EGGS IN PG(4n - 1, q), q EVEN, CONTAINING A PSEUDO-CONIC

MATTHEW R. BROWN AND MICHEL LAVRAUW

ABSTRACT

An ovoid of PG(3,q) can be defined as a set of q^2+1 points with the property that every three points span a plane and at every point there is a unique tangent plane. In 2000 M. R. Brown ([7]) proved that if an ovoid of PG(3,q), q even, contains a conic, then the ovoid is an elliptic quadric. Generalising the definition of an ovoid to a set of (n-1)-spaces of PG(4n-1,q) J. A. Thas [21] introduced the notion of pseudo-ovoids or eggs: a set of $q^{2n}+1$ (n-1)-spaces in PG(4n-1,q), with the property that any three egg elements span a (3n-1)-space and at every egg element there is a unique tangent (3n-1)-space. We prove that an egg in PG(4n-1,q), q even, contains a pseudo-conic, that is, a pseudo-oval arising from a conic of $PG(2,q^n)$, if and only if the egg is classical, that is, arising from an elliptic quadric in $PG(3,q^n)$.

1. Introduction and preliminaries

An oval of PG(2,q) is a set of q+1 points no three collinear. In 1954 it was shown by B. Segre [20] that if q is odd then an oval in PG(2,q) is a conic. For q even, many ovals are known which are not conics (see [6] for a recent survey). An ovoid of PG(3,q) is a set of q^2+1 points such that every three points span a plane. If we exclude PG(3,2), that is, assuming q>2, then q^2+1 is the maximal cardinality of a set of points satisfying this property. Moreover all the tangent lines to an ovoid at a certain point lie in a plane ([2], [17]); the tangent plane at that point. In 1955 A. Barlotti [2] and G. Panella [17] independently proved that an ovoid in PG(3,q), q odd, is an elliptic quadric. For q even, one other example of an ovoid is known; called the Tits ovoid, which exists for $q=2^{2e+1}$, $e\geq 1$. For results characterising the elliptic quadric and the Tits ovoid we refer to the survey [6]. A result fundamental to the proof of the main result of this paper is the following characterisation of the elliptic quadric ovoid.

THEOREM 1 (M. R. Brown [7]). Let \mathcal{O} be an ovoid of PG(3,q), q even, and π a plane of PG(3,q) such that $\pi \cap \mathcal{O}$ is a conic. Then \mathcal{O} is an elliptic quadric.

An (n-1)-spread (partial (n-1)-spread) \mathcal{S} of $\operatorname{PG}(rn-1,q)$ is a set of (n-1)-spaces such that any point of $\operatorname{PG}(rn-1,q)$ is contained in exactly (at most) one element of \mathcal{S} (also called a *spread* if the dimension of the elements of \mathcal{S} is understood). A spread \mathcal{S} is called *Desarguesian* if the incidence geometry defined by taking the elements of \mathcal{S} as points, the subspaces spanned by two different elements of \mathcal{S} as

²⁰⁰⁰ Mathematics Subject Classification 51E20.

Matthew R. Brown: This research has been supported by the Australian Research Council. Michel Lavrauw: This research has been supported by a Marie Curie Fellowship of the European Community programme "Improving the Human Research Potential and the Socio-Economic knowledge Base" under the contract number HMPF-CT-2001-01386.

lines, and the natural incidence relation (symmetric containment), is isomorphic to a Desarguesian projective space.

