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Abstract. We give a geometric construction of a finite semifield from a certain config-
uration of two subspaces with respect to a Desarguesian spread in a finite dimensional
vector space over a finite field, and prove that any finite semifield can be obtained in
this way. Although no new semifield planes are constructed here, we give explicit sub-
spaces from which some known families of semifields can be constructed. In 1965 Knuth
[12] showed that each finite semifield generates in total six (not necessarily pairwise non-
isotopic) semifields. In certain cases, the geometric construction obtained here allows one
to construct another six (not necessarily pairwise non-isotopic) semifields, which may or
may not be isotopic to any of the six semifields obtained by Knuth’s operations. Explicit
formulas are calculated for the multiplications of the twelve semifields associated with a
semifield that is of rank two over its left nucleus.

1. Introduction

A finite semifield S is an algebra satisfying the axioms for a skew field except possibly
associativity of multiplication. To be precise, S is an algebra with at least two elements,
and two binary operations + and ◦, satisfying the following axioms.

(S1) (S, +) is a group with identity element 0.
(S2) x ◦ (y + z) = x ◦ y + x ◦ z and (x + y) ◦ z = x ◦ z + y ◦ z, for all x, y, z ∈ S.
(S3) x ◦ y = 0 implies x = 0 or y = 0.
(S4) ∃1 ∈ S such that 1 ◦ x = x ◦ 1 = x, for all x ∈ S.

The semifields that concern us in this article are finite, so we shall simply say semifield
in place of finite semifield, finiteness to be assumed. Semifields can be used to construct
certain translation planes (called semifield planes) and two semifield planes are isomor-
phic if and only if the corresponding semifields are isotopic, see [1]. Associated with a
translation plane there is a spread by the so-called André-Bruck-Bose construction. The
spread corresponding to a semifield plane is called a semifield spread. Two semifields are
isotopic if and only if the corresponding semifield spreads are equivalent.

In the next section we give a geometric construction of a semifield spread (and hence a
semifield) starting from a particular configuration of subspaces of a finite vector space.
In Section 3 we construct some known examples in this way and in Section 4 we show
that all semifields can be constructed from such a configuration. In certain cases one can
switch the roles of the subspaces and construct more semifields. In Section 5 we consider
the effect of this switching on semifields of rank two over their left nucleus.
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For more on spreads, translation planes and isotopy, see [1], [7], and [9].

2. A geometric construction of finite semifields

If V is a vector space of rank d over a finite field with q elements, a spread of V is a set
S of subspaces of V , all of the same rank d′, 1 ≤ d′ ≤ d, such that every non-zero vector
of V is contained in exactly one of the elements of S. It follows that d′ divides d and
that |S| = (qd − 1)/(qd′ − 1) (see [7]). In the case that d is even and d′ = d/2 we call a
spread of V a semifield spread if there exists an element S of this spread and a group G
of semilinear automorphisms of V with the property that G fixes S pointwise and acts
transitively on the other elements of the spread.

Let F be the finite field of qn elements, let F0 be the subfield of q elements and assume
n ≥ 2. Let V1 ⊕ Vr be a vector space of rank r + 1 over F, where Vi is a subspace of
rank i over F and r ≥ 2. Consider V1 ⊕ Vr as a vector space of rank (r + 1)n over F0

and let D(V1 ⊕ Vr) be the spread of subspaces of rank n over F0 arising from the spread
of subspaces of rank 1 over F. Such a spread (i.e. arising from a spread of subspaces of
rank 1 over some extension field) is called a Desarguesian spread. A Desarguesian spread
has the property that it induces a spread in every subspace spanned by elements of the
spread.

Throughout this paper (unless stated otherwise) D = D(V1 ⊕ Vr) will denote the Desar-
guesian spread where the (unique) spread element containing the vector (x0, x1, . . . , xr) ∈
(V1 ⊕ Vr) \ {0}, is the F0-subspace {(ax0, ax1, . . . , axr) | a ∈ F} of rank n. Note that
it follows from our definitions of V1, Vr, V1 ⊕ Vr, and D, that D induces a Desarguesian
spread in Vr and that V1 is an element of D.

