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12:40-13:05 Giuzzi

13:00 LUNCH LUNCH LUNCH LUNCH

13:15 LUNCH
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15:30-15:55 Kölsch Zullo Landjev Mannaert
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18:00 RECEPTION

18:30 DINNER

19:00 DINNER DINNER DINNER CONFERENCE
DINNER

20:00 CONCERT
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Generalized weights of convolutional codes

Elisa Gorla

University of Neuchâtel

(Joint work with Flavio Salizzoni)

In 1997 Rosenthal and York define generalized Hamming weights for convolutional codes, by re-
garding a convolutional code as an infinite dimensional linear code endowed with the Hamming metric.
In this talk, we will propose a new definition of generalized weights of convolutional codes, that takes
into account the underlying module structure of the code. We will derive the basic properties of our
generalized weights and discuss the relation with the previous definition. We will establish upper
bounds on the weight hierarchy of MDS and MDP codes and show that that, depending on the code
parameters, some or all of the generalized weights of MDS codes are determined by the length, rank,
and internal degree of the code. If time allows, we will also define optimal anticodes and discuss their
basic properties.
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The Density of Optimal Error-Correcting Codes in Various Metric Spaces

Anna-Lena Horlemann

University of St.Gallen, Switzerland

(Joint work with Anina Gruica, Alberto Ravagnani and Nadja Willenborg)

The density of good error-correcting codes has always been of interest in information theory,
classically motivated by the question how good a random code will perform in terms of information
rate and error correction capability. More recently, densities of codes have also become important in
the field of code-based cryptography, where random (linear) codes are chosen in the design of a digital
signature scheme. It has long been known that linear MDS codes are dense for growing field size and
sparse (or rather non-existent) for growing length of the code. Similar results were obtained a few
years ago for linear optimal rank-metric (MRD) codes. Surprisingly though, shortly after it was shown
that sublinear MRD codes, i.e., those MRD codes that are linear over a subfield of the ambient field,
are not dense for growing field size. Hence, the question arose if sublinear (or additive) MDS codes are
sparse or dense for growing field size, and if similar results can be obtained for other metric spaces.
In this talk we show a generalized framework for determining the densities of non-linear, sublinear
and linear optimal codes in various metric spaces. We then apply these techniques to codes in the
Hamming, rank, sum-rank, Lee and subspace metric. Moreover, we will describe the relationship to
finite geometry, e.g. to n-arcs (of points) and n-arcs of higher dimensional projective spaces.
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Plane algebraic curves with many symmetries, and complete (k, n)-arcs

Gábor Korchmáros

University of Basilicata (Italy) and
Eötvös L. University of Budapest (Hungary) AC Research Group

(Joint work with H. Borges, G.P.Nagy, P. Speziali and T. Szőnyi)

Let PGL(3, q) be the 3-dimensional projective linear group defined over a finite field Fq and viewed
as a subgroup of PGL(3,K), K being an algebraic closure of Fq. For the seven maximal (non spo-
radic) subgroups G of PGL(3, q), we consider the G-invariant (projective, irreducible) plane curves of
PG(2, qm) where m ≥ 1. In [3], for each such group G we computed the minimum degree d(G) of G-
invariant curves, provided a classification of all G-invariant curves of degree d(G), and determined the
first gap in the spectrum of the degrees of all G-invariant curves. We also pointed out that G-invariant
curves of degree d(G) happen to have particular geometric features such as Frobenius non-classicality
and an unusual variation of the number of Fqi-rational points. It seems conceivable that they also
may have several interesting combinatorial properties. A degree n plane algebraic curve Cn with k
points in PG(2, qm) often defines a (k, n)-arc in PG(2, qm), and a well known problem raised in [6],
is to find plane curves for which the arising (k, n)-arc is complete; see also [2, 4]. We single out two
cases:

(i) the (k, q + 1)-arc in PG(2, qm), m = 2s even, arising from the Hermitian curve Hq of degree
q + 1 (and left invariant by G ∼= PGU(3, q)). Here, k = q2s ± qs+1(q − 1) + 1 according as s is
odd or even.

