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EGGS IN PG(4n — 1,q), ¢ EVEN, CONTAINING A
PSEUDO-CONIC

MATTHEW R. BROWN anp MICHEL LAVRAUW

ABSTRACT

An ovoid of PG(3,q) can be defined as a set of g2 + 1 points with the property that every three
points span a plane and at every point there is a unique tangent plane. In 2000 M. R. Brown ([7])
proved that if an ovoid of PG(3, ¢), ¢ even, contains a conic, then the ovoid is an elliptic quadric.
Generalising the definition of an ovoid to a set of (n — 1)-spaces of PG(4n — 1,¢) J. A. Thas [21]
introduced the notion of pseudo-ovoids or eggs: a set of ¢>™ + 1 (n — 1)-spaces in PG(4n — 1,q),
with the property that any three egg elements span a (3n — 1)-space and at every egg element
there is a unique tangent (3n — 1)-space. We prove that an egg in PG(4n — 1, q), ¢ even, contains
a pseudo-conic, that is, a pseudo-oval arising from a conic of PG(2, ¢"), if and only if the egg is
classical, that is, arising from an elliptic quadric in PG(3, ¢").

1. Introduction and preliminaries

An oval of PG(2,q) is a set of ¢ + 1 points no three collinear. In 1954 it was shown
by B. Segre [20] that if ¢ is odd then an oval in PG(2,q) is a conic. For g even,
many ovals are known which are not conics (see [6] for a recent survey). An ovoid
of PG(3, q) is a set of ¢> + 1 points such that every three points span a plane. If we
exclude PG(3,2), that is, assuming q > 2, then ¢* + 1 is the maximal cardinality of
a set of points satisfying this property. Moreover all the tangent lines to an ovoid
at a certain point lie in a plane ([2], [17]); the tangent plane at that point. In 1955
A. Barlotti [2] and G. Panella [17] independently proved that an ovoid in PG(3, ),
q odd, is an elliptic quadric. For ¢ even, one other example of an ovoid is known;
called the Tits ovoid, which exists for ¢ = 22¢*1, e > 1. For results characterising the
elliptic quadric and the Tits ovoid we refer to the survey [6]. A result fundamental
to the proof of the main result of this paper is the following characterisation of the
elliptic quadric ovoid.

THEOREM 1 (M. R. Brown [7]). Let O be an ovoid of PG(3,q), q even, and 7
a plane of PG(3,q) such that # N O is a conic. Then O is an elliptic quadric.

An (n—1)-spread (partial (n—1)-spread) S of PG(rn—1, q) is a set of (n—1)-spaces
such that any point of PG(rn — 1, q) is contained in exactly (at most) one element
of S (also called a spread if the dimension of the elements of S is understood). A
spread S is called Desarguesian if the incidence geometry defined by taking the
elements of S as points, the subspaces spanned by two different elements of S as
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lines, and the natural incidence relation (symmetric containment), is isomorphic to
a Desarguesian projective space.

An egg £ in PG(4n — 1,q) (or pseudo-ovoid) is a partial (n — 1)-spread of size
¢®>™ + 1, such that every three egg elements span a (3n — 1)-space and for every
egg element E there exists a (3n — 1)-space Tr (called the tangent space of £ at
E) which contains E and is skew from the other egg elements. A pseudo-oval (or
an egg in PG(3n — 1,¢)) is a partial (n — 1)-spread of size ¢" + 1, such that every
three elements of the pseudo-oval span PG(3n — 1,¢). The notion of eggs was in-
troduced by J. A. Thas in 1971 ([21]). An egg £ in PG(4n — 1,q) is called a good
egg if there is exists an egg element E such that every (3n — 1)-space containing
FE and two other egg elements contains exactly ¢" + 1 egg elements. In that case
E is called a good element of £. If the elements of a pseudo-ovoid, respectively
pseudo-oval, belong to a Desarguesian (n — 1)-spread of PG(4n — 1, q), respectively
PG(3n—1,q), then the pseudo-ovoid, respectively pseudo-oval, is called elementary.
It follows that an elementary pseudo-oval arises from an oval of PG(2,¢") and an
elementary pseudo-ovoid arises from an ovoid of PG(3, ¢™). If the oval is a conic we
say that the elementary pseudo-oval is a pseudo-conic or a classical pseudo-oval,
if the ovoid is an elliptic quadric then we call the pseudo-ovoid a classical pseudo-
ovoid. In 1974 J. A. Thas proved that if every four egg elements span PG(4n —1, q)
or are contained in a (3n — 1)-dimensional space, then the egg is elementary ([22]).

The only known examples of pseudo-ovals are elementary and pseudo-ovals have
been classified by computer for ¢" < 16 ([19]). More examples are known for
pseudo-ovoids, all of them over a field of odd characteristic and they are connected
to certain semifields (see Chapter 3 of [12] for a survey and [13] for recent results
for the case when ¢ is odd).