An egg \mathcal{E} in PG(4n-1,q) (or pseudo-ovoid) is a partial (n-1)-spread of size $q^{2n} + 1$, such that every three egg elements span a (3n - 1)-space and for every egg element E there exists a (3n-1)-space T_E (called the tangent space of $\mathcal E$ at E) which contains E and is skew from the other egg elements. A pseudo-oval (or an egg in PG(3n-1,q)) is a partial (n-1)-spread of size q^n+1 , such that every three elements of the pseudo-oval span PG(3n-1,q). The notion of eggs was introduced by J. A. Thas in 1971 ([21]). An egg \mathcal{E} in PG(4n-1,q) is called a good egg if there is exists an egg element E such that every (3n-1)-space containing E and two other egg elements contains exactly $q^n + 1$ egg elements. In that case E is called a good element of \mathcal{E} . If the elements of a pseudo-ovoid, respectively pseudo-oval, belong to a Desarguesian (n-1)-spread of PG(4n-1,q), respectively PG(3n-1,q), then the pseudo-ovoid, respectively pseudo-oval, is called *elementary*. It follows that an elementary pseudo-oval arises from an oval of $PG(2, q^n)$ and an elementary pseudo-ovoid arises from an ovoid of $PG(3,q^n)$. If the oval is a conic we say that the elementary pseudo-oval is a pseudo-conic or a classical pseudo-oval, if the ovoid is an elliptic quadric then we call the pseudo-ovoid a classical pseudoovoid. In 1974 J. A. Thas proved that if every four egg elements span PG(4n-1,q)or are contained in a (3n-1)-dimensional space, then the egg is elementary ([22]).

The only known examples of pseudo-ovals are elementary and pseudo-ovals have been classified by computer for $q^n \leq 16$ ([19]). More examples are known for pseudo-ovoids, all of them over a field of odd characteristic and they are connected to certain semifields (see Chapter 3 of [12] for a survey and [13] for recent results for the case when q is odd).

In this article we are concerned about pseudo-ovoids in the case when q is even. All known examples of eggs in $\operatorname{PG}(4n-1,q)$, q even, are elementary. Pseudo-ovoids have been classified by computer for $q^n \leq 4$ ([14]). In 2002 J. A. Thas published the following two theorems.

Theorem 2 (J. A. Thas [25]). An egg \mathcal{E} of PG(4n-1,q), with q even, is classical if and only if \mathcal{E} is good at some element and contains at least one pseudoconic.

THEOREM 3 (J. A. Thas [25]). An egg \mathcal{E} of PG(4n-1,q), with q even, is classical if and only if \mathcal{E} contains at least two intersecting pseudo-conics.

In this article we prove that the only assumption one needs to conclude that an egg in PG(4n-1,q), q even, is classical, is that it contains a pseudo-conic.

2. Eggs and translation generalized quadrangles

A (finite) generalized quadrangle (GQ) (see [18] for a comprehensive introduction) is an incidence structure $\mathcal{S} = (\mathcal{P}, \mathcal{B}, I)$ in which \mathcal{P} and \mathcal{B} are disjoint (non-empty) sets of objects called *points* and *lines*, respectively, and for which $I \subseteq (\mathcal{P} \times \mathcal{B}) \cup (\mathcal{B} \times \mathcal{P})$

is a symmetric point-line incidence relation satisfying the following axioms:

- (i) Each point is incident with 1 + t lines $(t \ge 1)$ and two distinct points are incident with at most one line;
- (ii) Each line is incident with 1 + s points $(s \ge 1)$ and two distinct lines are incident with at most one point;
- (iii) If X is a point and ℓ is a line not incident with X, then there is a unique pair $(Y, m) \in \mathcal{P} \times \mathcal{B}$ for which X I m I Y I ℓ .

The integers s and t are the parameters of the GQ and S is said to have order (s,t). If s=t, then S is said to have order s. If S has order (s,t), then it follows that $|\mathcal{P}|=(s+1)(st+1)$ and $|\mathcal{B}|=(t+1)(st+1)$ ([18, 1.2.1]). A subquadrangle $S'=(\mathcal{P}',\mathcal{B}',I')$ of S is a GQ such that $\mathcal{P}'\subseteq\mathcal{P}$, $\mathcal{B}'\subseteq\mathcal{B}$ and I' is the restriction of I to $(\mathcal{P}'\times\mathcal{B}')\cup(\mathcal{B}'\times\mathcal{P}')$. Let $S=(\mathcal{P},\mathcal{B},I)$ be a GQ of order $(s,t), s\neq 1, t\neq 1$. A collineation θ of S is an elation about the point P if $\theta=id$ or if θ fixes all lines incident with P and fixes no point of $\mathcal{P}\setminus P^\perp$. If there is a group G of elations about P acting regularly on $\mathcal{P}\setminus P^\perp$, then we say that S is an elation generalized quadrangle (EGQ) with elation group G and base point G. Briefly we say that G or $G^{(P)}$ or $G^{(P)}$ is an EGQ. If the group G is abelian, then we say that the EGQ $G^{(P)}$ is a translation generalized quadrangle (TGQ) and G is the translation group.