(ii) the (k, q + 1)-arc in PG(2, qm) arising from a rational curve Γq of degree q + 1 with q odd (and
left invariant by G ∼= PGL(2, q)). Here, k = qm + 1.

In both cases, k ≈ qm and the (k, q + 1)-arc of PG(2, qm) is complete, apart from just one possibility
for the Hermitian case for s = 3 where the completeness problem is open.

To deal with the completeness problem, we adopt a natural algebraic approach already used by D.
Bartoli and G. Micheli [5] (depending on a previous work by Guralnick, Tucker and Zieve [7]). The
essential idea is to express the condition that a point P ∈ PG(2, qm) is incident with a line which
meets Cn in n pairwise distinct points of PG(2, qm), in terms of the Galois closure of the algebraic
extension F |FP where F is the function field of Cn and FP is the rational subfield of F arising from
the projection of C from P . It should be stressed that in almost all cases (including those studied in
[5]), if P 6∈ Cn and P 6∈ PG(2, q2) then the Galois group of the Galois closure of F |FP is the symmetric
or the alternating group. Instead, for each of the two above two curves, the Galois group is much
smaller as it is isomorphic to PGL(2, q) acting naturally on the roots of the polynomial associated
with F |FP . To prove this, we also rely on previous work of Abhyankar [1] and van der Waerden [8].

References

[1] S.S. Abhyankar, Galois theory on the line in nonzero characteristic. Bull. Amer. Math. Soc. (N.S.)
27 (1992), 68–133.

[2] D. Bartoli, M. Giulietti, G. Zini, Complete (k, 3)-arcs from quartic curves, Des. Codes Cryptogr.
79 (2016), 487–505.

[3] H. Borges, G. Korchmáros, P. Speziali, Plane curves with a large linear automorphism group in
characteristic p, arXiv:2202.05765 [math.AG].

[4] H. Borges, B. Motta, and F. Torres, Complete arcs arising from a generalization of the Hermitian
curve. Acta Arith. 164 (2014), 101–118.
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[5] D. Bartoli and G. Micheli, Algebraic constructions of complete m-arcs, Combinatorica (2022).
https://doi.org/10.1007/s00493-021-4712-5.
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A geometric approach to determine an optimal 2-dimensional flow on a graph

Giuseppe Mazzuoccolo

University of Verona

(Joint work with D.Mattiolo, J.Rajńık and G.Tabarelli)

The theory of integer nowhere-zero flows on finite graphs represents a very active research area
in graph theory. The generalization to real numbers is also well-studied, while very few is known
in the complex case or, more in general, for flows taking values in Rd. We define a d-dimensional
nowhere-zero r-flow on a graph G, (r, d)-NZF from now on, as a nowhere-zero flow such that the flow
value assigned to each edge is an element of Rd whose (Euclidean) norm lies in the interval [1, r − 1].
In this talk, we mainly consider the parameter φd(G), which is the minimum of the real numbers r
such that G admits a (r, d)-NZF. For every bridgeless graph G, the 5-flow Conjecture claims that
φ1(G) ≤ 5, while a conjecture by Jain suggests that φd(G) = 2, for all d ≥ 3. Here, we address
the problem of finding a possible upper-bound in the case d = 2 and we discuss some connections
between this problem and some other well-known conjectures. Finally, we propose a geometric method
to describe a (r, 2)-NZF of a cubic graph in a compact way, and we apply it in some instances. In
general, the exact computation of φ2(G) for an arbitrary graph G seems to be an hard task even in
very small and symmetric cases. In particular, the exact value is determined only for graphs belonging
to special families where a lower bound can be trivially proved. By using a combination of geometric
and combinatorial arguments we compute a lower-bound for the 2-dimensional flow number of a cubic
graph in terms of its odd-girth.

References

[1] D.Mattiolo,G.Mazzuoccolo,J.Rajńık and G.Tabarelli On d-dimensional nowhere-zero r-flows on
a graph, submitted for the publication.

