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Abstract

We show that if the number of directions not determined by a pointset W
of AG(3, q), q = ph, of size q2 is at least peq then every plane intersects W in 0
modulo pe+1 points and apply the result to ovoids of the generalised quadrangles
T2(O) and T ∗

2 (O).

1 Preliminaries

Let AG(n, q), respectively PG(n, q), denote the affine, respectively projective, n-
dimensional space over the finite field GF(q) with q elements, where q = ph for some
prime p. Let f be a function from GF(q)2 to GF(q) and let

Wf := {〈a, b, f(a, b), 1〉 : a, b ∈ GF(q)},

be the set of points corresponding to the graph of the function f in AG(3, q). Let π
be the plane with equation X3 = 0, and put

D(f) := {〈P,Q〉 ∩ π : P,Q ∈ Wf , P 6= Q}.

We call D(f) the set of directions determined by f . Often we will only refer to the set
of affine points Wf and talk about the number of directions determined by Wf instead
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of by f . Note that |Wf | = q2 and that for any set W of q2 affine points in PG(3, q)
one can define a function fW provided that W does not determine every direction.
The main result of this paper is that if the number of directions not determined by W
is more than q then every plane of PG(3, q) intersects W in 0 modulo p points. After
the proof of this result, we will prove two more theorems, by refining the hypotheses
in one case and for p = 2 in the other case. In the last section we consider some
consequences for ovoids of the generalised quadrangles T2(O) and T ∗

2 (O), where O is
an oval of PG(2, q).

In contrast to the main result of this article, Storme and Sziklai [8] prove that if
the number of directions determined by W is less than q(q + 3)/2 then every line is
incident with exactly one point of W or 0 mod p points. If p > 3 they prove that W
is GF(s)-linear for some subfield GF(s) of GF(q). Their proof uses the main result
in [5] which classifies those sets of q points in AG(2, q) that determine less than half
the directions. This problem dates back to Rédei [7, pp. 226], who together with
Megyesi solved the prime case, and has now been solved completely, for the most part
in [5] and for characteristic two and three in [2]. The restriction p > 3 in [8] can been
weakened to p > 2 as a result of [2].

2 The number of directions

We start with a lemma concerning the number of zeros of a polynomial over a finite
field, which we will often refer to in what follows.

Lemma 2.1 Let S be a subset of GF(q)2 and σ ∈ GF(q)[X, Y ] be such that σ(aY +
b, Y ) ≡ 0, for all (a, b) ∈ S. If |S| > deg(σ) then σ(X, Y ) ≡ 0.

Proof. If σ(aY + b, Y ) ≡ 0 then σ(X, Y ) ≡ 0 modulo X − aY − b, and hence

X − aY − b | σ(X, Y ).

It follows that ∏
(a,b)∈S

(X − aY − b) | σ(X, Y ).

Since the degree of the left hand side is |S| the result follows. �

Theorem 2.2 Let W ⊂ AG(3, q) ⊂ PG(3, q), q = ph, |W| = q2. If the number of
directions not determined by W is at least q then every plane of PG(3, q) meets W in
0 modulo p points.

Proof. Let π denote the plane X3 = 0 in PG(3, q), W be contained in PG(3, q)\π, and
D(W) denote the set of directions determined by W. Choose a subset U ⊂ π \ D(W)
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of size q. Without loss of generality we may assume that U = {〈1, ui, vi, 0〉 : i ∈
{1, . . . , q}}. Consider the Rédei polynomial

R(T,X, Y ) :=
∏

〈a,b,c,1〉∈W

(T + aX + bY + c) =
q2∑

j=0

σj(X, Y )T q2−j .

Note that deg(σj) ≤ j. Since every line intersecting π in a point of U contains at
most one point of W and |W| = q2, every such line must intersect W in exactly one
point. Consider

R(T,−uiY − vi, Y ) =
∏

〈a,b,c,1〉∈W

(T + a(−uiY − vi) + bY + c)

=
∏

〈a,b,c,1〉∈W

(T + (b− aui)Y + c− avi).