In $\operatorname{PG}(2n+m-1,q)$ consider a set $\mathcal{E}(n,m,q)$ of q^m+1 (n-1)-dimensional subspaces, every three of which generate a $\operatorname{PG}(3n-1,q)$ and such that each element E of $\mathcal{E}(n,m,q)$ is contained in an (n+m-1)-dimensional subspace T_E having no point in common with any element of $\mathcal{E}(n,m,q)\setminus\{E\}$. It is easy to check that T_E is uniquely determined for any element E of $\mathcal{E}(n,m,q)$. The space T_E is called the tangent space of $\mathcal{E}(n,m,q)$ at E. For n=m=1 such a set $\mathcal{E}(1,1,q)$ is an oval in $\operatorname{PG}(2,q)$ and more generally for n=m such a set $\mathcal{E}(n,n,q)$ is a pseudo-oval of $\operatorname{PG}(3n-1,q)$. For m=2n=2 such a set $\mathcal{E}(1,2,q)$ is an ovoid of $\operatorname{PG}(3,q)$ and more generally for m=2n such a set $\mathcal{E}(n,2n,q)$ is a pseudo-ovoid. In general we call the sets $\mathcal{E}(n,m,q)$ eggs.

Now embed PG(2n + m - 1, q) in a PG(2n + m, q), and construct a point-line geometry T(n, m, q) as follows. Points are of three types:

- (i) the points of $PG(2n+m,q) \setminus PG(2n+m-1,q)$, called the affine points;
- (ii) the (n+m)-dimensional subspaces of PG(2n+m,q) which intersect PG(2n+m-1,q) in a tangent space of $\mathcal{E}(n,m,q)$;
- (iii) the symbol (∞) .

Lines are of two types:

- (a) the *n*-dimensional subspaces of PG(2n + m, q) which intersect PG(2n + m 1, q) in an element of $\mathcal{E}(n, m, q)$;
- (b) the elements of $\mathcal{E}(n, m, q)$.

Incidence in T(n, m, q) is defined as follows. A point of type (i) is incident only with lines of type (a); here the incidence is that of PG(2n + m, q). A point of type (ii)

is incident with all lines of type (a) contained in it and with the unique element of $\mathcal{E}(n,m,q)$ contained in it. The point (∞) is incident with no line of type (a) and with all lines of type (b).

THEOREM 4 (8.7.1 of Payne and Thas [18]). The incidence geometry T(n, m, q) is a TGQ of order (q^n, q^m) with base point (∞) . Conversely, every TGQ is isomorphic to a T(n, m, q). It follows that the theory of TGQ is equivalent to the theory of the sets $\mathcal{E}(n, m, q)$.

In the case where n=m=1 and $\mathcal{E}(1,1,q)$ is the oval \mathcal{O} the GQ T(1,1,q) is the Tits GQ $T_2(\mathcal{O})$. When m=2n=2 and $\mathcal{E}(1,2,q)$ is the ovoid Ω , the GQ T(1,2,q) is the Tits GQ $T_3(\Omega)$. Note that $T_2(\mathcal{O})\cong Q(4,q)$, if and only if \mathcal{O} is a conic and non-classical otherwise, while $T_3(\Omega)\cong Q(5,q)$ if and only if Ω is an elliptic quadric (see [18, Chapter 3]). The kernel of $\mathcal{S}=T(n,m,q)$ is the maximum cardinality field $\mathrm{GF}(q')$ for which there exists an O(n',m',q') representing \mathcal{S} and \mathcal{S} may be represented by an $\mathcal{E}(n'',m'',q'')$ if and only if $\mathrm{GF}(q'')\subseteq\mathrm{GF}(q)$ (see [18, Chapter 8]). Let \mathcal{E} be an egg in $\mathrm{PG}(4n-1,q)$ and $T(\mathcal{E})$ the corresponding TGQ. If \mathcal{O} is a pseudo-oval of \mathcal{E} contained in $\mathrm{PG}(3n-1,q)$ and $\mathrm{PG}(3n,q)$ any subspace containing $\mathrm{PG}(3n-1,q)$ not contained in $\mathrm{PG}(4n-1,q)$, then $\mathrm{PG}(3n,q)$ induces a subquadrangle of $T(\mathcal{E})$ isomorphic to $T(\mathcal{O})$.