[2] C.Thomassen, Group flow, complex flow, unit vector flow, and the (2 + ε)-flow conjecture, J.
Comb. Theory B 108 (2014), 81–91.
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Semifields and MRD Codes: Invariants of Interest

John Sheekey

University College Dubllin

Finite semifields, which are division algebras in which multiplication is not assumed to be asso-
ciative, have been studied for over a century for a variety of reasons [6]. Dickson [4] initiated the
study of finite semifields in 1905, constructing the first nontrivial examples and thus showing that
the Wedderburn-Dickson theorem (that all finite associative division algebras are equivalent to fields)
cannot be extended.

Semifields correspond to various interesting geometrical structures with special symmetry prop-
erties. They give rise to special types of projective planes, as studied by for example Albert [1] and
Knuth [5], and spreads, as studied by André [2] and Bruck-Bose [3]. In more recent years, connections
to topics such as linear sets [8], tensors [7], and MRD codes [9] have lead to renewed focus.

Each of these settings has its own advantages, particularly in providing useful and interesting
invariants, which can be used to distinguish semifields from each other, and to understand their
structure. In this talk we will survey these invariants, from classical objects such as the nuclei, to
more recent concepts such as geometric invariants arising from linear sets, the tensor rank, the BEL
rank, and the covering radius.

References

[1] Albert, A. A.: Generalized twisted fields, Pacific J. Math. 11 (1961), 1-8.

[2] André, J.: Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe Math. Z. 60
(1954), 156–186.

[3] Bruck, R.H., Bose, R.H.; The construction of translation planes from projective spaces, J. Algebra
1 (1964), 85–102.

[4] Dickson, L. E.; On finite algebras, Nachrichten der Gesellschaften der Wissenschaften zu
Göttingen (1905) 358-393.

[5] Knuth, D. E.; Finite semifields and projective planes, J. Algebra 2 (1965) 182-217.

[6] Lavrauw, M.; Polverino, O.: Finite Semifields. Chapter in Current research topics in Galois
geometries. Nova Academic Publishers (J. De Beule and L. Storme, Eds.).

[7] Lavrauw, M.; Finite semifields and nonsingular tensors, Des. Codes Cryptogr. 68 (2013), 205–227

[8] Marino G., Polverino O., Trombetti R.; On Fq -linear sets of PG(3, q3) and semifields, J. Comb.
Theory Ser. A 114 (2007) 769–788 .

[9] Sheekey. J.; MRD Codes; Constructions and Connections, in K.-U. Schmidt and A. Winter-
hof (eds.), Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and
applications. Radon Series on Computational and Applied Mathematics, 255–286. De Gruyter,
2019.
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Quasi-polar spaces

Geertrui Van de Voorde

University of Canterbury, New Zealand

The study of point sets with few intersection numbers is at the core of finite geometry. Segre’s
famous characterisation of ovals in Desarguesian planes of odd order as conics only used the size of the
point set and its intersection numbers with respect to lines. In higher dimensions, the same problem
leads to the concept of quasi-quadrics, or more generally, quasi-polar spaces; a set of points with the
same size and intersection numbers with respect to hyperplanes as a classical polar space. Using a
technique called pivoting, De Clerck, Hamilton, O’Keefe and Penttila constructed quasi-quadrics that
are not quadrics [2].

In the first part of this talk, we will discuss pivoting in detail and present some of the related
recent results of [4].

The second part of this talk deals with unitals, which are quasi-polar spaces in a Desarguesian
plane: they have the same intersection numbers as the Hermitian curve. We will review some of the
classical results about unitals, and present new results on Buekenhout-Tits unitals [3] in the same
spirit as the results on Buekenhout-Metz unitals of [1].

References

[1] N. Abarzúa, R. Pomareda, and O. Vega. Feet in orthogonal-Buekenhout–Metz unitals. Adv. Geom.
18 (2) (2018), 229–236.

[2] F. De Clerck, N. Hamilton, C. O’Keefe and T. Penttila. Quasi-quadrics and related structures.
Australas. J. Combin. 22 (2000), 151–166.

[3] J. Faulkner and G. Van de Voorde. On the Equivalence, Stabilisers, and Feet of Buekenhout-Tits
Unitals. In preparation.