In this article we are concerned about pseudo-ovoids in the case when ¢ is even.
All known examples of eggs in PG(4n — 1, q), g even, are elementary. Pseudo-ovoids
have been classified by computer for ¢" < 4 ([14]). In 2002 J. A. Thas published
the following two theorems.

THEOREM 2 (J. A. Thas [25]). An egg £ of PG(4n — 1,q), with q even, is
classical if and only if £ is good at some element and contains at least one pseudo-
conic.

THEOREM 3 (J. A. Thas [25]). An egg £ of PG(4n — 1,q), with q even, is
classical if and only if £ contains at least two intersecting pseudo-conics.

In this article we prove that the only assumption one needs to conclude that an egg
in PG(4n — 1,q), q even, is classical, is that it contains a pseudo-conic.

2. Eggs and translation generalized quadrangles

A (finite) generalized quadrangle (GQ) (see [18] for a comprehensive introduction) is
an incidence structure S = (P, B,I) in which P and B are disjoint (non-empty) sets
of objects called points and lines, respectively, and for which IC (P x B)U (B x P)
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is a symmetric point-line incidence relation satisfying the following axioms:

(i) Each point is incident with 1 + ¢ lines (¢ > 1) and two distinct points are
incident with at most one line;
(ii) Each line is incident with 1 + s points (s > 1) and two distinct lines are
incident with at most one point;
(iii) If X is a point and £ is a line not incident with X, then there is a unique
pair (Y,m) € P x B for which X ImIY I/

The integers s and t are the parameters of the GQ and S is said to have order
(s,t). If s = ¢, then S is said to have order s. If S has order (s,t), then it follows
that |[P| = (s+1)(st + 1) and |B| = (t + 1)(st + 1) ([18, 1.2.1]). A subquadrangle
S'=(P,B,T) of Sis aGQ such that P’ C P, B' C B and I is the restriction of
ITto (P' xB')U (B xP'). Let S = (P,B,I) be a GQ of order (s,t), s #1,t # 1.
A collineation 8 of S is an elation about the point P if § = id or if 0 fixes all lines
incident with P and fixes no point of P\ P+. If there is a group G of elations about
P acting regularly on P \ P+, then we say that S is an elation generalized quad-
rangle (EGQ) with elation group G and base point P. Briefly we say that (SF), @)
or S(P) is an EGQ. If the group G is abelian, then we say that the EGQ (S, G)
is a translation generalized quadrangle (TGQ) and G is the translation group.

In PG(2n +m — 1,q) consider a set £(n,m,q) of ¢™ + 1 (n — 1)-dimensional sub-
spaces, every three of which generate a PG(3n — 1, ¢) and such that each element
E of £(n,m,q) is contained in an (n + m — 1)-dimensional subspace Tr having no
point in common with any element of £(n,m,q) \ {E}. It is easy to check that Tg
is uniquely determined for any element E of £(n,m,q). The space Tg is called the
tangent space of £(n,m,q) at E. For n = m = 1 such a set £(1,1,q) is an oval
in PG(2,q) and more generally for n = m such a set £(n,n,q) is a pseudo-oval of
PG(3n—1,q). For m = 2n = 2 such a set £(1,2, q) is an ovoid of PG(3, ¢) and more
generally for m = 2n such a set £(n,2n, q) is a pseudo-ovoid. In general we call the
sets £(n,m,q) eggs.

Now embed PG(2n + m — 1,q) in a PG(2n + m,q), and construct a point-line
geometry T'(n,m,q) as follows. Points are of three types:

(i) the points of PG(2n + m,q) \ PG(2n +m — 1,q), called the affine points;
(ii) the (n+m)-dimensional subspaces of PG(2n+m, ¢) which intersect PG(2n +
m — 1,¢) in a tangent space of £(n,m,q);
(iii) the symbol (00).

Lines are of two types:
(a) the n-dimensional subspaces of PG(2n + m, ¢) which intersect PG(2n +m —

1,q) in an element of £(n,m,q);
(b) the elements of £(n,m,q).

Incidence in T'(n,m, q) is defined as follows. A point of type (i) is incident only with
lines of type (a); here the incidence is that of PG(2n + m,q). A point of type (ii)
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is incident with all lines of type (a) contained in it and with the unique element of
&(n,m,q) contained in it. The point (0o) is incident with no line of type (a) and
with all lines of type (b).

THEOREM 4 (8.7.1 of Payne and Thas [18]). The incidence geometry T'(n,m, q)
is a TGQ of order (¢™, ¢™) with base point (00). Conversely, every TGQ is isomor-
phic to a T'(n,m,q). It follows that the theory of TGQ is equivalent to the theory
of the sets E(n,m,q).