Remark 2.1. The incidence structure constructed from a spread of t-spaces of a vector
space of rank rt, generalising the André-Bruck-Bose construction of a translation plane,
is a 2 − (qrt, qt, 1)-design with parallelism. This design is isomorphic to the incidence
structure of points and lines of AG(r, qt) (the r-dimensional Desarguesian affine geometry
over the finite field with qt elements) if and only if the spread is a Desarguesian spread,
see [4]. In the literature such spreads are sometimes called normal or geometric. The
above motivates our choice to use the word Desarguesian.

For any subset T of V1 ⊕ Vr define

B(T ) = {S ∈ D(V1 ⊕ Vr) | T ∩ S 6= {0}}.

Let U and W be F0-subspaces of Vr of rank n and rank (r − 1)n, respectively, with the
property that

B(U) ∩B(W ) = ∅.

Let 0 6= v ∈ V1. Let S(U,W ) be the set of subspaces in the quotient space (V1 ⊕ Vr)/W
defined by

S(U,W ) := {〈S, W 〉/W | S ∈ B(〈v, U〉)},
where the angle brackets 〈, 〉 denote the span.

Theorem 2.2. S(U,W ) is a semifield spread of (V1 ⊕ Vr)/W .
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Proof. First we show that S(U,W ) is a spread of (V1 ⊕ Vr)/W . The vector space (V1 ⊕
Vr)/W has rank 2n and the elements of S(U,W ) are subspaces of rank n. So if we show
that any two elements of S(U,W ) have a trivial intersection, we only then need to count
that we have qn + 1 elements.

Note that Vr/W ∈ S(U,W ) since 〈S, W 〉 = Vr for all S ∈ B(U). Moreover Vr/W
has trivial intersection with every other element of S(U,W ) since the elements of the
Desarguesian spread are either contained in Vr or have trivial intersection with Vr.

Suppose that 〈R, W 〉/W and 〈S, W 〉/W are distinct elements of S(U,W )\{Vr/W} which
have a non-trivial intersection. Then the subspace 〈R,S, W 〉 has rank at most (r+1)n−1
and, since R and S are subspaces belonging to a spread, the subspace they span has rank
2n and therefore a non-trivial intersection with W . Now W ⊂ Vr and so 〈R,S〉∩W ⊂ Vr.
Since R and S are subspaces belonging to the Desarguesian spread, 〈R,S〉 intersects Vr

in an element T of the Desarguesian spread. Thus T ∈ B(W ). The intersections of R
and S with 〈U, v〉 are distinct and non-trivial and so 〈R,S〉 ∩ 〈U, v〉 has rank at least
two. Therefore 〈R,S〉 has a non-trivial intersection with U . However U ⊂ Vr and 〈R,S〉
intersects Vr in T . Thus T ∈ B(U) ∩B(W ) which, by hypothesis, does not occur.

It suffices to show that B(〈v, U〉) \B(U) has qn elements. If an element S of B(〈v, U〉) \
B(U) intersects 〈v, U〉 in a subspace of rank ≥ 2 then S intersects U and therefore belongs
to B(U), which it does not. Hence every element of B(〈v, U〉) \B(U) intersects 〈v, U〉 in
a subspace of rank 1. There are qn subspaces of rank 1 in 〈v, U〉 that are not contained
in U .

Moreover S(U,W ) is a semifield spread because the pointwise stabiliser of Vr is transitive
on the elements of B(〈v, U〉) \B(U). �

Let S(U,W ) denote the semifield corresponding to the semifield spread S(U,W ).