The number of factors satisfying b−aui = r and c−avi = s is equal to the number of
points of W on the line defined by the planes X1−uiX0 = rX3 and X2−viX0 = sX3.
Since this line is incident with the point 〈1, ui, vi, 0〉 ∈ U , the number of such factors
is one. Hence

R(T,−uiY − vi, Y ) =
∏

(r,s)∈GF(q)2

(T + rY + s) =
∏

r∈GF(q)

(T q + rY q − T − rY )

= T q2 − ((Y q − Y )q−1 + 1)T q + (Y q − Y )q−1T,

for all i ∈ {1, . . . , q}. It follows that σj(−uiY − vi, Y ) ≡ 0 for all i ∈ {1, . . . , q},
0 < j < q2− q. By the previous lemma, σj(X, Y ) ≡ 0 for 0 < j < q since deg(σj) ≤ j.
This implies that

R(T,X, Y ) = T q2
+

q2∑
j=q

σj(X, Y )T q2−j .

Differentiate the Rédei polynomial with respect to T

∂R

∂T
(T,X, Y ) =

∑
〈a,b,c,1〉∈W

1
(T + aX + bY + c)

R(T,X, Y ).

Evaluate at X = x ∈ GF(q) and Y = y ∈ GF(q) and multiply through by T q − T .
Then we have a polynomial identity and the divisibility

R(T, x, y) | (T q − T )
∂R

∂T
(T, x, y).

The left hand side has degree q2 and the right hand side has degree less than q2.
Hence the right hand side is zero, in particular

∂R

∂T
(T, x, y) ≡ 0,
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for all (x, y) ∈ GF(q)2. This implies that R(T, x, y) is a p-th power, for all (x, y) ∈
GF(q)2. It follows that every factor T −t, where t = −ax−by−c for some 〈a, b, c, 1〉 ∈
W occurs a multiple of p times in R(T, x, y). In other words, every plane with equation

xX0 + yX1 + X2 + tX3 = 0

x, y, t ∈ GF(q), intersects W in 0 modulo p points. These are all planes of PG(3, q)
except those which have no X2-term in their defining equation. But if we define the
Rédei polynomial as ∏

〈a,b,c,1〉∈W

(T + a + bX + cY ),

respectively ∏
〈a,b,c,1〉∈W

(T + aX + b + cY ),

then exactly the same arguments as for R(T,X, Y ) can be applied and it follows that
every plane of PG(3, q) intersects W in 0 modulo p points, except those planes which
have no X0-term, respectively X1-term, in their defining equation. The only plane
belonging to all of the above exceptional planes is the plane X3 = 0, which intersects
W in 0 points. �

The following example illustrates that the bound in Theorem 2.2 is sharp.

Example 2.3 Let π and π′ be two planes of PG(3, q), q = ph, intersecting in the line
L. Suppose P is a point of π \ L, Q a point of π′ \ L and R a point on L. Define W
as the set of points on π′ \ L but not on the line 〈Q,R〉, together with the points on
the line 〈P,Q〉 different from P . Then W has size q2, W determines q2 +2 directions,
the points on the line 〈R,P 〉 \ {R,P} are not determined by W, and not every plane
intersects W in 0 modulo p points.

In fact we can show that as the number of directions determined by W becomes
smaller, the restriction on the intersection number with planes of PG(3, q) becomes
stronger.

Theorem 2.4 Let W ⊂ AG(3, q) ⊂ PG(3, q), q = ph, |W| = q2. If there are more
than peq directions not determined by W for some e ∈ {0, 1, 2, . . . , h− 1} then every
plane of PG(3, q) meets W in 0 modulo pe+1 points.

Proof. The case e = 0 was proven in Theorem 2.2 so assume that e ≥ 1 and as in the
proof of Theorem 2.2 let π denote the plane X3 = 0 in PG(3, q), W be contained in
PG(3, q) \ π, and D(W) denote the set of directions determined by W. Without loss
of generality we may assume that 〈0, 0, 1, 0〉 ∈ D(W) and by hypothesis there is a set
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U ⊂ π \ D(W) of size peq. Put U = {〈1, ui, vi, 0〉 : i ∈ {1, . . . , peq− k}} ∪ {〈0, 1, ti, 0〉 :
i ∈ {1, . . . , k}}. Consider the Rédei polynomial

R(T,X, Y, Z) :=
∏

〈a,b,c,1〉∈W

(T + aX + bY + cZ) =
q2∑

j=0

σj(X, Y, Z)T q2−j .

Repeating the exact same arguments as in the proof of Theorem 2.2 but using the
homogeneous polynomials σj(X, Y, Z) we have that

σj(−uiY − viZ, Y, Z) ≡ 0,

for all i and 0 < j < q2 − q. Hence

peq−k∏
i=1

(X + uiY + viZ) | σj(X, Y, Z)

for 0 < j < q2 − q. Consider

R(T, 1,−tiZ,Z) =
∏

〈a,b,c,1〉∈W

(T + (c− tib)Z + a).