In the case where n = m = 1 and £(1,1,q) is the oval O the GQ T'(1,1,q) is
the Tits GQ T»(0). When m = 2n = 2 and £(1,2,q) is the ovoid 2, the GQ
T(1,2,q) is the Tits GQ T3(2). Note that To(0) = Q(4,q), if and only if O is
a conic and non-classical otherwise, while T5(2) = Q(5,¢q) if and only if Q is an
elliptic quadric (see [18, Chapter 3]). The kernel of S = T'(n,m, q) is the maximum
cardinality field GF(q') for which there exists an O(n',m’,q") representing S and
S may be represented by an E(n'/,m",¢") if and only if GF(¢") C GF(q) (see [18,
Chapter 8]). Let £ be an egg in PG(4n — 1,¢) and T'(£) the corresponding TGQ.
If O is a pseudo-oval of £ contained in PG(3n — 1,¢) and PG(3n, ¢) any subspace
containing PG(3n — 1, ¢) not contained in PG(4n — 1, ¢), then PG(3n, q) induces a
subquadrangle of T'(£) isomorphic to T'(O).

3. Eggs in PG(4n — 1,q), q even, containing a pseudo-conic

In this section we characterise the classical GQ Q(5,¢) as a TGQ with a single clas-
sical subquadrangle on the translation point. As a corollary we have the analogue
of Theorem 1 for eggs.

We begin with a statement and sketch proof of an important lemma. The proof is
a combination of results of [10], [23], [11], [24] and [15], and already noted in [25].

LEMMA 5. Every (2n — 1)-dimensional space in PG(3n — 1,q), q even, skew
from a pseudo-conic is the span of two elements of the Desarguesian spread induced
by the pseudo-conic.

Proof. Let U be a (2n — 1)-space skew from a pseudo-conic in PG(3n — 1, q).
Dualising in PG(3n—1, ¢) we obtain an (n—1)-space U’ disjoint from a dual pseudo-
conic, i.e. the set of g™ +1 (2n — 1)-spaces corresponding to the ¢™ + 1 lines of a dual
conic in PG(2, ¢"). By embedding PG(2, ¢™) in PG(3, ¢") and dualising in PG(3, ¢")
one sees that the set of affine points of any n-space intersecting PG(2,¢") in U’
becomes a set of planes forming a semifield flock of a quadratic cone in PG(3, ¢")
and since ¢ is even the corresponding semifield is a field, which implies that U
corresponds to a line in PG(2, ¢"). O

LEMMA 6. Let S be a TGQ of order (s,s?) with a translation point (<) and
a subquadrangle S' = (P', B',1') of order s containing the point (00). Then the egg
corresponding to S contains a pseudo-oval O and 8" is a TGQ isomorphic to T(O).

Proof. Suppose that the kernel of S contains GF(q) and s = ¢". Then let &
be the corresponding egg in PG(4n — 1,¢) and represent S as T(E). The ¢™ + 1
lines of S’ incident with the point (c0) determine a set O of g™ + 1 egg elements



EGGS CONTAINING A PSEUDO-CONIC 5

{Eo, Er, ..., Eq}. Let A denote the set of affine points of S’. Let ) € A and con-
sider the line (Ep, @) in S’. It follows that every affine point of (Ey, @)) is contained in
A. Let P be an affine point in (Eg, @, E1) \ (Fo, Q). Then (E;, P) intersects (Fy, Q)
in an affine point R € A, and hence P € A. Hence all affine points of {Ey,Q, E1)
are contained in 4. Now consider any affine point P in (Ey, E1, Ea, Q) \ (Eo, Q, E1).
Then (E-, P) intersects (Eg, E1,Q) in a point R € A. It follows that A is the set
of affine points of (Eg, E1, E2,Q) and O is contained in (Eg, E, E2). This implies
that O is a pseudo-oval contained in £ and &' is a TGQ isomorphic to T(0). O

THEOREM 7. Let S = (P,B,1) be a TGQ of order (s,s?), s even, with a trans-
lation point (00) and a subquadrangle S' = (P',B',1') isomorphic to Q(4,s) con-
taining (00). Then S =2 Q(5,s).

Proof. Suppose that the kernel of S contains GF(q) and s = ¢™. Then let £
be the corresponding egg in PG(4n — 1,¢) and represent S as T(£). Now &' is a
(classical) subquadrangle of order ¢" containing (cc). By Lemma 6 £ contains a
pseudo-conic in PG(3n — 1,¢) and S’ is constructed from a PG(3n, ¢) containing
PG(3n—1,q).