Remark 2.3. The notation S(U,W ) and S(U,W ) suggests that the semifield and the
spread only depend on U and W and not on any other choices we made in the construc-
tion. This requires some explanation. Clearly, since up to equivalence there is only one
Desarguesian spread of rank n subspaces of V1 ⊕ Vr with the desired property that it in-
duces a spread in V1 and in Vr, the construction is independent of D. We will show that
different choices of v give equivalent spreads and hence isotopic semifields, and therefore
S(U,W ) and S(U,W ) are independent of v.

Suppose we have two semifield spreads S and S ′ constructed from (U,W ) using v and v′

respectively. If we can find an element φ of ΓL(rn+n, q) fixing U , W and the Desarguesian
spread, with vφ = v′, then by considering its action on the quotient geometry (V1⊕Vr)/W ,

φ induces an element φ of ΓL(2n, q) with Sφ = S ′. Therefore we want that φ is induced by
an element of ΓL(r + 1, qn) since then it fixes the Desarguesian spread. If B(v) 6= B(v′)
then apply a collineation of PG(V1 ⊕ Vr), with axis PG(Vr) induced by an element of
PGL(r + 1, qn), which maps B(v) to B(v′). If B(v) = B(v′) then v′ = av for some a ∈ F.
Without loss of generality we may assume that v = (1, 0, . . . , 0). Then for φ choose the
element of ΓL(r + 1, qn) defined by

φ(x1, x2, . . . , xr+1) = (ax1, x2, . . . , xr+1).
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Theorem 2.4. Let S(U,W ) and S(U ′, W ′) be two semifields constructed from subspaces
U,U ′, W, W ′ of Vr. If there exists an element ϕ of ΓL(Vr) fixing D(Vr), and such Uϕ = U ′,
and Wϕ = W ′, then S(U,W ) and S(U ′, W ′) are isotopic semifields.

Proof. This is elementary in view of the previous remark. �

3. Examples

Let us illustrate the construction of S(U,W ) in Theorem 2.2 by determining subspaces U
and W which give some known pre-semifields.

A pre-semifield satisfies all the axioms of a semifield except that it may not contain a
multiplicative identity. However, there is always a semifield isotopic to a pre-semifield,
see [12], so for our purposes it suffices to consider pre-semifields.

3.1. Generalised twisted fields (Albert [2]). (r = 2)
Let q be an odd prime power. The generalised twisted field (a pre-semifield) (F, +, ◦) has
multiplication defined by

y ◦ x = yx− ηyσxα,

where σ and α are automorphisms of F with fixed field F0 and η ∈ F \ {aq−1 | a ∈ F}.
Let D(V1 ⊕ V2) be the usual Desarguesian spread of rank n subspaces of V1 ⊕ V2. Define
subspaces U = {(0, x,−η1/σxα/σ) | x ∈ F} and W = {(0,−zσ, z) | z ∈ F} of V2

∼= F2n
0 .

Clearly

B(U) = {{(0, ax,−aη1/σxα/σ) | a ∈ F} | x ∈ F∗}

and

B(W ) = {{(0,−byσ, by) | b ∈ F} | y ∈ F∗}

and they are disjoint since η is not a (q − 1)-th power.

Let v = (1, 0, 0). An element of B(〈U, v〉) \B(U) is of the form

Sx = {(y, yx,−yη1/σxα/σ) | y ∈ F}.

We can obtain Sx/W by intersecting 〈Sx, W 〉 with a subspace of rank 2n which has no
non-trivial intersection with W , for example X3 = 0. Now

〈Sx, W 〉 = {(y, yx− zσ,−yη1/σxα/σ + z) | y, z ∈ F}

and so

S(U,W ) = {{(y, yx− ηyσxα)} | y ∈ F} | x ∈ F} ∪ {(0, y) | y ∈ F}.

The plane of order |F| defined by this spread is the semifield plane coordinatised by the
generalised twisted field.
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3.2. The Kantor-Williams symplectic semifields [11]. (r = 3)

Let q be even and F be an extension of F0 of odd degree n. Let f(x) =
∑n−1

i=0 bix
qi

be an
additive function from F to F such that

xy + y2f(x)2 + f(y)2x2 = 0

has no non-trivial solutions. Let f̂(x) =
∑n−1

i=0 (bix)q−i
, bi ∈ F.