The number of factors satisfying c−tib = r and a = s is equal to the number of points
of W on the line defined by the planes X2 − tiX1 = rX3 and X0 = sX3. Since this
line is incident with the point 〈0, 1, ti, 0〉 the number of such factors is one. Hence

R(T, 1,−tiZ,Z) =
∏

(r,s)∈GF(q)2

(T + rZ + s)

= T q2 − ((Zq − Z)q−1 + 1)T q + (Zq − Z)q−1T,

for all i ∈ {1, . . . , k}. It follows that σj(1,−tiZ,Z) ≡ 0 for all i ∈ {1, . . . , k} and
0 < j < q2 − q. As in lemma 2.1

k∏
i=1

(Y + tiZ) | σj(X, Y, Z)

and so
k∏

i=1

(Y + tiZ)
peq−k∏
i=1

(X + uiY + viZ) | σj(X, Y, Z)

for 0 < j < q2 − q. Now if j < peq then the degree of σj(X, Y, Z) is less than peq and
so σj(X, Y, Z) ≡ 0. Therefore

R(T,X, Y, 1) = T q2
+

q2∑
j=peq

σj(X, Y, 1)T q2−j .
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and we can follow the proof of Theorem 2.2 and conclude that R(T, x, y, 1) is a p-th
power, for all (x, y) ∈ GF(q)2. Now fix an (x, y) ∈ GF(q)2 and take the p-th root of
R(T, x, y, 1), i.e.,

R1(T ) := R(T, x, y, 1)1/p = T q2/p + G(T ),

for some G ∈ GF(q)[T ], with deg(G) ≤ (q2−peq)/p. Again as in the proof of Theorem
2.2 we have that

R1(T ) | (T q − T )
∂R1

∂T
(T ).

The left hand side has degree q2/p and the right hand side has degree at most q2/p+
q − peq/p− 2 < q2/p. Hence the right hand side is zero, in particular

∂R1

∂T
(T ) ≡ 0.

This implies that R1(T ) is a p-th power and R(T, x, y, 1) is a p2-th power for all
(x, y) ∈ GF(q)2. We can continue this process by defining Rl(T ) as the pl-th root of
R(T, x, y) for any fixed (x, y) ∈ GF(q)2, consider the divisibility

Rl(T ) | (T q − T )
∂Rl

∂T
(T ),

and obtain that Rl(T ) is a p-th power, as long as the degree of the right hand side is
less than q2/pl. This is the case as long as l < e+1, which implies that R(T, x, y, 1) is
a pe+1-th power, for all (x, y) ∈ GF(q)2. It follows that every factor T − t, where t =
−ax− by− c for some 〈a, b, c, 1〉 ∈ W, occurs a multiple of pe+1 times in R(T, x, y, 1).
In other words, every plane with equation

xX0 + yX1 + X2 + tX3 = 0

x, y, t ∈ GF(q), intersects W in 0 modulo pe+1 points. These are all planes of PG(3, q)
except those which have no X2-term in their defining equation. However we can
redefine the Rédei polynomial as in Theorem 2.2, by permuting the coordinates, and
conclude that all planes intersect W in 0 modulo pe+1 points. �

The following theorem says we can deduce more in the case when q is even.

Theorem 2.5 Let W ⊂ AG(3, q) ⊂ PG(3, q), q = 2h, |W| = q2. Suppose that there
are at least 2eq directions not determined by W for some e ∈ {0, 1, . . . , h− 1}. Then
two parallel planes intersect W in the same number of points modulo 2e+2.

Proof. Put π := PG(3, q) \ AG(3, q) and suppose that π1 and π2 are two parallel
planes intersecting π in the same line determined by the equations X3 = 0 and
xX0 + yX1 + X2 = 0 for some x, y ∈ GF(q). We assume that the planes π1 and π2 do
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not contain the point 〈0, 0, 1, 0〉, but as before we can permutate the coordinates and
consider planes that do not contain the point 〈1, 0, 0, 0〉 and the point 〈0, 1, 0, 0〉. Let

π1 : xX0 + yX1 + X2 + t1X3 = 0

and
π2 : xX0 + yX1 + X2 + t2X3 = 0.

Theorem 2.4 implies that planes intersect W in zero modulo 2e+1 points.