[4] J. Schillewaert and G. Van de Voorde. Quasi-polar spaces. ArXiv 2109.12710.
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Linear codes from arcs and quadrics

Kanat Abdukhalikov

UAE University

(Joint work with Duy Ho)

Using characterizations of ovals, arcs and elliptic quadrics recently described in polar coordinates,
we construct some families of LCD, self-orthogonal, three-weight and four-weight linear codes. We
also present characterizations of some cyclic codes with specific parameters. Finally, we give simple
presentations of Denniston maximal arcs in PG(2, q) and elliptic quadrics in PG(3, q).
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On additive MDS codes with linear projections

Sam Adriaensen

Vrije Universiteit Brussel

(Joint work with Simeon Ball)

In this talk, we will discuss additive MDS codes over finite fields. We will be working in the
following framework. Let q be a prime power, and let h, k, and n > k be positive integers. We are
interested in subsets C ⊂ Fn

qh
such that:

1. C is a hk-dimensional vector space over Fq,

2. the minimum Hamming distance of C is n−k+ 1, i.e. given two distinct vectors in C, they have
different entries in at least n− k + 1 positions.

Note that the first condition is equivalent with C being an additive code if q is prime, and with C
being a linear code if h = 1.

It is generally believed that the only long MDS codes are the extended Reed-Solomon codes, with
some known exceptions. This belief is often referred to as the MDS conjecture. There has been
significant progress in verifying the MDS conjecture, mainly in the context of linear codes. In this
talk, we will describe the geometric framework to work with additive MDS codes over finite fields, and
support some evidence that long additive MDS codes are linear.
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Stabiliser codes and quantum sets of lines

Simeon Ball

Universitat Politècnica Catalunya

We present a geometric framework for constructing additive and non-additive stabiliser codes which
encompasses stabiliser codes and graphical non-additive stabiliser codes. This builds on work of Glynn
et al. [3] who proved that a qubit stabiliser code with parameters ((n, 2k, d))2 is equivalent to a set
X of lines in PG(n− k − 1, 2) with the property that every co-dimension two subspace is skew to an
even number of the lines of X . And where d is at least the minimum number of dependent points on
distinct lines of X . This geometrical interpretation can be been used to prove the non-existence of
certain qubit stabiliser codes, see for example [2].

The generalisation here covers direct sums of stabiliser codes, as well as qupit codes, i.e. subspaces
of (Cp)⊗n, for all primes p.

Let A = (aij) be a symmetric n× n matrix with elements from Fp with zeros on the diagonal, so
the adjacency matrix of a simple weighted graph. We define a graphical set of lines as the set of n
lines X = {`1, . . . , `n} of PG(n− 1, 2), where

`i = 〈ei, ai〉,

where ei is the i-th vector in the canonical basis and ai is the i-th column of A.
The main result of this talk is the following theorem, from [1].

Theorem 1 A direct sum of cosets of a stabiliser code (which can simply be a stabiliser code) with
parameters ((n, |T |(p − 1) + 1, d))p can be obtained from a graphical set of n lines X of PG(n − 1, 2)
and a set of points T with the property that no two distinct points of T span a point which is the sum
of d− 1 or less points on distinct lines of X .

References

[1] S. Ball and P. Puig, The geometry of non-additive stabiliser codes, arXiv:2107.11281.

[2] J. Bierbrauer, Stefano Marcugini , Fernanda Pambianco The non-existence of a [[13, 5, 4]] quantum
stabilizer code, IEEE Transactions on Information Theory, 57 (2011) 4788–4793.

[3] D. G. Glynn, T. A. Gulliver, J. G. Maks and M. K. Gupta, The Geometry of Additive Quantum
Codes, unpublished manuscript. (available online at https://www.academia.edu/17980449/)
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On the number of rational points of curves
over a surface in P3

Elena Berardini

Eindhoven University of Technology

(Joint work with Jade Nardi)

The number of rational points on a smooth projective absolutely irreducible curve C of genus
g defined over the finite field Fq is bounded by the famous Serre–Weil bound, namely #C(Fq) ≤
q + 1 + gb2√qc. Several works have been devoted to improve this bound for a range of parameters,
and to extend it to more general curves, possibly reducible or singular [4, 1, 3].