The Kantor-Williams symplectic pre-semifields (F, +, ◦) have multiplication

y ◦ x = f̂(yx) + y2x + yf(x),

for some f satisfying the above condition.

Let D(V1 ⊕ V3) be the usual Desarguesian spread of rank n subspaces of V1 ⊕ V3. Define

subspaces U = {(0, f(x), x1/2, x) | x ∈ F} and W = {(0, f̂(z) + w2, w, z) | z, w ∈ F} of
V3 = F0

3n, of rank n and rank 2n respectively. Now if

B(U) = {{(0, yf(x), yx1/2, yx) | y ∈ F} | x ∈ F∗}
and

B(W ) = {{(0, af̂(z) + aw2, aw, az) | a ∈ F} | (z, w) ∈ F2 \ {(0, 0)}}
have an non-empty intersection then there is an a ∈ F∗, and w, z, x, y ∈ F satisfying the
set of equations az = yx, aw = yx1/2, and af̂(z) + aw2 = yf(x). But then (ya−1) ◦ x =

f̂(ya−1x) + (ya−1)2x + ya−1f(x) = 0, which implies x = 0 or y = 0. Thus B(U) and
B(W ) are disjoint.

Let v = (1, 0, 0, 0). An element of B(〈U, v〉) \B(U) is of the form

Sx = {(y, yf(x), yx1/2, yx) | y ∈ F}.
We obtain Sx/W by intersecting 〈Sx, W 〉 with a subspace of rank 2n which has no non-

trivial intersection with W , for example X3 = X4 = 0. Now 〈Sx, W 〉 = {(y, yf(x)+ f̂(z)+
w2, yx1/2 + w, yx + z) | y, z, w ∈ F} and so

Sx/W = {(y, yf(x) + f̂(yx) + y2x) | y ∈ F}.
The plane defined by the semifield spread S(U,W ) is a semifield plane coordinatised by
a Kantor-Williams symplectic semifield.

3.3. The Coulter-Matthews commutative semifields [6]. (r = 3)
Let F be an odd degree extension of the field with three elements. The Coulter-Matthews
commutative pre-semifield (F, +, ◦) is defined by

y ◦ x = x9y + xy9 − (xy)3 + xy.

Define subspaces U = {(0, x, x9, x1/9) | x ∈ F} and W = {(0, z, z3−w9− z, w) | z, w ∈ F}
of V3 = F0

3n, of rank n and rank 2n respectively. If B(U) and B(W ) have a non-empty
intersection then there is a y ∈ F with the property that z = xy, z3 − w9 − z = x9y and
w = x1/9y hold simultaneously, which implies (xy)3 − xy9 − xy = x9y. This cannot occur
non-trivially since ◦ defines a pre-semifield.

Let v = (1, 0, 0, 0). An element of B(〈U, v〉) \B(U) is of the form

Sx = {(y, yx, yx9, yx1/9) | y ∈ F}.
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We obtain Sx/W by intersecting 〈Sx, W 〉 with a subspace of rank 2n which has no non-
trivial intersection with W , for example X2 = X4 = 0. Now 〈Sx, W 〉 = {(y, yx + z, yx9 +
z3 − w9 − z, yx1/9 + w) | y, z, w ∈ F} and so

Sx/W = {(y, x9y + xy9 − (xy)3 + xy) | y ∈ F}.

Note that the signs are mixed-up in the multiplication of the Coulter-Matthews semifield
as listed in [10]; they should be as above.

4. The construction covers all finite semifields

In the previous section we saw examples of semifields that can be constructed using
Theorem 2.2. In this section we shall prove that any semifield can be constructed in this
way. Firstly, note that a finite semifield S has a characteristic p, for some prime p, and
that S is a vector space over the field of p elements.

