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Abstract

It is shown that the only semifield flocks of the quadratic cone of PG(3, qn) with
q ≥ 4n2

− 8n + 2 are the linear flocks and the Kantor-Knuth semifield flocks. This
follows from the main theorem which states that there are no subplanes of order q

contained in the set of internal points of a conic in PG(2, qn) for those q exceeding
the bound.

1. Introduction

Let q be an odd prime power and let K be a quadratic cone of PG(3, qn) with vertex v. A
flock F of K is a partition of K \ {v} into qn conics. If all the planes that contain a conic
of the flock share a line then the flock is called linear. Let v be the point 〈0, 0, 0, 1〉 and
let the conic C in the plane π with equation X3 = 0 be the base of the cone K. The planes
determined by the conics are called the planes of the flock and can be written as

πt : tX0 − f(t)X1 + g(t)X2 + X3 = 0

where t ∈ GF (qn) and f , g : GF (qn) → GF (qn) and this flock is denoted F(f, g). If f
and g are linear over a subfield then the flock is called semifield. The maximal subfield
with this property is called the kernel of the (semifield) flock.

The known semifield flocks of K where the conic C is defined by the equation X0X1 = X2
2

are the following.

1. The linear flock where f(t) = mt and g(t) = 0, m is a non-square in GF (qn).
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2. The Kantor-Knuth semifield flock ([5] or [12]) where f(t) = mtσ, g(t) = 0, m is a
non-square in GF (qn) and σ is an GF (q)-automorphism of GF (qn).

3. The Ganley semifield flock ([8]) where qn = 3n, f(t) = m−1t + mt9 and g(t) = t3

with m a non-square in GF (qn).

4. The semifield flock ([1]) which comes from the Penttila-Williams ovoid ([10]) in
Q(4, qn) (also denoted O(5, qn), see Section 4.) where qn = 35, f(t) = t9 and
g(t) = t27.

Let F(f, g) be a semifield flock of K with kernel containing GF (q). In the dual space the
lines of the cone K are a set of qn + 1 lines in the plane π dual to v, no three of which are
concurrent. Since q is odd they form a set of tangents to a conic C′. Every intersection line
of two planes of the flock is skew from every line of the cone K. In the dual space the line
joining two points of the flock (points dual to planes of the flock) meets π in an internal
point of C′ since the external points and the points of C′ are incident with a tangent. Let
W be this subset of the internal points. If we take the dual with respect to the standard
inner product then

W = {〈t,−f(t), g(t), 0〉 | t ∈ GF (qn)}.

If W is contained in a line of π then the planes of the flock all share a common point.
In [12], these flocks are shown to be either linear (in which case they share a line) or a
Kantor-Knuth semifield flock.

If W is not contained in a line of π then it spans π over GF (qn). The subspace W is
n-dimensional over GF (q) and so W contains a subplane of order q which is contained in
the internal points of a conic.

2. A lemma of Weil and some consequences

The following lemma is due to Weil and can be found in Schmidt ([11]).

Lemma 2.1 The number of solutions N in GF (q) of the hyperelliptic equation

y2 = g(x)

where g ∈ GF (q)[X ] is not a square and has degree 2m > 2 satisfies

|N − q + 1| < (2m − 2)
√

q.

Lemma 2.2 Let f(X) = X2 + uX + v ∈ GF (qn)[X ] be a non-zero square in GF (qn) for

all X = x ∈ GF (q), q odd and q ≥ 4n2 − 8n + 2. At least one of the following holds.

1. f is the square of a linear polynomial.

2. n is even and f has two distinct roots in GF (qn/2).

3. The roots of f are α and ασ for some σ a GF (q)-automorphism of GF (qn) and

α ∈ GF (qn).
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Proof : Let n1 be the order of the smallest subfield such that f(X) ∈ GF (qn1)[X ] and
f(x) is a non-zero square in GF (qn1) for all x ∈ GF (q). If n1 6= n simply replace n by
n1 and assume that no such subfield exists. Let fi be the polynomial obtained from f by
raising all coefficients to the power qi. The roots of fi are the roots of f raised to the
power qi. For all x ∈ GF (q) we have that f(x) is a square in GF (qn) precisely when

g(x) =

n−1
∏

i=0

fi(x)

is a square in GF (q). The degree of g is 2n, g(x) ∈ GF (q)[x] and by assumption

|2q − q + 1| > (2n − 2)
√

q.

