Linear $(q+1)$-fold blocking sets in $P G\left(2, q^{4}\right)$.

Simeon Ball, Aart Blokhuis and Michel Lavrauw
Technische Universiteit Eindhoven, Postbox 513, 5600 MB Eindhoven, The Netherlands

1 December 1998

Abstract

A $(q+1)$-fold blocking set of size $(q+1)\left(q^{4}+q^{2}+1\right)$ in $P G\left(2, q^{4}\right)$ is constructed, which is not the union of $q+1$ disjoint Baer subplanes.

1. Introduction

Let $P G(2, q)(A G(2, q))$, where $q=p^{h}$ and p is prime, be the Desarguesian projective (affine) plane over $G F(q)$, the finite field of order q. An s-fold blocking set B in $P G(2, q)$ is a set of points such that every line of $\operatorname{PG}(2, q)$ intersects B in at least s points. A 1-fold blocking set is simply called a blocking set. If a blocking set contains a line of $P G(2, q)$, then it is called trivial. A blocking set is said to be minimal or irreducible if it contains no proper subset which also forms a blocking set. For a survey on blocking sets, see Blokhuis [4]. There is less known about s-fold blocking sets, where $s>1$. If the s-fold blocking set B in $P G(2, q)$ contains a line ℓ, then $B \backslash \ell$ is a $(s-1)$-fold blocking set in $A G(2, q)=P G(2, q) \backslash \ell$. The result from [2] gives the following:

Let B be an s-fold blocking set in $P G(2, q)$ that contains a line and e maximal such that $p^{e} \mid(s-1)$, then $|B| \geq(s+1) q-p^{e}+1$.

This covers previous results by Bruen $[7,8]$, who proved the general bound $(s+1)(q-1)+1$ and Blokhuis [5], who proved $(s+1) q$ in the case $(p, s-1)=1$.
If the s-fold-blocking set does not contain a line then Hirschfeld [10, Theorem 13.31] states that it has at least $s q+\sqrt{s q}+1$ points. A Baer subplane of a projective plane of order q is a subplane of order \sqrt{q}. The strongest result concerning s-fold blocking sets in $P G(2, q)$ not containing a line is a result of Blokhuis, Storme and Szőnyi [6]:

Let B be an s-fold blocking set in $P G(2, q)$ of size $s(q+1)+c$. Let $c_{2}=c_{3}=2^{-1 / 3}$ and $c_{p}=1$ for $p>3$.

1. If $q=p^{2 d+1}$ and $s<q / 2-c_{p} q^{2 / 3} / 2$ then $c \geq c_{p} q^{2 / 3}$.
2. If $4<q$ is a square, $s \leq q^{1 / 4} / 2$ and $c<c_{p} q^{2 / 3}$, then $c \geq s \sqrt{q}$ and B contains the union of s disjoint Baer subplanes.
3. If $q=p^{2}$ and $s<q^{1 / 4} / 2$ and $c<p\left\lceil\frac{1}{4}+\sqrt{\frac{p+1}{2}}\right\rceil$, then $c \geq s \sqrt{q}$ and B contains the union of s disjoint Baer subplanes.

$$
(q+1) \text {-FOLD BLOCKING SETS }
$$

This result is proved using lacunary polynomials. It is clear that the union of s disjoint Baer subplanes in $P G(2, q)$, where q is a square, is an s-fold blocking set. A line intersects this set in either s or $\sqrt{q}+s$ points. The result stated above means that an s-fold blocking set of size $s(q+1)+c$, where c is a constant, necessarily contains the union of s disjoint Baer subplanes if s and c are small enough $\left(s \leq q^{1 / 6}\right)$. The result we present here shows that this bound is quite good. We construct s-fold blocking sets of size $s(q+\sqrt{q}+1)$ in $P G(2, q)$, with $s=q^{1 / 4}+1$, which are not the union of s disjoint Baer subplanes.