Let S = (F, +, ◦) be a finite semifield of order pn. Define

Sx := {(y, y ◦ x) | y ∈ F},
for every x ∈ F and

S∞ := {(0, y) | y ∈ F}.
Then {Sx | x ∈ F} ∪ {S∞} is a spread of the vector space V (F × F) of rank 2n over F0

consisting of subspaces of rank n over F0, where F0 is the subfield of F of order p. For
some cij ∈ F we can write

y ◦ x =
n−1∑
i,j=0

cijx
pi

ypj

=
n−1∑
j=0

cj(x)ypj

.

This spread is a semifield spread with respect to S∞ (see [7]).

Theorem 4.1. For every finite semifield S, there exist subspaces U and W of Fn2

0 such
that S is isotopic to S(U,W ).

Proof. Consider V1 ⊕ Vn as a vector space of rank n + 1 over F. The spread element of
the Desarguesian spread D(V1 ⊕ Vn) containing x ∈ Fn+1 is the rank n subspace over F0

{(yx0, yx1, . . . , yxn) | y ∈ F}.

Define subspaces of Vn by

U = {(0, c0(x), c1(x)p−1

, . . . , cn−1(x)p−n+1

) | x ∈ F}
and

W = {(0,−
n−1∑
i=1

zpi

i , z1, z2, . . . , zn−1) | zi ∈ F}.

If B(U) ∩ B(W ) 6= ∅ then there is an element of the Desarguesian spread meeting both
U and W and so there is a

z = (0,−
n−1∑
i=1

zpi

i , z1, z2, . . . , zn−1) ∈ W
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and a y ∈ F∗ with the property that y−1z ∈ U . Hence there exists an x ∈ F∗ such that

zi = yci(x)p−i

, i 6= 0

and

−
n−1∑
i=1

zpi

i = yc0(x).

Substituting for the zi in the second equality we get

y ◦ x =
n−1∑
j=0

cj(x)ypj

= 0

which implies x = 0 or y = 0, a contradiction. Thus B(U) ∩B(W ) = ∅.
Let v = (1, 0, . . . , 0). The element of the Desarguesian spread D(V1 ⊕ Vn) containing the
vector

(1, c0(x), c1(x)p−1

, . . . , cn−1(x)p−n+1

) ∈ 〈U, v〉
is

Rx := {(y, yc0(x), yc1(x)p−1

, . . . , ycn−1(x)p−n+1

) | y ∈ F}.
The quotient space (V1⊕Vn)/W is isomorphic to the projection of all subspaces containing
W onto a subspace of rank 2n intersecting W trivially. In order to calculate the quotient
subspace 〈Rx, W 〉/W we first form the span

〈Rx, W 〉 = {(y, yc0(x)−
n−1∑
i=1

zpi

i , yc1(x)p−1

+ z1, . . . , ycn−1(x)p−n+1

+ zn−1) | y, zi ∈ F},

and then intersect this with the subspace defined by X2 = X3 = . . . = Xn = 0. Hence

〈Rx, W 〉/W = {(y,
n−1∑
j=0

cj(x)ypj

) | y ∈ F} = {(y, y ◦ x) | y ∈ F}.

Thus the semifield spread S(U,W ) is isomorphic to the semifield spread associated with
S. �

Remark 4.2. The theorem shows that any semifield of size |F| can be constructed for

r = n, that is from subspaces of rank n and n2 − n of Fn2

0 , where n = [F : F0]. In the
previous section we saw that we could construct certain semifields from subspaces of Frn

0 ,
where r = 2 and 3.

Remark 4.3. In a random search for a semifield of order qn there are qn3
variables, since

there are qn choices for each cij, whereas in the construction there are only qrn2
choices,

qn2
choices to find a basis for U and q(r−1)n2

to find a basis for W . Thus choosing r to be
small would considerably reduce the search space.

Remark 4.4. Theorem 2.2 gives us a construction of a finite semifield from a configura-
tions of two subspaces and a Desarguesian spread, Theorem 2.4 states that two equivalent
configurations give isotopic semifields, and by Theorem 4.1 every finite semifield can be
constructed using Theorem 2.2.

