβq+1. (33)

So, System (31) is equivalent to  αq+1 + εβq+1 = 0
αβq + αqβ − εβq+1 = 0
αβq + αqβ − βq+1 + αq+1 = 0,

which admits as unique solution β = α = 0, i.e. y = 0.
Suppose now γ 6= 0. As in Lemma 5.5, up to replacing α/γ by α and β/γ by β, without loss of generality,
we can suppose y = α+ βu+ u2, with α, β ∈ Fq2 .
In such a case, we have

N(y) = (αq+1 + β + βq) + (αβq + αqβ + β + βq + 1)u+ (βq+1 + α+ αq + 1)u2

and
N(y + yq

2
) =

[
(−α− βε+ 1)q+1 + (β − ε) + (β − ε)q

]
− [(−α− βε+ 1)(β − ε)q + (−α− βε+ 1)q(β − ε)− (β − ε)− (βq − ε)− 1]u

+ [(−α− βε+ 1) + (−αq − βqε+ 1) + (β − ε)(βq − ε) + 1]u2.

Again taking into account u3 = u+1 and u4 = u2 +u, Equation (29) is equivalent to the following system αq+1 − βq+1 + (αβq + αqβ)(1 + ε) + (β + βq)(−1− ε) + ε = 0
−αq+1 + (1 + ε)βq+1 + (αβq + αqβ) + (1 + ε)(α+ αq)− (β + βq)− 1 = 0
αq+1 − βq+1 + (αβq + αqβ)− (α+ αq)− (β + βq)− 1 = 0.

(34)

Let ε = −1. Then System (34) becomes

αq+1 − βq+1 − 1 = 0 (35)

−αq+1 + αβq + αqβ − β − βq − 1 = 0 (36)

αq+1 − βq+1 + αβq + αqβ − α− αq − β − βq − 1 = 0, (37)
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which is equivalent to the following incompatible system βq+1 = αq+1 − 1
αβq + αqβ − β − βq − 1 = αq+1

αq+1 − αq − α+ 1 = αq(α− 1)− (α− 1) = 0.

In the case ε = 1, arguing in a similar way we have the assertion.

So, we have the following

Theorem 5.8. Let q = 3h with h ≡/ 0 (mod 3) and let u ∈ Fq3 \ Fq such that u3 = u+ 1. Then

x ? y = λ(y + yq
2
)x+ yxq

3
and x ?′ y = λ(yq

3
+ yq

5
)x+ yxq

3
,

where λ ∈ Fq6 such that N(λ) = 1
−(u+u2) , define the presemifields S = (Fq6 ,+, ?) and S′ = (Fq6 ,+, ?′)

with |Nr(S)| = |Nm(S′)| = q2 and |Nm(S)| = |Nr(S′)| = q, belonging to the class F5. Also, [St] = [S′], the
presemifields S and S′ are not isotopic and are not isotopic to any previously known semifield.

Proof. By using Lemma 5.7 and arguing as in the proof of Theorem 5.3, we get the assertion.

6 Computational results

We conclude this paper with some observations from the computational results which we obtained using
the computer algebra system MAGMA [1].
For q = 2, an exhaustive search shows that there are no new semifields S(λ, µ, α, β, σ). We remark that
semifields of order 64 were recently classified by Rùa et al. in [13], and our computational result can also
be obtained from the properties of semifields S(λ, µ, α, β, σ), and the information listed in [13, Table 1].
For q > 2, besides the examples that belong to the infinite families from the previous section, we obtained
many new examples of semifields S(λ, µ, α, β, σ) of order 36 and 46, with (µ, β) 6= (0, 0) and α 6= λ. As an
illustration we list some of these examples below. Note that we have not done any exhaustive computer
searches, except in the case that q = 3, and the transversal rλ,µ is tangent to the hyperbolic quadric Q,
where we found no examples.

q σ λ µ α β rλ,µ is Comments

2 q no result (Exhaustive search)

3 q z z5 z25 z93 External

3 Tangent no result (Exhaustive search)

3 q z15 z20 z z403 Secant

4 q z5 z40 z43 z31 External

4 q z5 z30 1 z230 Tangent

4 q z70 z20 z85 z2022 Secant
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