3. Eggs in PG(4n-1,q), q even, containing a pseudo-conic

In this section we characterise the classical $GQ\ Q(5,q)$ as a TGQ with a single classical subquadrangle on the translation point. As a corollary we have the analogue of Theorem 1 for eggs.

We begin with a statement and sketch proof of an important lemma. The proof is a combination of results of [10], [23], [11], [24] and [15], and already noted in [25].

LEMMA 5. Every (2n-1)-dimensional space in PG(3n-1,q), q even, skew from a pseudo-conic is the span of two elements of the Desarguesian spread induced by the pseudo-conic.

Proof. Let U be a (2n-1)-space skew from a pseudo-conic in $\operatorname{PG}(3n-1,q)$. Dualising in $\operatorname{PG}(3n-1,q)$ we obtain an (n-1)-space U' disjoint from a dual pseudo-conic, i.e. the set of q^n+1 (2n-1)-spaces corresponding to the q^n+1 lines of a dual conic in $\operatorname{PG}(2,q^n)$. By embedding $\operatorname{PG}(2,q^n)$ in $\operatorname{PG}(3,q^n)$ and dualising in $\operatorname{PG}(3,q^n)$ one sees that the set of affine points of any n-space intersecting $\operatorname{PG}(2,q^n)$ in U' becomes a set of planes forming a semifield flock of a quadratic cone in $\operatorname{PG}(3,q^n)$ and since q is even the corresponding semifield is a field, which implies that U corresponds to a line in $\operatorname{PG}(2,q^n)$.

Lemma 6. Let S be a TGQ of order (s, s^2) with a translation point (∞) and a subquadrangle $S' = (\mathcal{P}', \mathcal{B}', I')$ of order s containing the point (∞) . Then the egg corresponding to S contains a pseudo-oval \mathcal{O} and S' is a TGQ isomorphic to $T(\mathcal{O})$.

Proof. Suppose that the kernel of S contains GF(q) and $s=q^n$. Then let E be the corresponding egg in PG(4n-1,q) and represent S as T(E). The q^n+1 lines of S' incident with the point (∞) determine a set \mathcal{O} of q^n+1 egg elements

 $\{E_0, E_1, \ldots, E_{q^n}\}$. Let \mathcal{A} denote the set of affine points of \mathcal{S}' . Let $Q \in \mathcal{A}$ and consider the line $\langle E_0, Q \rangle$ in \mathcal{S}' . It follows that every affine point of $\langle E_0, Q \rangle$ is contained in \mathcal{A} . Let P be an affine point in $\langle E_0, Q, E_1 \rangle \setminus \langle E_0, Q \rangle$. Then $\langle E_1, P \rangle$ intersects $\langle E_0, Q \rangle$ in an affine point $R \in \mathcal{A}$, and hence $P \in \mathcal{A}$. Hence all affine points of $\langle E_0, Q, E_1 \rangle$ are contained in \mathcal{A} . Now consider any affine point P in $\langle E_0, E_1, E_2, Q \rangle \setminus \langle E_0, Q, E_1 \rangle$. Then $\langle E_2, P \rangle$ intersects $\langle E_0, E_1, Q \rangle$ in a point $R \in \mathcal{A}$. It follows that \mathcal{A} is the set of affine points of $\langle E_0, E_1, E_2, Q \rangle$ and \mathcal{O} is contained in $\langle E_0, E_1, E_2 \rangle$. This implies that \mathcal{O} is a pseudo-oval contained in \mathcal{E} and \mathcal{S}' is a TGQ isomorphic to $T(\mathcal{O})$. \square

Theorem 7. Let $S = (\mathcal{P}, \mathcal{B}, I)$ be a TGQ of order (s, s^2) , s even, with a translation point (∞) and a subquadrangle $S' = (\mathcal{P}', \mathcal{B}', I')$ isomorphic to Q(4, s) containing (∞) . Then $S \cong Q(5, s)$.