If X is a point of P\ P’, then the lines incident with X intersect S’ in a set Ox of
¢®" + 1 points of S, no two collinear, called an ovoid of S’ ([18, 2.2.1]). The ovoid
Ox is said to be subtended by X. Suppose that X is a point of type (ii) of S, that
is a subspace of dimension 3n meeting PG(4n — 1, ¢) in the tangent space at an egg
element. Then Ox consists of the point (00) plus the ¢?" points (X NPG(3n,q)) \
PG(3n —1,q). The subspace X NPG(3n — 1,¢) is a (2n — 1)-dimensional subspace
skew from the pseudo-conic C. From Lemma 5 we have that this is the span of two
elements of the Desarguesian spread induced by the pseudo-conic. Representing S’
over GF(¢"), that is, as T»(C) where C is a conic in PG(2,¢"), we see that Ox
consists of (0o0) and the affine points of a plane of PG(3,¢") skew from C. By
the isomorphism from @Q(4,¢™) to T>(C) ([18]) it is clear that the ovoids of T5(C)
consisting of (oo0) and the affine points of a plane skew to C correspond to the
elliptic quadric ovoids of Q(4,¢™) containing a fixed point. By a result of Bose and
Shrikhande ([4]) any triad of S has ¢ + 1 centres and so a subtended ovoid of &'
may be subtended by at most two points of S\ &', in which case the ovoid is said to
be doubly subtended. Counting reveals that there are ¢?"(¢™ — 1)/2 elliptic quadric
ovoids of &' containing (0o0) and ¢?" (g™ — 1) points of P\ P’ collinear with (oc) and
hence subtending an ovoid of S’ containing (00). Thus each such ovoid is doubly
subtended.

Now let Y be a point of P\ P’ not collinear with (cc) and Oy the ovoid it subtends
in §'. We will consider this ovoid in the T5(C) model of §'. Since Y # (00) it
follows that Oy = AU {rp : P € C}, where A is a set of ¢*™ — ¢" affine points of
T>(C) and 7p is a point of type (ii) of T2(C) which is a plane containing P € C.
We now investigatethe intersections of a plane 7 of PG(3, ¢") with A. If 7 contains
no point of C, then 7 U (00) is an elliptic quadric subtended by two points, X and
X' of S\ 8. If Y is collinear with X or X', then 7N A is a single point. If Y is
not collinear with X nor with X’ then {X, X' Y} is a triad of S and hence has
g™ +1 centres. Hence |mrN.A| = ¢" + 1. Next suppose that 7 contains a unique point
Pof C.If r = wp C Oy, then 7 contains no point of A. If # # 7p, then the ¢"
lines of 7 incident with P and not in the plane of C are lines of the T5(C) and so
contain precisely one point of A. Hence |7 N A| = ¢". Next suppose that 7 contains
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two points, P and @, of C. Of the ¢™ + 1 projective lines in 7 incident with P
one is contained in PG(2, ¢"), one is contained in 7p and ¢™ — 1 are lines of T>(C)
containing a unique point of A. Hence |7 N A| = ¢™ — 1. Finally, if 7 = PG(2, ¢"),
then 7 contains no point of A.

Consider the set of points of PG(3,¢") defined by Oy = AU C. By the above the
plane intersections with Oy have size 1 or ¢" + 1 and a straightforward count shows
that Oy is an ovoid of PG(3,¢"). Further, since Oy contains the conic C' it is an
elliptic quadric by Theorem 1. Hence the ovoid Oy is an elliptic quadric ovoid of &’
in the Q(4,¢™) model. Thus we have that every ovoid of &' = Q(4,¢") subtended
by a point of P \ P’ is an elliptic quadric ovoid. By a theorem due independently
to Brown ([8]) and Brouns, Thas and Van Maldeghem ([5]) it now follows that S
is the classical GQ Q(5, ¢™)- |

REMARK 1. In general, suppose that S is a TGQ of order (s, s%), s even, rep-
resented by an egg £ in PG(4n — 1,¢). Suppose that S’ is a subquadrangle of S
of order s, containing the base point (co) of S. Then the argument at the start of
the proof of Theorem 7 proves that S’ is isomorphic to T'(O) for O a pseudo-oval
contained in €. This solves an open case in [9].

As a corollary we now have the main result of the paper.

THEOREM 8. Anegg £ in PG(4n—1,q), q even, contains a pseudo-conic if and
only if the egg is classical, that is arising from an elliptic quadric in PG(3,q™).

Proof. Since an elliptic quadric contains conics, any egg arising from an elliptic
quadric contains pseudo-conics. Now suppose £ is an egg of PG(4n — 1, q) contain-
ing a pseudo-conic. Then T'(€) is a TGQ of order (¢",¢>") containing a classical
subquadrangle of order ¢ containing (c0). By Theorem 7 T'(£) is the classical GQ
Q(5,¢™) and so by [1, Lemma 1] £ arises from an elliptic quadric in PG(3,¢™). O
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