The previous lemma implies that g is a square. Assume that f is not a square and let
α, β 6= α be the roots of f . The roots of g are

α, αq, . . . , αqn−1

, β, βq, . . . , βqn−1

and every value occurs in this list an even number of times. Therefore there exists σ,
a GF (q)-automorphism of GF (qn), such that β = ασ or there exists σ and τ , GF (q)-
automorphisms of GF (qn), such that α = ασ and β = βτ . Let d be minimal such that

xσ = xqd

.

If there is a σ such that α = ασ, and there is no σ such that β = ασ, then each element of

{α, αq, . . . , αqd−1} occurs in the list {α, αq, . . . , αqn−1} an even number of times, so the order

m of σ is even. In particular n is even and α = ασ = ασm/2

= αqn/2

and α ∈ GF (qn/2).
Likewise β ∈ GF (qn/2). This implies that f has two distinct roots in GF (qn/2).

If there is a σ such that β = ασ = αqd

where d is chosen to be minimal then the list

{β, βq, . . . , βqn−d−1} is equal to the list {αqd

, αqd+1

, . . . , αqn−1}. Therefore each value which
occurs in the list

{α, αq, . . . , αqd−1

, αqn

, αqn+1

, . . . , αqn+d−1}
occurs an even number of times. Let e < 2n be minimal such that α = αqe

. Now e > d
by the minimality of d and so the elements in the list {α, αq, . . . , αqd−1} are all distinct.
Hence

{α, αq, . . . , αqd−1} = {αqn

, αqn+1

, . . . , αqn+d−1}
and

{αq, αq2

, . . . , αqd} = {αqn+1

, αqn+2

, . . . , αqn+d}

which by taking the symmetric difference implies {α, αqd} = {αqn

, αqn+d}. If α 6= αqn

then

α = αqn+d

and αqd

= αqn

which combine to give α = αq2d

and therefore e divides 2d.
Moreover since e > d we have that e = 2d and since e divides 2n that d divides n. The
coefficients of f are −α − αqd

and αqd+1 respectively which are in the subfield GF (qd).
Hence f ∈ GF (qd)[X ]. If n/d is even then 2d divides n and f has two roots α and ασ

where α ∈ GF (qn). If n/d is odd then

1 = f(x)(q
n
−1)/2 = f(x)(1+qd+...+qn−d)(qd

−1)/2 = f(x)(n/d)(qd
−1)/2 = f(x)(q

d
−1)/2

and f(x) is a square in GF (qd). However we assumed at the start of the proof that this
was not the case. 2
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3. The main theorem

Let Q be a quadratic form on V (3, q) whose zeros are a non-degenerate conic C. The value
of Q on the internal points is either a non-zero square or a non-square in GF (q) and after
multiplying by a suitable scalar we can assume it is a non-zero square.

Theorem 3.1 If there is a subplane of order q contained in the internal points of a non-

degenerate conic C in PG(2, qn) then q < 4n2 − 8n + 2.

Proof : Let Q be the quadratic form

Q(X, Y, Z) = X2 + aXY + bXZ + cY 2 + dY Z + eZ2

that is square on the set {(x, y, z) | x, y, z ∈ GF (q)} and whose set of zeros is the conic C.
Let n1 be the order of the smallest subfield such that all the coefficients of Q are elements of
GF (qn1). If n1 6= n simply replace n by n1 in the theorem and assume that all coefficients
of Q do not lie in a subfield.

For a fixed y and z in GF (q) not both zero let

fyz(X) = Q(X, y, z).

The polynomial fyz ∈ GF (qn)[X ] is a square for all x in GF (q).

If fyz is a square of another polynomial then Q is a square for all points on the line
zY − yZ = 0. However, the lines that contain internal points also contain external points
on which Q is a non-square.