Proof. Suppose that the kernel of \mathcal{S} contains $\mathrm{GF}(q)$ and $s=q^n$. Then let \mathcal{E} be the corresponding egg in $\mathrm{PG}(4n-1,q)$ and represent \mathcal{S} as $T(\mathcal{E})$. Now \mathcal{S}' is a (classical) subquadrangle of order q^n containing (∞) . By Lemma 6 \mathcal{E} contains a pseudo-conic in $\mathrm{PG}(3n-1,q)$ and \mathcal{S}' is constructed from a $\mathrm{PG}(3n,q)$ containing $\mathrm{PG}(3n-1,q)$.

If X is a point of $\mathcal{P} \setminus \mathcal{P}'$, then the lines incident with X intersect \mathcal{S}' in a set \mathcal{O}_X of $q^{2n} + 1$ points of \mathcal{S}' , no two collinear, called an *ovoid* of \mathcal{S}' ([18, 2.2.1]). The ovoid \mathcal{O}_X is said to be subtended by X. Suppose that X is a point of type (ii) of S, that is a subspace of dimension 3n meeting PG(4n-1,q) in the tangent space at an egg element. Then \mathcal{O}_X consists of the point (∞) plus the q^{2n} points $(X \cap \mathrm{PG}(3n,q)) \setminus$ PG(3n-1,q). The subspace $X \cap PG(3n-1,q)$ is a (2n-1)-dimensional subspace skew from the pseudo-conic \mathcal{C} . From Lemma 5 we have that this is the span of two elements of the Desarguesian spread induced by the pseudo-conic. Representing \mathcal{S}' over $GF(q^n)$, that is, as $T_2(C)$ where C is a conic in $PG(2,q^n)$, we see that \mathcal{O}_X consists of (∞) and the affine points of a plane of $PG(3,q^n)$ skew from C. By the isomorphism from $Q(4,q^n)$ to $T_2(\mathcal{C})$ ([18]) it is clear that the ovoids of $T_2(\mathcal{C})$ consisting of (∞) and the affine points of a plane skew to $\mathcal C$ correspond to the elliptic quadric ovoids of $Q(4, q^n)$ containing a fixed point. By a result of Bose and Shrikhande ([4]) any triad of S has $q^n + 1$ centres and so a subtended ovoid of S' may be subtended by at most two points of $S \setminus S'$, in which case the ovoid is said to be doubly subtended. Counting reveals that there are $q^{2n}(q^n-1)/2$ elliptic quadric ovoids of S' containing (∞) and $q^{2n}(q^n-1)$ points of $\mathcal{P} \setminus \mathcal{P}'$ collinear with (∞) and hence subtending an ovoid of \mathcal{S}' containing (∞) . Thus each such ovoid is doubly subtended.

Now let Y be a point of $\mathcal{P} \setminus \mathcal{P}'$ not collinear with (∞) and \mathcal{O}_Y the ovoid it subtends in \mathcal{S}' . We will consider this ovoid in the $T_2(C)$ model of \mathcal{S}' . Since $Y \not\sim (\infty)$ it follows that $\mathcal{O}_Y = \mathcal{A} \cup \{\pi_P : P \in C\}$, where \mathcal{A} is a set of $q^{2n} - q^n$ affine points of $T_2(C)$ and π_P is a point of type (ii) of $T_2(C)$ which is a plane containing $P \in C$. We now investigate the intersections of a plane π of $PG(3, q^n)$ with \mathcal{A} . If π contains no point of C, then $\pi \cup (\infty)$ is an elliptic quadric subtended by two points, X and X' of $S \setminus S'$. If Y is collinear with X or X', then $\pi \cap \mathcal{A}$ is a single point. If Y is not collinear with X nor with X', then $\{X, X', Y\}$ is a triad of S and hence has $q^n + 1$ centres. Hence $|\pi \cap \mathcal{A}| = q^n + 1$. Next suppose that π contains a unique point P of C. If $\pi = \pi_P \subset \mathcal{O}_Y$, then π contains no point of A. If $\pi \neq \pi_P$, then the q^n lines of π incident with P and not in the plane of C are lines of the $T_2(C)$ and so contain precisely one point of A. Hence $|\pi \cap \mathcal{A}| = q^n$. Next suppose that π contains