Suppose π1 intersects W in 2e+1 mod 2e+2 points. Then, as in the proof of The-
orem 2.4, it follows that t1 is a root of R(T, x, y, 1), where R(T,X, Y, Z) is the
Rédei polynomial corresponding to W, of multiplicity 2e+1 mod 2e+2, and we ob-
tain R(T, x, y, 1) ∈ GF(q)[T 2e+1

] \GF(q)[T 2e+2
]. We will show that also π2 intersects

W in 2e+1 mod 2e+2 points. We may write

R(T, x, y, 1)1/2e+1
= T q2/2e+1

+ g(T ),

where g ∈ GF(q)[T ] is of degree at most q2/2e+1 − q/2 and g′(T ) is not identically
zero. The product of the distinct linear factors of R(T, x, y, 1)1/2e+1

divides T q + T
and the repeated factors divide its derivative, hence

T q2/2e+1
+ g(T ) | (T q + T )g′(T ).

The degree of the quotient m(T ) is at most q/2− 2 and differentiating the identity

(T q2/2e+1
+ g(T ))m(T ) = (T q + T )g′(T ),

we get
T q2/2e+1

m′(T ) + (g(T )m(T ))′ = g′(T ).

The degree of g(T )m(T ) is at most q2/2e+1− 2 so we must have that m′(T ) = 0. The
last equation then becomes m(T )g′(T ) = g′(T ) and hence m(T ) = 1. Therefore

R(T, x, y, 1) = (T q + T )2
e+1

h(T )2
e+2

,

where h(T )2 = g′(T ). It follows that every root of R(T, x, y, 1), in particular t2, is a
root with multiplicity 2e+1 mod 2e+2, which implies that π2 intersects W in 2e+1 mod
2e+2 points. We have shown that the number of points in the intersection of a plane
with W modulo 2e+2 only depends on the plane’s intersection with π. �

3 Ovoids of the generalised quadrangles T2(O) and T ∗
2 (O)

Let O be an oval in PG(2, q) ⊂ PG(3, q), i.e., a set of q + 1 points no three collinear,
where q = ph. Consider the following incidence structure T2(O). We define three
types of points: (i) the points of PG(3, q)\PG(2, q); (ii) The planes of PG(3, q) which
meet PG(2, q) in a tangent line to O; (iii) a point (∞). We define two type of lines:
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(a) the points of O; (b) the lines of PG(3, q) \ PG(2, q) which meet PG(2, q) in a
point of O. Incidence is symmetric containment in PG(3, q) and the point (∞) is
incident with every line of type (a). The incidence structure T2(O) is a generalised
quadrangle of order q, see [6, 3.1.2]. An ovoid Ω of a generalised quadrangle S is a
set of points of S such that every line of S is incident with exactly one point of Ω.
If the generalised quadrangle S has order (s, t) then an ovoid of S has st + 1 points,
again see [6]. Theorem 2.2 and Theorem 2.5 have the following immediate corollary.

Corollary 3.1 If Ω is an ovoid of T2(O) containing the point (∞), then every plane
of PG(3, q) meets Ω in zero modulo p points. Moreover if q is even, two planes meeting
PG(3, q) \ AG(3, q) in the same line intersect Ω either both in 0 modulo 4 points or
both in 2 modulo 4 points.

Proof. Note that an ovoid of T2(O) contains q2 + 1 points. The fact that no two
points of W := Ω \ {(∞)} are collinear means that the points of O are not contained
in the set of directions determined by W. Since |W| = q2 and |O| = q + 1, we can
apply Theorem 2.2 and the first part of the corollary follows. The second part of the
corollary follows directly from Theorem 2.5. �

If q is even then the oval O has a nucleus N , i.e., a point which is incident with every
tangent line to O. Consider the following incidence structure T ∗

2 (O). The points are
the points of PG(3, q) \ PG(2, q), the lines are the lines of PG(3, q) \ PG(2, q) which
meet PG(2, q) in a point of O ∪ {N}, and incidence is that inherited from PG(3, q).
T ∗

2 (O) is a generalised quadrangle of order (q − 1, q + 1), see [6, 3.1.3]. Again we can
apply Theorem 2.2 and Theorem 2.5 to obtain the following corollary for ovoids of
T ∗

2 (O).

Corollary 3.2 If Ω is an ovoid of T ∗
2 (O), then every plane of PG(3, q) meets Ω in

an even number of points. Moreover two planes meeting PG(3, q) \ AG(3, q) in the
same line intersect Ω either both in 0 modulo 4 points or both in 2 modulo 4 points.