If fyz has two distinct roots α and β in GF (qn/2) then (α, y, z) and (β, y, z) are points of
the conic C. Moreover they are points of the conic C′′ defined by the quadratic form whose
coefficients are the coefficients of Q raised to the power qn/2. The coefficients of Q do not
all lie in a subfield so C 6= C′′. The conics C and C′′ meet in at most four points. Hence fyz

can have two distinct roots in GF (qn/2) for at most two projective pairs (y, z). We assume
henceforth that (y, z) are not one of these two.

By the lemma the roots of f are therefore α and ασ for some α ∈ GF (qn) and some GF (q)-
automorphism σ of GF (qn). Let g(Y, Z) = aY + bZ and h(Y, Z) = cY 2 + dY Z + eZ2 so
we have that

fyz(X) = (X − α)(X − ασ) = X2 + g(y, z)X + h(y, z).

There are two cases to consider, namely when the order of σ is odd and when it is even.

Consider first the case that the order m of σ is odd. The identity

(α + ασ)2 = (α1+σ)1−σ+σ2
−...+σm−1

+ 2α1+σ + (α1+σ)σ(1−σ+σ2
−...+σm−1)

implies

g(y, z)2 = h(y, z)1−σ+σ2
−...+σm−1

+ 2h(y, z) + h(y, z)σ(1−σ+σ2
−...+σm−1).

There is such an automorphism σ for q − 1 projective pairs (y, z) and hence there exists
an automorphism σ̃ which occurs for at least

(q − 1)/(n − 1) > 2n ≥ 2m
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projective pairs. We modify our notation and let fi be the polynomial obtained from f by
raising all coefficients to the power σ̃i. The above relation implies

h1h2 . . . hm−1g
2 = h0(h2h4 . . . hm−1 + h1h3 . . . hm−2)

2

which has total degree 2m, holds for every projective pair (y, z), and is therefore an identity.
For all x ∈ GF (q)

fyz(X + x) = X2 + (g + 2x)X + h + xg + x2 = (X − (α − x))(X − (ασ − x))

and we get the more general relation

w1w2 . . . wm−1(g + 2x)2 = w0(w2w4 . . . wm−1 + w1w3 . . . wm−2)
2

where w(x, y, z) = h(y, z) + g(y, z)x + x2. This equation is valid for all (x, y, z) ∈ GF (q)3

and is of degree 2m and is again an identity. We may replace w0 = w by Q and it follows
that

Q1 | Q0Q2 . . . Qm−1.

Therefore either Q1 = Qi for some i and the coefficients of Q lie in some subfield or Q1

and hence Q splits into linear factors and Q is degenerate.

In the second case when the order m of σ is even

h(y, z)1+σ2+...+σm−2

= h(y, z)σ+σ3+...+σm−1

and there exists an automorphism σ̃ for which this is an identity. We define w(x, y, z) as
before and obtain the more general relation

w0w2 . . . wm−2 = w1w3 . . . wm−1

which is also an identity. We may replace w0 = w by Q and since

Q | Q1Q3 . . . Qm−1

either Q = Qi for some i and the coefficients of Q lie in some subfield or Q splits into linear
factors and Q is degenerate.

2

Corollary 3.2 The only semifield flocks of the quadratic cone of PG(3, qn) with q ≥ 4n2−
8n + 2 are the linear flocks and the Kantor-Knuth semifield flocks.

4. Equivalences and Applications

Let F(f, g) be a flock of the quadratic cone K of PG(3, qn) with vertex 〈0, 0, 0, 1〉 and base

C : X0X1 = X2
2 .

Let

πt : tX0 − f(t)X1 + g(t)X2 + X3 = 0
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be the planes of the flock. In the dual flock model (as described in the introduction) the
set

W = {〈t,−f(t), g(t), 0〉 | t ∈ GF (qn)}
is contained in the set of internal points to the conic C′ with equation X2

2 − 4X0X1 = 0 in
the plane X3 = 0. Since 〈0, 0, 1, 0〉 lies on a tangent of C′ and 1 is a square in GF (qn) it
follows that g2 + 4xf is a non-square for all x ∈ GF (qn).

Let us assume throughout this section that f and g are functions with this property. We
make a list of equivalent algebraic and geometric objects associated with a semifield flock.

1. Commutative semifields.

A (finite) semifield is a (finite) set S on which two operations, addition and multipli-
cation (·), are defined with the following properties.