2. The representations

In the following we will use representations of projective spaces used in [1] and [3].
The points of $P G(2, q)$ are the 1 -dimensional subspaces of $G F\left(q^{3}\right)$, considered as a 3dimensional vector space over $G F(q)$. Such a subspace has an equation that is $G F(q)$-linear of the form $P^{\prime}=0$, with

$$
P^{\prime}:=x^{q}-\gamma x,
$$

where $\gamma \in G F\left(q^{3}\right)$. So a point of $P G(2, q)$ is in fact a set $\left\{x \in G F\left(q^{3}\right) \mid x^{q}-\gamma x=0\right\}$. Since elements of this set are also zeros of

$$
-P^{\prime q^{2}}+\left(x^{q^{3}}-x\right)-\gamma^{q^{2}} P^{\prime q}-\gamma^{q^{2}+q} P^{\prime}=\left(\gamma^{q^{2}+q+1}-1\right) x
$$

and this is an equation of degree ≤ 1, we necessarily have that $\gamma^{q^{2}+q+1}=1$. So points of $\operatorname{PG}(2, q)$ can be represented by polynomials of the form $x^{q}-\gamma x$ over $G F\left(q^{3}\right)$, where $\gamma \in G F\left(q^{3}\right)$ and $\gamma^{q^{2}+q+1}=1$. Actually this is just a special case of the representation of $P G(n, q)$ in $G F\left(q^{n+1}\right)$, where, by analogous arguments, points can be represented by polynomials of the form $x^{q}-\gamma x$ over $G F\left(q^{n+1}\right)$, with $\gamma \in G F\left(q^{n+1}\right)$ and $\gamma^{q^{n}+q^{n-1}+\ldots+1}=1$.

Now consider $P G(3, q)$. Points are represented by a polynomial of the form $x^{q}-\gamma x$ over $G F\left(q^{4}\right)$, with $\gamma \in G F\left(q^{4}\right)$ and $\gamma^{q^{3}+q^{2}+q+1}=1$. A line in $P G(3, q)$ is a 2 -dimensional linear subspace of $G F\left(q^{4}\right)$ (or $\left.G F(q)^{4}\right)$, which has a polynomial equation of degree q^{2}. Since this equation has to be $G F(q)$-linear, it is of the form $W^{\prime}=0$, with

$$
W^{\prime}:=x^{q^{2}}+\alpha x^{q}+\beta x,
$$

where $\alpha, \beta \in G F\left(q^{4}\right)$. So a line of $P G(3, q)$ is in fact a set $\left\{x \in G F\left(q^{4}\right) \mid x^{q^{2}}+\alpha x^{q}+\beta x=0\right\}$. Since elements of this set are also zeros of

$$
\begin{gathered}
W^{\prime q^{2}}-\left(x^{q^{4}}-x\right)-\alpha^{q^{2}} W^{\prime q}-\left(\beta^{q^{2}}-\alpha^{q^{2}+q}\right) W^{\prime} \\
=\left(-\alpha^{q^{2}} \beta^{q}-\alpha \beta^{q^{2}}+\alpha^{q^{2}+q+1}\right) x^{q}+\left(\alpha^{q^{2}+q} \beta-\beta^{q^{2}+1}+1\right) x
\end{gathered}
$$

and this is an equation of degree $\leq q$, both coefficients on the right-hand side must be identically zero. Manipulating these coefficients we get the conditions $\beta^{q^{3}+q^{2}+q+1}=1$ and $\alpha^{q+1}=\beta^{q}-\beta^{q^{2}+q+1}$. Again this is just a special case of the representation of $P G(n, q)$ in $G F\left(q^{n+1}\right)$, where a k-dimensional subspace can be represented by a polynomial of the form

$$
x^{q^{k+1}}+\alpha_{1} x^{q^{k}}+\alpha_{2} x^{q^{k-1}}+\ldots+\alpha_{k} x
$$

for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in G F\left(q^{n+1}\right)$. For a survey on the use of polynomials of this type in finite geometries, see [1].