Proof. Note that an ovoid of T ∗
2 (O) has (q−1)(q+1)+1 = q2 points. The fact that no

two points ofW := Ω are collinear implies that the points of O∪{N} are not contained
in the set of directions determined by W. Since |W| = q2 and |O ∪ {N}| = q + 2, we
can apply Theorem 2.2 and the first part of the corollary follows. The second part of
the corollary follows directly from Theorem 2.5. �

Motivated by the desire to know the possible intersection numbers that planes have
with an ovoid of T2(O), where (∞) is not a point of the ovoid we prove the following
theorem which would seem artificial were it not for the immediate corollary.
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Theorem 3.3 Let W ⊂ AG(3, q) ⊂ PG(3, q), q = ph, be a set of q2 − q points that
does not determine a set of directions U ⊂ π \D(W), where π := PG(3, q) \AG(3, q),
which has the property that for each point P ∈ U the q affine lines incident with P
but skew from W are coplanar.

(i) If |U| ≥ q − 1 then two planes that meet π in the same line are either both
incident with a point of W or they are both incident with 0 modulo p points of
W.

(ii) If U is of size q and has the property that the skew planes are incident with a
common point Q of π then every plane not incident with Q is incident with a
point of W and those incident with Q are incident with 0 modulo p points of W.
Moreover if q is even then every plane not incident with Q is incident with an
odd number of points of W.

Proof. As before let π denote the plane X3 = 0 in PG(3, q), W be contained in
PG(3, q) \ π, and D(W) denote the set of directions determined by W. Choose a
subset U ⊂ π \ D(W) of size q − 1. Without loss of generality we may assume that
U = {〈1, ui, vi, 0〉 : i ∈ {1, . . . , q − 1}}. Define the Rédei polynomial

R(T,X, Y ) :=
∏

〈a,b,c,1〉∈W

(T + aX + bY + c) =
q2−q∑
j=0

σj(X, Y )T q2−q−j .

Consider

R(T,−uiY − vi, Y ) =
∏

〈a,b,c,1〉∈W

(T + (b− aui)Y + c− avi).

The number of factors satisfying b−aui = r and c−avi = s is equal to the number of
points of W on the line defined by the planes X1−uiX0 = rX3 and X2−viX0 = sX3.
Since this line is incident with the point 〈1, ui, vi, 0〉 ∈ U , the number of such factors
is one unless the line is contained in the plane πi skew to W at 〈1, ui, vi, 0〉. There is
a point on the line X3 = X0 = 0 that is not incident with any πi and without loss of
generality we may assume that this point is 〈0, 0, 1, 0〉. So for some αi, βi the skew
plane πi at 〈1, ui, vi, 0〉 is defined by the equation

−(vi + βiui)X0 + βiX1 + X2 + αiX3 = 0.

This plane contains the line defined by the equations X1−uiX0 = rX3 and X2−viX0 =
sX3 if and only if s = −(αi + βir). Hence

R(T,−uiY − vi, Y ) =
∏

(r,s)∈GF(q)2

(T + rY + s)/
∏

r∈GF(q)

(T + rY − (αi + βir)),

= [T q2 − ((Y q − Y )q−1 + 1)T q + (Y q − Y )q−1T ]/[T q − (Y − βi)q−1T − αi],

9



for all i ∈ {1, 2, . . . , q − 1}. The second highest degree term in T on the right hand
side is of degree q2 − 2q + 1 so σj(−uiY − vi, Y ) ≡ 0 for all j ∈ {1, 2, . . . , q − 2}
and i ∈ {1, 2, . . . , q − 1}. By Lemma 2.1 the polynomials σj(X, Y ) ≡ 0 for all j ∈
{1, 2, . . . , q − 2}. So

R(T,X, Y ) = T q2−q +
q2−q∑

j=q−1

σj(X, Y )T q2−q−j .

As in the previous theorems for all x, y ∈ GF(q) we have the divisibility

R(T, x, y) | (T q − T )
∂R

∂T
(T, x, y).

The left hand side has degree q2 − q and the right hand side has degree less than or
equal to q2 − q. The leading coefficient on the right hand side is σq−1(x, y).