two points, P and Q, of C. Of the $q^n + 1$ projective lines in π incident with P one is contained in $PG(2, q^n)$, one is contained in π_P and $q^n - 1$ are lines of $T_2(C)$ containing a unique point of A. Hence $|\pi \cap A| = q^n - 1$. Finally, if $\pi = PG(2, q^n)$, then π contains no point of A.

Consider the set of points of $PG(3, q^n)$ defined by $\overline{\mathcal{O}_Y} = \mathcal{A} \cup C$. By the above the plane intersections with $\overline{\mathcal{O}_Y}$ have size 1 or $q^n + 1$ and a straightforward count shows that $\overline{\mathcal{O}_Y}$ is an ovoid of $PG(3, q^n)$. Further, since $\overline{\mathcal{O}_Y}$ contains the conic C it is an elliptic quadric by Theorem 1. Hence the ovoid \mathcal{O}_Y is an elliptic quadric ovoid of \mathcal{S}' in the $Q(4, q^n)$ model. Thus we have that every ovoid of $\mathcal{S}' \cong Q(4, q^n)$ subtended by a point of $\mathcal{P} \setminus \mathcal{P}'$ is an elliptic quadric ovoid. By a theorem due independently to Brown ([8]) and Brouns, Thas and Van Maldeghem ([5]) it now follows that \mathcal{S} is the classical $GQ(Q(5, q^n))$.

REMARK 1. In general, suppose that S is a TGQ of order (s, s^2) , s even, represented by an egg \mathcal{E} in PG(4n-1,q). Suppose that S' is a subquadrangle of S of order s, containing the base point (∞) of S. Then the argument at the start of the proof of Theorem 7 proves that S' is isomorphic to $T(\mathcal{O})$ for \mathcal{O} a pseudo-oval contained in \mathcal{E} . This solves an open case in [9].

As a corollary we now have the main result of the paper.

THEOREM 8. An egg \mathcal{E} in PG(4n-1,q), q even, contains a pseudo-conic if and only if the egg is classical, that is arising from an elliptic quadric in $PG(3,q^n)$.

Proof. Since an elliptic quadric contains conics, any egg arising from an elliptic quadric contains pseudo-conics. Now suppose \mathcal{E} is an egg of $\operatorname{PG}(4n-1,q)$ containing a pseudo-conic. Then $T(\mathcal{E})$ is a TGQ of order (q^n,q^{2n}) containing a classical subquadrangle of order q^n containing (∞) . By Theorem 7 $T(\mathcal{E})$ is the classical GQ $Q(5,q^n)$ and so by [1, Lemma 1] \mathcal{E} arises from an elliptic quadric in $\operatorname{PG}(3,q^n)$. \square

Acknowledgements

The first author would like to thank the Dipartimento di Matematica e Applicazioni, Universita degli studi di Napoli Federico II for its support during the course of this research.

References

- L. BADER, G. LUNARDON, I. PINNERI; A new semifield flock. J. Combin. Theory Ser. A 86 (1999), no.1, 49-62.
- A. BARLOTTI; Un'estensione del teorema di Segre-Kustaanheimo. Boll. Un. Mat. Ital. 10 (1955) 96-98.
- 3. A. Barlotti; Some topics in finite geometrical structures. Institute of Statistics Mimeo Series, no. 439, University of North Carolina, 1965.
- **4.** R. C. Bose and S. S. Shrikhande; Geometric and pseudo-geometric graphs $(q^2 + 1, q + 1, q)$. *J. Geom.* **2/1** (1973) 75–94.
- L. BROUNS, J. A. THAS, H. VAN MALDEGHEM; A characterisation of Q(5,q) using one subquadrangle Q(4,q). European J. Combin. 23 (2002), no. 2, 163-177.
- MATTHEW BROWN; (Hyper)ovals and ovoids in projective spaces. Socrates Intensive Course
 Finite Geometry and its Applications Ghent, 3-14 April 2000, lecture notes. Available
 from
 - http://cage.rug.ac.be/~fdc/intensivecourse2/brown_2.pdf