$$
(q+1) \text {-FOLD BLOCKING SETS }
$$

3. Construction

We work in the Desarguesian projective plane $P G\left(2, q^{t}\right)$. The points of $P G\left(2, q^{t}\right)$ are the one-dimensional subspaces of $V\left(3, q^{t}\right)$. If we look at $G F\left(q^{t}\right)$ as being a t-dimensional vector space over $G F(q)$, then every vector in $V\left(3, q^{t}\right)$, with 3 coordinates, can be seen as a vector in $V(3 t, q)$, with $3 t$ coordinates, just by expanding the coordinates over the field $G F(q)$. In this way a one-dimensional subspace in $V\left(3, q^{t}\right)$ induces a t-dimensional subspace in $V(3 t, q)$. So the points of $P G\left(2, q^{t}\right)$ induce t-dimensional subspaces in $V(3 t, q)$. The lines of $P G\left(2, q^{t}\right)$, which are 2-dimensional subspaces of $V\left(3, q^{t}\right)$, induce $2 t$-dimensional subspaces in $V(3 t, q)$. The points of $P G\left(2, q^{t}\right)$, seen as $(t-1)$-dimensional subspaces in $P G(3 t-1, q)$, form a normal spread S of $P G(3 t-1, q)$, see [11]. A d-spread of $P G(n, q)$ is a set of d-dimensional pairwise disjoint subspaces which partition the points of the whole space. Throughout this paper d is always equal to $t-1$ and we refer to a $(t-1)$ - spread as simply a spread. A spread S of $P G(n, q)$ is called normal if and only if the space generated by two spread elements is also partitioned by the spread elements of S. We abuse notation and use S for the spread in $P G(3 t-1, q)$ as well as in $V(3 t, q)$. If W is a subspace of $V(3 t, q)$, then by $B(W)$ we mean the set of points of $P G\left(2, q^{t}\right)$, which correspond to the elements of S which have at least a one-dimensional intersection with W in $V(3 t, q)$. Since lines of $P G\left(2, q^{t}\right)$ induce $2 t$-dimensional subspaces in $V(3 t, q)$, it is clear that every $(t+1)$-dimensional subspace in $V(3 t, q)$ induces a blocking set in $P G\left(2, q^{t}\right)$, see [12]. Every $(t+2)$-dimensional subspace in $V(3 t, q)$ also induces a blocking set in $P G\left(2, q^{t}\right)$. But it induces a $(q+1)$-fold blocking set in $P G\left(2, q^{t}\right)$ if this $(t+2)$-dimensional subspace intersects every spread element in at most a one-dimensional subspace. An s-fold blocking set constructed in this way, is called a linear s-fold blocking set. We will use the following notation. If W is a subspace of $V(3 t, q)$, then we define

$$
\tilde{W}=\bigcup_{P:(P \in S) \wedge(P \cap W \neq\{\overrightarrow{0}\})}\{\vec{v} \mid \vec{v} \in P\} .
$$

So in fact, \tilde{W} is the union of the vectors of the spread elements corresponding to the points of $B(W)$.

In the following we will give a construction of a linear $(q+1)$-fold blocking set in $P G\left(2, q^{4}\right)$. Let

$$
W^{\prime}:=x^{q^{6}}+\alpha x^{q^{3}}+\beta x
$$

and

$$
P^{\prime}:=x^{q 4}-\gamma x,
$$

with $\alpha, \beta, \gamma \in G F\left(q^{12}\right), \gamma^{q^{8}+q^{4}+1}=1, \beta^{q^{9}+q^{6}+q^{3}+1}=1$ and $\alpha^{q^{3}+1}=\beta^{q^{3}}-\beta^{q^{6}+q^{3}+1}$. By Section 2 it is clear that $W=\left\{x \in G F\left(q^{12}\right) \| W^{\prime}=0\right\}$ is a 6 dimensional subspace of $V(12, q)$ and the set $P=\left\{x \in G F\left(q^{12}\right) \| P^{\prime}=0\right\}$ is a 4 dimensional subspace of $V(12, q)$.

Theorem 3.1 The set $B(W)$ is a $(q+1)$-fold blocking set of size $(q+1)\left(q^{4}+q^{2}+1\right)$ in $P G\left(2, q^{4}\right)$ and is not the union of $q+1$ disjoint Baer subplanes.