A logical next step would be to prove that two isotopic semifields arise from equivalent
configurations, i.e., a converse of Theorem 2.4. It is tempting to conjecture that if two
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semifields S(U,W ) and S(U ′, W ) are isotopic, then there exists an element ϕ ∈ ΓL(Vr),
such that ϕ fixes the Desarguesian spread and W and Uϕ = U ′ or, if two semifields
S(U,W ) and S(U,W ′) are isotopic, then there exists an element ϕ ∈ ΓL(Vr), such that ϕ
fixes the Desarguesian spread and U and Wϕ = W ′.

However, these conjectures would turn out to be false due to the following counterexamples,
which were found using the computer package MAGMA [13].

In F9
3 one can construct a Desarguesian spread and find subspaces U , U ′ of rank 3 and W

of rank 6 with the property that U meets 13 spread elements and U ′ only 10. Implementing
the construction it turns out that neither S(U,W ) nor S(U ′, W ) are isotopic to F27. Since,
up to isotopism, there is only one semifield (the generalised twisted field) with 27 elements
which is not a field ([8]), they are isotopic. Therefore the fact that two semifields S(U,W )
and S(U ′, W ) are isotopic does not imply the existence of an element of ΓL(Vr) which
fixes the Desarguesian spread and W and maps U to U ′.

In the same space one can find subspaces U of rank 3, and W and W ′ of rank 6 with
the property that W meets 271 spread elements and W ′ meets 352. Implementing the
construction it turns out that both S(U,W ) and S(U,W ′) are isotopic to F27.

5. Semifield operations

In [12] Knuth noted the group S3 acts on the set of finite semifields. The group S3 is
generated by involutions τ1 and τ2.

The operation τ1 changes the order of multiplication and is equivalent to dualising the
semifield plane.

The operation τ2 has the effect of dualising the semifield spread associated with the
semifield; this geometrical interpretation was first observed in [3] and elaborated in [10].
Knuth [12] proved that τ2 is well-defined up to isotopism.

Two semifields S = (F, +, ◦) and S′ = (F, +, ·) of characteristic p are isotopic, for which
we write S ' S′, if and only if there exists a triple (f1, f2, f3) of non-singular maps from
F to F, linear over the field with p elements, with the property that

f1(x) · f2(y) = f3(x ◦ y),

for all x, y ∈ F. Albert [1] proved that two semifields are isotopic if and only if their
corresponding planes are isomorphic.

The identity map will be denoted as id.

If a semifield S(U,W ) can be constructed from subspaces of rank n of F2n
0 then we can

switch the roles of U and W to construct the semifield S(W, U). It is not clear whether
this operation is well-defined up to isotopism, in other words, whether if S(U,W ) and
S(U ′, W ′) are isotopic implies that S(W, U) and S(W ′, U ′) are isotopic.

In the following section we shall look at the effect of this operation on the class of semifields
that are of rank 2 over their left nucleus.
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6. The semifields associated with semifields of rank two over their left
nucleus

The left nucleus of a semifield S = (F, +, ◦) is

{x ∈ F | x ◦ (y ◦ z) = (x ◦ y) ◦ z for all y, z ∈ F},
the middle and right nucleus are defined analogously. The left nucleus is a field and S
can be viewed as a vector space over the left nucleus. Suppose that the rank of this
vector space is two. Then there is a field K with the property that S = (K2, +, ◦) and
{(u, 0) | u ∈ K} is the left nucleus. Therefore

(u, 0) ◦ (x, y) = (ux, uy),

for all u, x, y ∈ K and

(0, v) ◦ (x, y) = ((v, 0) ◦ (0, 1)) ◦ (x, y) = (v, 0) ◦ ((0, 1) ◦ (x, y)) = (v, 0) ◦ (h(x, y), g(x, y))

for some functions h and g from K2 to K2, linear over some subfield of K. Thus

(0, v) ◦ (x, y) = (vh(x, y), vg(x, y))

and the distributive laws imply

(u, v) ◦ (x, y) = (ux + vh(x, y), uy + vg(x, y)).