In this talk, we will show that the number of rational points on an irreducible curve of degree δ
defined over a finite field Fq lying on a surface S in P3 of degree d is, under certain conditions, bounded
by δ(d+ q − 1)/2. Within a certain range of δ and q, this result improves all other known bounds in
the context of space curves. The method we used is inspired by techniques developed by Stöhr and
Voloch [4]. In their seminal work of 1986, they introduced the Frobenius orders of a projective curve
and used them to give an upper bound on the number of rational points of the curve. After recalling
some general results on the theory of orders of a space curve, we will study the arithmetic properties
of curves lying on a surface in P3, to finally prove the bound.

The talk is based on the preprint [2].

References

[1] Yves Aubry and Marc Perret. A Weil theorem for singular curves. pages 1–8. De Gruyter, 1993.

[2] Elena Berardini and Jade Nardi. Curves on Frobenius classical surfaces in P3 over finite fields.
arXiv preprint arXiv:2111.09578, 2021.

[3] Masaaki Homma. A bound on the number of points of a curve in a projective space over a finite
field. Theory and applications of finite fields, volume 579 of Contemp. Math., pages 103 – 110.
Amer. Math. Soc., Providence, RI, 2012.

[4] Karl-Otto Stöhr and José Felipe Voloch. Weierstrass Points and Curves Over Finite Fields.
Proceedings of The London Mathematical Society, 1, 1–19, 1986.
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Minimal blocking sets in
small Desarguesian projective planes

Arne Botteldoorn

Ghent University

(Joint work with Kris Coolsaet and Veerle Fack)

All minimal blocking sets (up to equivalence) in Desarguesian projective planes of order ≤ 9 were
generated by computer. These blocking sets were then classified according to size of the set, and order
of the projective automorphism group and collineation group. Explicit descriptions or constructions
are given for some sets, in particular (but not exclusively) for those blocking sets with a fairly large
automorphism group. Some of these constructions can be generalised to Desarguesian projective planes
of higher order.
We have found PG(2, 7) to have 1433 inequivalent minimal blocking sets; PG(2, 8) has over 45 thousand
and PG(2, 9) has over 15 million minimal blocking sets (inequivalent under PΓL(3, 8) and PΓL(3, 9),
respectively). We have been able to describe several of these blocking sets using unions of orbits
of powers of Singer cycles, orbits of Sym(4) and Sym(5), sum-free sets, the Hessian configuration,
algebraic curves, unitals, unions of Fano subplanes,. . . For the planes of order ≤ 8, these results can
be found in [1].

References

[1] Coolsaet, K., Botteldoorn, A., and Fack, V., Classification of minimal blocking
sets in small Desarguesian projective planes, J. Combin. Des. (2022), 30, 561– 580.
https://doi.org/10.1002/jcd.21842
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Notes on multiple blocking sets of PG(2, q)

Bence Csajbók

Polytechnic Univesity of Bari

Put q = pn, where p is a prime. A (t-fold) blocking set of π ∼= PG(2, q) is a point set meeting
each line of π (in at least t-points). A t-fold blocking set is called minimal, if after removing any of its
points, the remaining point set is not a t-fold blocking set. Let V denote the 3-dimensional Fq-vector
space whose subspace lattice defines π. A blocking set is called “linear” if it is the set of points defined
by the non-zero vectors of an Fp-subspace of V .

When n > 1, then the smallest known minimal blocking sets are linear. When n is even, then
PG(2, q) is the disjoint union of q − √q + 1 Baer-subplanes. The union of any t of them is a t-fold
blocking set. When n > 1 is odd, then one can find two disjoint linear blocking sets in π, see [1, 2, 3],
and the smallest known 2-fold blocking sets are obtained as their union.

In this talk I will explore the possibility of finding three disjoint linear blocking sets in order to
construct the smallest known 3-fold blocking sets when n > 1 is odd.

References

[1] G. Bacsó, T. Héger, T. Szőnyi: The 2-Blocking Number and the Upper Chromatic Number
of PG(2, q). J. Combin. Des., 21(12) (2013), 585–602.