Proof : First we show that the dimension of the intersection of the subspaces W and P in $V(12, q)$ is less than or equal to one. Solutions of both $W^{\prime}=0$ and $P^{\prime}=0$ are also

$$
\begin{aligned}
& \text { solutions of } \\
& \qquad \begin{array}{l}
\alpha^{q} \beta^{q^{2}}\left(\gamma^{q^{3}}\left(W^{\prime}-P^{\prime q^{2}}\right)-\alpha\left(\left(W^{\prime}-P^{\prime q^{2}}\right)^{q}-\alpha^{q} P^{\prime}\right)\right) \\
\left.-\gamma^{q^{3}+q^{2}}\left(\left(\left(W^{\prime}-P^{\prime q^{2}}\right)^{q}\right)-\alpha^{q} P^{\prime}\right) \gamma^{q^{4}}-\left(\gamma^{q^{3}}\left(W^{\prime}-P^{\prime q^{2}}\right)-\alpha\left(\left(W^{\prime}-P^{\prime q^{2}}\right)^{q}-\alpha^{q} P^{\prime}\right)\right)^{q}\right)=0 .
\end{array}
\end{aligned}
$$

$$
(q+1) \text {-FOLD BLOCKING SETS }
$$

This is

$$
\begin{gathered}
\left(-\beta^{\left(q^{2}+q\right)} \alpha^{(q+1)}-\gamma^{\left(q^{3}+q^{2}+q\right)} \alpha^{\left(q^{2}+q\right)}\right) x^{q} \\
+\left(-\gamma \beta^{q^{2}} \alpha^{(2 q+1)}+\gamma^{q^{3}} \beta^{\left(q^{2}+1\right)} \alpha^{q}-\gamma^{\left(q^{4}+q^{3}+q^{2}+1\right)} \alpha^{q}\right) x=0
\end{gathered}
$$

which is a equation of degree q in x. If the coefficients are not identically zero, then this equation will have at most q solutions. This means that the 6 dimensional subspace W intersects every spread element P in at most one dimension. So we have to prove that there exist $\alpha, \beta \in G F\left(q^{12}\right)$, for which these coefficients are not identically zero.

Suppose

$$
\begin{equation*}
-\beta^{\left(q^{2}+q\right)} \alpha^{(q+1)}-\gamma^{\left(q^{3}+q^{2}+q\right)} \alpha^{\left(q^{2}+q\right)}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
-\gamma \beta^{q^{2}} \alpha^{(2 q+1)}+\gamma^{q^{3}} \beta^{\left(q^{2}+1\right)} \alpha^{q}-\gamma^{\left(q^{4}+q^{3}+q^{2}+1\right)} \alpha^{q}=0 \tag{2}
\end{equation*}
$$

Equation (1) implies that $\gamma^{q^{3}+q^{2}+q}=-\beta^{q^{2}+q} \alpha^{1-q^{2}}$, assuming $\alpha \neq 0$. Substitution in (2) gives us

$$
-\alpha^{q+1}+\alpha^{q\left(q^{10}-1\right)(q-1)} \beta^{q^{2}}+\alpha^{q-q^{3}} \beta^{q^{3}}=0
$$

or

$$
-\alpha^{q^{3}+1}+\beta^{q^{3}}+\alpha^{q^{12}-q^{11}+q^{3}-q^{2}} \beta^{q^{2}}=0 .
$$

Since $\alpha^{q^{3}+1}=\beta^{q^{3}}-\beta^{q^{6}+q^{3}+1}$, this is equivalent with

$$
\beta^{q^{7}+q^{4}-q^{3}+q}=-\alpha^{q^{4}-q^{3}+q-1}
$$

or again using $\alpha^{q^{3}+1}=\beta^{q^{3}}-\beta^{q^{6}+q^{3}+1}$ that

$$
\begin{equation*}
\beta^{q^{7}+q^{4}-q^{3}+q}=-\left(\beta^{q^{3}+1}-\beta^{q^{6}+q^{3}+1}\right)^{q-1} \tag{3}
\end{equation*}
$$

This results in an equation of degree less than $q^{7}+q^{4}$. So there are less than $q^{7}+q^{4}$ possibilities for $\beta \in G F\left(q^{12}\right)$ such that both coefficients are zero. We can conclude that there exist $\alpha, \beta \in G F\left(q^{12}\right)$, for which these coefficients are not identically zero; namely where $\alpha \neq 0$ and β does not satisfy (3).