Let us show that S can be constructed as S(U,W ) where U and W are subspaces of F2,
so in the construction we have r = 2.

Let {1, t} be a basis for F over K, where t2 = t + θ for some θ ∈ K. A typical element
of the Desarguesian spread of F3 is {(λ, λα, λβ) | λ ∈ F}, for some α, β ∈ F. Writing
λ = u + tv, α = a + tb and β = c + td this subspace is

{(u + tv, ua + vθb + t(ub + v(a + b)), uc + vθd + t(ud + v(c + d))) | u, v ∈ K}.

Thus D(V1 ⊕ V2), the Desarguesian spread of V1 ⊕ V2
∼= F3 ∼= K6, is the union of D(V2)

which is

{(0, 0, 0, 0, u, v) | u, v ∈ K} ∪ {{(0, 0, u, v, ua + vθb, ub + v(a + b)) | u, v ∈ K} | a, b ∈ K}
and D(V1 ⊕ V2) \ D(V2) which is

= {{(u, v, ua + vθb, ub + v(a + b), uc + vθd, ud + v(c + d)) | u, v ∈ K} | a, b, c, d ∈ K}.

Let g, h ∈ K[x, y] be linear over F0 and define

W = {(0, 0, 0, w, 0, z) | z, w ∈ K}
and

U = {(0, 0, x, h(x, y), y, g(x, y)) | x, y ∈ K}.

A typical spread element in B(W ) is of the form {(0, 0, u, v, ua, va) | u, v ∈ K} for some
a ∈ K, which is element of B(U) if and only if there exist x, y ∈ K with the property that
xg(x, y) = yh(x, y). Thus we can construct the semifields S(U,W ) and S(W, U) so long
as xg(x, y) = yh(x, y) has no non-trivial solution.

Let v = (1, 0, 0, 0, 0, 0).
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An element R ∈ B(〈U + v〉) is of the form

{(u, v, ux + vθh(x, y), uh(x, y) + v(x + h(x, y)),

uy + vθg(x, y), ug(x, y) + v(y + g(x, y))) | u, v ∈ K},

for some x, y ∈ K, and so

R/W = {(u, v, ux + vθh(x, y), uy + vθg(x, y)) | u, v ∈ K}.

An element T ∈ B(〈W + v〉) is of the form

{(u, v, vθw, uw + vw, vθz, uz + vz) | u, v ∈ K},

for some w, z ∈ K. To calculate the quotient T/U we first form the span

T + U = {(u, v, θvw + x, vw + uw + h(x, y), θvz + y, vz + uz + g(x, y)) | u, v, x, y ∈ K}

and intersect with a subspace of rank n which has trivial intersection with U , for example
X3 = X5 = 0. Thus

T/U = {(u, v, (u + v)w + h(θvw, θvz), (u + v)z + g(θvw, θvz)) | u, v ∈ K}.

Therefore the semifield S(U,W ) (after applying the isotopism ((u, v) 7→ (u, θ−1v), id, id))
is defined by the multiplication

(u, v) ◦ (x, y) = (ux + vh(x, y), uy + vg(x, y)),

which is the semifield S, and the pre-semifield S(W, U) (after applying the isotopism
((u, v) 7→ (u− v, θ−1v), id, id)) is defined by the multiplication

(u, v) ◦ (x, y) = (ux + h(vx, vy), uy + g(vx, vy)).

Note that given that xg(x, y) = yh(x, y) implies (x, y) = (0, 0) there is a quick proof that
the multiplcation for S(W, U) gives a semifield. If (ux+h(vx, vy), uy+g(vx, vy)) = 0 and
(x, y) 6= 0 then vyh(vx, vy) = vxg(vx, vy) and so v = 0 and hence u = 0.