(S1) (S,+) is an abelian group with identity 0.
(S2) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c for all a, b, c ∈ S.
(S3) There exists an element 1 6= 0 such that 1 · a = a = a · 1 for all a ∈ S.
(S4) If a · b = 0 then either a = 0 or b = 0.

The middle nucleus {x ∈ S | (a · x) · b = a · (x · b) for all a, b ∈ S} is a field and the
semifield can be viewed as a left or right vector space over it’s middle nucleus.

A commutative semifield, two dimensional over it’s middle nucleus GF (q) always
arises from the following construction ([3]). Let S(f, g) denote the set of ordered
pairs of elements of GF (qn) with addition defined component-wise and multiplication
by

(a, b) · (c, d) = (ac + g(bd), ad + bc + f(bd)).

It is easy to check the axioms (S1)-(S3) hold and (S4) implies that g2 +4xf is a non-
square for all x ∈ GF (qn). The middle nucleus is the kernel of the corresponding
semifield flock.

2. Spreads and spread sets.

A spread set D is a set of qnd (d × d)-matrices with the following properties.

(SS1) O, I ∈ D
(SS2) for all M , N ∈ D where M 6= N implies det(M − N) 6= 0

The set

D =

{(

y + g(x) f(x)
x y

)

| x, y ∈ GF (q)

}

is a spread set. A spread set gives rise to a spread ([4]) and from D we get a spread
of PG(3, qn) given by

{〈(y, x, 1, 0), (f(x), y + g(x), 0, 1)〉 | x, y ∈ GF (qn)} ∪ {〈(1, 0, 0, 0), (0, 1, 0, 0)〉}

from which a translation plane of order q2n with kernel GF (q) can be constructed
([4]).

3. qn-clans.

A qn-clan Q is a set of qn (2× 2)-matrices with the property that for all At, As ∈ Q

vT (At − As)v = 0
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implies that v = (0, 0) or t = s. A qn-clan is additive if At + As = At+s for all t and
s. The set

{(

x g(x)
0 −f(x)

)

| x ∈ GF (qn)

}

is an additive qn-clan.

4. Eggs.

An egg E of PG(4n− 1, q) is a set of q2n + 1 (n− 1)-dimensional subspaces with the
following properties.

(E1) Any three elements of E span a (3n − 1)-dimensional subspace.
(E2) For all E ∈ E there exists a (2n − 1)-dimensional subspace containing E

which is skew from all other elements of E .

Given an additive qn-clan one can construct an egg of PG(4n − 1, q) ([7] or [8]).

5. Translation generalised quadrangles.

A translation generalised quadrangle is a generalised quadrangle ([2] or [9]) with the
property that there is an abelian group T acting regularly on the points not collinear
with a point P while fixing every line through P . For every egg of PG(4n− 1, q) one
can construct a translation generalised quadrangle of order (qn, q2n) and conversely
every translation generalised quadrangle of order (qn, q2n) gives rise to an egg of
PG(4n − 1, q) ([9, 8.7.1]).

6. Ovoids of O(5, q).

An ovoid of a generalised quadrangle ([2] or [9]) is a set of points O such that each
line contains exactly one point of O.

Let Q(4, qn) (sometimes denoted O(5, qn)) denote the generalised quadrangle of order
qn whose points are the points of a non-singular quadric in PG(4, qn) and whose lines
are the lines contained in that quadric. If we choose the quadratic form on V (5, qn)
given by

X0X4 + X1X3 + X2
2

then the points of an ovoid in O(5, qn) can be written as

{

(1, x, y,−F (x, y),−y2 + xF (x, y) | x, y ∈ GF (qn)
}

∪ {(0, 0, 0, 0, 1)}

for some polynomial F (x, y).

The functions f and g are GF (q)-linear and so can be written in the form

f(X) = −
n−1
∑

i=0

ciX
qi

and g(X) =
n−1
∑

i=0

biX
qi

for some ci, bi ∈ GF (qn). The semifield flock F(f, g) is in one-to-one correspondence
with the ovoid O of O(5, qn) ([13] and for details see [6]) given by

F (X, Y ) =

n−1
∑

i=0

(ciX + biY )qn−i

.
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