Let m_{i} denote the number of lines of $P G\left(2, q^{4}\right)$, which intersect $B(W)$ in i points. Since a line induces a $2 t$-dimensional subspace in $V(12, q)$, it is obvious that $m_{i}=0$, for all $i \notin$ $\left\{q+1, q^{2}+q+1, q^{3}+q^{2}+q+1, q^{4}+q^{3}+q^{2}+q+1, q^{5}+q^{4}+q^{3}+q^{2}+q+1\right\}$. If one of the last two intersection numbers occurs, this means that there is a line, seen in $V(12, q)$ as a 8 -dimensional subspace, having a 5 or 6 -dimensional intersection with W. In both cases this implies that there is an element of the normal spread S intersecting W in more than one dimension, which is impossible. So we have that $m_{i}=0$, for all $i \notin$ $\left\{q+1, q^{2}+q+1, q^{3}+q^{2}+q+1\right\}$. Let us put $l_{2}=m_{q+1}, l_{3}=m_{q^{2}+q+1}$ and $l_{4}=m_{q^{3}+q^{2}+q+1}$. Then by counting lines, point-line pairs and point-point-line triples we obtain a set of equations from which we can solve l_{2}, l_{3} and l_{4} and these imply $l_{2}=p^{8}-p^{5}-p^{3}-p^{2}-p$, $l_{3}=p^{5}+p^{4}+p^{3}+p^{2}+p+1$ and $l_{4}=0$. This implies that the 8 -dimensional subspace corresponding to a line of $P G\left(2, q^{4}\right)$, intersects W in a 2 or 3 -dimensional subspace of $V(12, q)$.
Suppose now that the $(q+1)$-fold blocking set $B(W)$ is the union of $q+1$ disjoint Baer subplanes of $P G\left(2, q^{4}\right)$. Let $B(\mathcal{B})$ be one of the Baer sublines of these Baer subplanes and let L be the line of $P G\left(2, q^{4}\right)$ containing $B(\mathcal{B})$. Then the 8 -dimensional subspace induced by L will intersect W in a 3-dimensional subspace D and $B(\mathcal{B})$ induces a 4-dimensional subspace \mathcal{B} of $V(12, q)$ contained in the 8 -dimensional subspace corresponding to L, which

$(q+1)$-FOLD BLOCKING SETS

intersect every element of the spread S in a zero or two-dimensional subspace of $V(12, q)$. (See Bose, Freeman and Glynn [9, Section 3] for a representation of a Baer subplane in $P G(5, q)$, which is analogous to this.) We will prove that $\tilde{\mathcal{B}}$ cannot be contained in \tilde{D}. First we observe that \mathcal{B} is in fact a 2-dimensional subspace over $G F\left(q^{2}\right)$, so $\mathcal{B}=\{\alpha \vec{u}+\beta \vec{v} \| \alpha, \beta \in$ $\left.G F\left(q^{2}\right)\right\}$; while D is a 3 -dimensional subspace over $G F(q)$, so $D=\{\lambda \vec{w}+\mu \vec{x}+\nu \vec{y} \| \lambda, \mu, \nu \in$ $G F(q)\}$. From this it follows that $\tilde{\mathcal{B}}=\left\{a(\alpha \vec{u}+\beta \vec{v}) \| \alpha, \beta \in G F\left(q^{2}\right), a \in G F\left(q^{4}\right)\right\}$ and $\tilde{D}=\left\{b(\lambda \vec{w}+\mu \vec{x}+\nu \vec{y}) \| \lambda, \mu, \nu \in G F(q), b \in G F\left(q^{4}\right)\right\}$. Now observe that $<B(\vec{u}), B(\vec{v})>$ over $G F\left(q^{4}\right)$ is in fact the line L. So we can write \vec{w}, \vec{x} and \vec{y} as a linear combination of \vec{u} and \vec{v} over $G F\left(q^{4}\right)$. Without loss of generality, we can write

$$
\begin{aligned}
& \vec{w}=c_{1} \vec{u} \\
& \vec{x}=c_{2} \vec{v} \\
& \vec{y}=c_{3} \vec{u}+c_{4} \vec{v},
\end{aligned}
$$

with $c_{1}, c_{2}, c_{3}, c_{4} \in G F\left(q^{4}\right)$. But if $\tilde{\mathcal{B}}$ is contained in \tilde{D}, then for all $a \in G F\left(q^{4}\right)$ and $\alpha, \beta \in G F\left(q^{2}\right)$ there exist $b \in G F\left(q^{4}\right)$ and $\lambda, \mu, \nu \in G F(q)$ such that

$$
\left\{\begin{aligned}
a \alpha & =b\left(\lambda c_{1}+\nu c_{3}\right) \\
a \beta & =b\left(\mu c_{2}+\nu c_{4}\right)
\end{aligned}\right.
$$

which results in the equation

$$
\frac{\lambda c_{1}+\nu c_{3}}{\mu c_{2}+\nu c_{4}}=\frac{\alpha}{\beta} \in G F\left(q^{2}\right) \cup\{\infty\} .
$$