If σq−1(x, y) is zero then the right hand side has degree less than the left hand side
and is identically zero. In this case

∂R

∂T
(T, x, y) ≡ 0,

and R(T, x, y) is a p-th power and it follows that every factor T − t, where t =
−ax − by − c for some 〈a, b, c, 1〉 ∈ W occurs a multiple of p times in R(T, x, y). In
other words, every plane with equation

xX0 + yX1 + X2 + tX3 = 0

x, y, t ∈ GF(q), intersects W in 0 modulo p points. These are the planes sharing the
common line of π defined by the equations X3 = 0 and xX0 + yX1 + X2 = 0.

If σq−1(x, y) is not zero then we have the equality

R(T, x, y) = σq−1(x, y)−1(T q − T )
∂R

∂T
(T, x, y).

and it follows that every factor T − t, where t = −ax− by− c for some 〈a, b, c, 1〉 ∈ W
occurs at least once in R(T, x, y). In other words, every plane with equation

xX0 + yX1 + X2 + tX3 = 0

x, y, t ∈ GF(q), intersects W in at least a point. Again these planes share the common
line of π defined by the equations X3 = 0 and xX0 + yX1 + X2 = 0 and so we have
proved the first part of the theorem for all lines which have an X2 term in their
defining equation. As in the previous theorems, redefining the Rédei polynomial by
permuting the coordinates and going through the same arguments suffices for lines of
π defined by equations of the form xX0 + X1 + yX2 = 0 and X0 + xX1 + yX2 = 0.

By hypothesis in the final part of the theorem we have a subset of U ⊂ π \ D(W)
of size q with the property that the planes skew to W are incident with a common
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point Q of π. Then every plane not incident with Q is incident with a point of W.
Without loss of generality let Q be the point 〈0, 1, 0, 0〉 and apply a collineation that
fixes Q and maps the line X0 = 0 skew to U . Following the proof as in part (i), but
with βi = 0 for all i ∈ {1, 2, . . . , q} we have

R(T,−uiY −vi, Y ) = (T q2−((Y q−Y )q−1 +1)T q +(Y q−Y )q−1T )/(T q−Y q−1T −αi),

for all i ∈ {1, 2, . . . , q}. Hence σq−1(−uiY − vi, Y ) ≡ Y q−1 and by Lemma 2.1
σq−1(X, Y ) − Y q−1 ≡ 0. Continuing along the arguments as before we now have
that if y 6= 0 then the every plane with equation

xX0 + yX1 + X2 + tX3 = 0

x, t ∈ GF(q), intersects W in at least a point and if y = 0 then the planes defined by
an equation of the form

xX0 + X2 + tX3 = 0,

those incident with Q, intersect W in 0 modulo p points. Moreover, if q is even and
y 6= 0 then

R(T, x, y) = σq−1(x, y)−1(T q − T )
∂R

∂T
(T, x, y).

Since ∂R
∂T (T, x, y) is a square in T every factor T − t occurs an odd number of times

and the planes defined by an equation of the form

xX0 + yX1 + X2 + tX3 = 0

intersect W in an odd number of points. �

Corollary 3.4 Let Ω be an ovoid of T2(O) that does not contain the point (∞). Every
plane of PG(3, q) that is not incident with a point of O is incident with 1 modulo p
points of Ω.

Proof. If q is even then all the hypotheses of Theorem 3.3 are satisfied and we can
apply the last part of the theorem to obtain the corollary. If q is odd then O is a conic
and T2(O) is isomorphic to Q(4, q). The planes of PG(3, q) that are not incident with
a point of O correspond to elliptic quadrics in the Q(4, q) model. Corollary 3.1 implies
that elliptic quadrics are incident with no points of an ovoid of Q(4, q) or 1 modulo p
points. However Theorem 3.3 shows that the planes containing the line π′ ∩π. where
π′ is a plane skew to the ovoid, are all skew to the ovoid, which is clearly nonsense.
Hence an elliptic quadric is incident with 1 modulo p points of an ovoid of Q(4, q).
�

In the case when q is odd, the previous corollary was first proven in [3]. It was
proven again in [4] where it was also shown that ovoids of Q(4, p), p prime, are elliptic
quadrics.
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In the case where q is even and O is a conic, so T2(O) is isomorphic to Q(4, q), the
previous corollary was first proven by Bagchi and Sastry [1]. Moreover it was shown
in [4] that every elliptic quadric is either incident with 1 modulo 4 points of an ovoid
of Q(4, q) or every elliptic quadric is incident with 3 modulo 4 points of an ovoid of
Q(4, q).
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