The Knuth operations allow us to construct twelve semifields, six from the semifield
S(U,W ) and six from the semifield S(W, U). It seems difficult to determine how many
pairwise non-isotopic semifields there are among these twelve semifields. In the case that
S(U,W ) is related to a semifield flock, and is not a Dickson semifield, it is known that the
Knuth operations produce three non-isotopic semifields from S(U,W ) and another three
non-isotopic semifields from S(W, U), see [3].

The multiplications for the twelve semifields are listed in the table below. The semifield
S = S(U,W ) and the semifield T = S(W, U). The function f t is the transpose, or adjoint,
of the endomorphism f , defined by (x, f(y)) = (f t(x), y) for all x, y ∈ F, where (, ) is a
non-degenerate bilinear form on F, viewed as a vector space over the ground field.
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Pre-Semifield (u, v) ◦ (x, y)

S (ux + vh1(x) + vh2(y), uy + vg1(x) + vg2(y))

τ1(S) (ux + yh1(u) + yh2(v), vx + yg1(u) + yg2(v))

τ2(S) (ux + vy, uh1(x) + uh2(y) + vg1(x) + vg2(y)

τ1τ2(S) (ux + vy, xh1(u) + xh2(v) + yg1(u) + yg2(v))

τ2τ1(S) (ux + ht
1(uy) + gt

1(vy), vx + ht
2(uy) + gt

2(vy))

τ1τ2τ1(S) (ux + ht
1(xv) + gt

1(vy), uy + ht
2(xv) + gt

2(vy))

T (ux + h1(vx) + h2(vy), uy + g1(vx) + g2(vy))

τ1(T) (ux + h1(uy) + h2(vy), vx + g1(uy) + g2(vy))

τ2(T) (ux + vy, xht
1(u) + xgt

1(v) + yht
2(u) + ygt

2(v)

τ1τ2(T) (ux + vy, uht
1(x) + ugt

1(y) + vht
2(x) + vgt

2(y))

τ2τ1(T) (ux + yht
1(u) + ygt

1(v), vx + yht
2(u) + ygt

2(v))

τ1τ2τ1(T) (ux + vht
1(x) + vgt

1(y), uy + vht
2(x) + vgt

2(y))

The twelve semifields associated with a semifield S of rank 2 over its left nucleus

7. Final remarks

The importance of the equivalence between a finite semifield and the existence of the
geometric configuration of subspaces U and W as explained in this article, is illustrated
by the classification result of Cardinali et al. [5]. In the case that n is even and W
is a line over Fqn/2 , U can be seen as an (n − 1)-dimensional subspace over Fq, skew

from a hyperbolic quadric in PG(3, qn/2). (The Desarguesian spread over Fq becomes a
Desarguesian spread of lines D′ over Fqn/2 and the hyperbolic quadric is determined by
the set of lines of D′ which intersect W .) By studying these so-called linear sets skew
from a hyperbolic quadric, Cardinali et al. managed to classify all semifields of order q4

with kernel Fq2 and center Fq.

On the other hand, this article leaves a number of issues unresolved.

1. Is the geometrical construction presented here actually useful for constructing
semifields ? Although computer searches have found many examples of subspaces
U and W satisfying the required property, lack of feasible method for checking
isotopy between semifields has left us with no proof that there are new semfield
planes among the examples found.

2. Unlike the special case studied by Cardinali et al., in general, the geometric con-
struction does not appear to give much information about isotopism, see Re-
mark 4.4. Can Theorem 2.1 in [5] be generalised to resolve this issue ?
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3. We do not know if the operation that interchanges U and W is well defined on
the semfields which can be constructed with r = 2. More precisely, is it true that
if S(U,W ) is isotopic to S(U ′, W ′), then S(W, U) is isotopic to S(W ′, U ′) ?

4. Does the operation that interchanges U and W extend to all semifields and if so,
how many semifields does this operation produce in conjunction with the Knuth
operations ?
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