Let f be the map

$$
\begin{gathered}
f: G F(q) \times G F(q) \times G F(q) \rightarrow G F\left(q^{4}\right) \cup\{\infty\} \\
f(\lambda, \mu, \nu)=\frac{\lambda c_{1}+\nu c_{3}}{\mu c_{2}+\nu c_{4}} .
\end{gathered}
$$

Then the image of $f, \Im(f)$, must contain $G F\left(q^{2}\right)$. We remark that if $\Im(f)=G F\left(q^{2}\right) \cup\{\infty\}$, then \tilde{D} must be contained in $\tilde{\mathcal{B}}$, which is of course impossible. But if $f(\lambda, \mu, \nu) \in G F\left(q^{2}\right)$, then

$$
\left(\frac{\lambda c_{1}+\nu c_{3}}{\mu c_{2}+\nu c_{4}}\right)^{q^{2}}=\frac{\lambda c_{1}+\nu c_{3}}{\mu c_{2}+\nu c_{4}},
$$

which gives us the equation

$$
\left(\lambda c_{1}+\nu c_{3}\right)^{q^{2}}\left(\mu c_{2}+\nu c_{4}\right)-\left(\mu c_{2}+\nu c_{4}\right)^{q^{2}}\left(\lambda c_{1}+\nu c_{3}\right)=0
$$

Since $\lambda, \mu, \nu \in G F(q)$, this equation results in an quadratic equation in λ, μ and ν. Triples $(\lambda, \mu, \nu) \in G F(q)^{3}$ can only give different values for f if they do not belong to the same 1-dimensional subspace of $G F(q)^{3}$, i.e., if they represent different points in $P G(2, q)$. So the above equation will have at most $2 q+1$ different solutions, namely the points of a degenerate quadric in $P G(2, q)$. If $q>2$ then $2 q+1<q^{2}+1$ and if $q=2$ the final part of the proof can be quite easily verified by considering the various possibilities for f.

$(q+1)$-FOLD BLOCKING SETS

References

[1] S. Ball, Polynomials in finite geometries, manuscript.
[2] S. Ball, On nuclei and blocking sets in Desarguesian spaces, J. Combin. Theory Ser. A, to appear.
[3] S. Ball, A. Blokhuis and C. M. O'Keefe, On unitals with many Baer sublines, Des. Codes Cryptogr., submitted.
[4] A. Blokhuis, Blocking sets in Desarguesian planes, in: Paul Erdős is Eighty, Volume 2 (eds.: D. Miklós, V. T. Sós and T. Szőnyi), Bolyai Soc. Math. Studies 2 (1996), 133-155.
[5] A. Blokhuis, On multiple nuclei and a conjecture of Lunelli and Sce, Bull. Belg. Math. Soc. Simon Stevin 3 (1994), 349-353.
[6] A. Blokhuis, L. Storme and T. Szőnyi, Lacunary polynomials, multiple blocking sets and Baer subplanes, J. London Math. Soc., submitted.
[7] A. A. Bruen, Arcs and multiple blocking sets, 15-29, Sympos. Math. XXVIII, Academic Press, London-New York, 1986.
[8] A. A. Bruen, Polynomial multiplicities over finite fields and intersection sets, J. Combin. Theory Ser. A 60 (1992), 19-33.
[9] R. C. Bose, J. W. Freeman and D. G. Glynn, On the intersection of two Baer subplanes in a finite projective plane, Utilitas Math., 17 (1980), pp. 65-77.
[10] J. W. P. Hirschfeld, Projective geometries over finite fields, Second edition, Clarendon Press, Oxford, 1998.
[11] G. Lunardon, Normal spreads, Geom. Dedicata, to appear.
[12] P. Polito and O. Polverino, On small blocking sets, Combinatorica, 18 (1998), 1-5.