- MATTHEW R. BROWN; Ovoids of PG(3, q), q even, with a conic section. J. London Math. Soc. (2) 62 (2000), no. 2, 569-582.
- MATTHEW R. BROWN; A characterisation of the generalized quadrangle Q(5, q) using cohomology. J. Algebraic Combin. 15 (2002) no. 2, 107-125.
- **9.** MATTHEW R. BROWN, J.A. THAS; Subquadrangles of order s of generalized quadrangles of order (s, s^2) , Part II. Submitted J. Combin. Theory Ser. A.
- STEPHEN D. COHEN, MICHAEL J. GANLEY; Commutative semifields, two-dimensional over their middle nuclei. J. Algebra 75 (1982), no. 2, 373-385.
- 11. N. L. Johnson; Semifield flocks of quadratic cones. Simon Stevin 61 (1987), no. 3-4, 313-326.
- 12. MICHEL LAVRAUW; Scattered spaces with respect to spreads, and eggs in finite projective spaces. Dissertation, Technische Universiteit Eindhoven, Eindhoven, 2001. Eindhoven University of Technology, Eindhoven, 2001. viii+115 pp.
- 13. MICHEL LAVRAUW; Characterisations and properties of good eggs in PG(4n-1,q), q odd. Submitted.
- MICHEL LAVRAUW, TIM PENTTILA; On eggs and translation generalised quadrangles. J. Combin. Theory Ser. A. 96 (2001), no. 2, 303-315.
- 15. Guglielmo Lunardon; Flocks, ovoids of Q(4, q) and designs. Geom. Dedicata 66 (1997), no. 2, 163-173.
- G. LUNARDON, J. A. THAS; Finite Generalized Quadrangles. Lecture notes, Intensive Course on Galois Geometry and Generalized Polygons, (1998), http://cage.rug.ac.be/~fdc/intensivecourse/intensivecourse_final.html.
- G. PANELLA; Caratterizzazione delle quadriche di uno spazio (tridimenensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital. 10 (1955), 507-513.
- S. E. PAYNE, J. A. THAS; Finite generalized quadrangles. Research Notes in Mathematics, 110. Pitman (Advanced Publishing Program), Boston, MA, 1984. vi+312 pp. ISBN 0-273-08655-3
- 19. TIM PENTTILA; Translation generalised quadrangles and elation Laguerre planes of order 16. European J. Combin., to appear.
- BENIAMINO SEGRE; Sulle ovali nei piani lineari finiti. (Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 17, (1954). 141-142.
- **21.** J. A. Thas; The *m*-dimensional projective space $S_m(M_n(GF(q)))$ over the total matrix algebra $M_n(GF(q))$ of the $n \times n$ -matrices with elements in the Galois field GF(q). Rend. Mat. (6) 4 (1971), 459-532.
- **22.** J. A. Thas; Geometric characterization of the [n-1]-ovaloids of the projective space PG(4n-1, q). Simon Stevin **47** (1973/74), 97-106.
- J. A. Thas; Generalized quadrangles and flocks of cones. European J. Combin. 8 (1987), no. 4, 441–452.
- J. A. Thas; Symplectic spreads in PG(3,q), inversive planes and projective planes. Combinatorics (Rome and Montesilvano, 1994). Discrete Math. 174 (1997), no. 1-3, 329-336.
- J. A. Thas; Translation generalized quadrangles of order (s, s²), s even, and eggs. J. Combin. Theory Ser. A 99 (2002), no. 1, 40-50.

Matthew R. Brown School of Pure Mathematics University of Adelaide S.A. 5005 AUSTRALIA

mbrown@maths.adelaide.edu.au

Michel Lavrauw Universitá di Napoli Federico II Dip. di Mat. e Appl. "R. Caccioppoli" Via Cintia Complesso Monte S. Angelo 80126 Napoli ITALY

lavrauw@unina.it