[2] D. Bartoli, A. Cossidente, G. Marino, F. Pavese: On cutting blocking sets and their
codes. Forum Math., 34(2) (2022), 347–368.
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sets in finite planes. Electron. J. Combin., 23(2) (2016), #P2.5
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A modular equality for Cameron-Liebler line classes in projective and affine
spaces of odd dimension

Jan De Beule

Vrije Universiteit Brussel

(Joint work with Jonathan Mannaert)

Cameron-Liebler line classes were introduced in [1] as orbits of irreducible collineation groups of
PG(d, q) having equally many point orbits as line orbits. When PG(d, q) allows line spreads, i.e. if
and only if d is odd, such a line set L has the property that for any line spread S, |L ∩ S| = x for
some fixed natural number x, only dependent on L.

It will be briefly illustrated that examples of non-trivial Cameron-Liebler line classes in PG(3, q)
are rare. This motivates older and more recent non-existence results, i.e. results that exclude values
for the parameter x. One of the most consequential non-existence results is the following theorem.

Theorem 1 ([3, Theorem 1.1]) Suppose that L is a Cameron-Liebler line class with parameter x
of PG(3, q). Then for every plane and every point of PG(3, q),(

x

2

)
+m(m− x) ≡ 0 mod (q + 1), (1)

where m is the number of lines of L in the plane, respectively through the point.

In this talk we present the following generalization.

Theorem 2 ([2]) Let L be a Cameron-Liebler line class with parameter x in PG(n, q), with n ≥ 7
odd. Then for any point p,

x(x− 1) + 2m(m− x) ≡ 0 mod (q + 1) ,

where m is the number of lines of L through p.

We will also discuss the affine version of both theorems.
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Quadratic sets on the Klein quadric

Bart De Bruyn

Ghent University

Let Q+(5, q) be the Klein quadric in PG(5, q). A set of points of Q+(5, q) is called a quadratic set
if every plane of Q+(5, q) intersects it in a possibly degenerate quadric. There are thus five possible
plane intersections (singleton, line, irreducible conic, two lines, whole plane), and we call the quadratic
set good if at most two of these possibilities occur. We discuss classification and (non-)existence results
for good quadratic sets, as well as some applications of them to open problems involving certain line
sets in PG(3, q) and hyperovals in Q+(5, q).
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The André/Bruck-Bose representation of linear sets on a projective line

Jozefien D’haeseleer

Ghent University

(Joint work with Lins Denaux and Geertrui Van de Voorde)

We consider the André/Bruck-Bose representation of the projective plane PG(2, qt) in PG(2t, q).
We investigate the representation of a linear set of rank k on a line, different from the line at infinity
in PG(2, qt). More precisely, we characterize the representation of tangent scattered linear sets on a
line for k = 3, t = 3, tangent clubs with head point contained in the line at infinity for k ≥ 3, t ≥ k,
and tangent clubs with head point not contained in the line at infinity for k = 3, t ≥ 3. This
characterisation of the André/Bruck-Bose representation of linear sets can be used to find optimal
higgledy-piggledy sets.
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Steiner triple systems with a given automorphism group

Jean Doyen

Université Libre de Bruxelles

(Joint work with William Kantor)

We investigate the following problem: Given a finite abstract group G, for which integers v is
there a Steiner triple system of order v (i.e. a 2 − (v, 3, 1) design) whose full automorphism group is
isomorphic to G? The result is rather surprising. Some generalizations and open problems will be
briefly discussed.
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Intersecting theorems for finite general linear groups

Alena Ernst

Paderborn University

(Joint work with Kai-Uwe Schmidt)

A subset Y of the symmetric group Sn is t-intersecting if x−1y fixes t elements in [n] for all x, y ∈ Y
and it is t-set-intersecting if x−1y fixes a t-set of [n] for all x, y ∈ Y . Deza and Frankl conjectured [1]
and Ellis, Friedgut, and Pilpel proved [3] that the size of a t-intersecting set in Sn is at most (n−t)! for
n sufficiently large compared to t. Moreover equality holds if and only if the t-intersecting set is a coset
of the stabiliser of a t-tuple. Ellis proved [2] that the size of a t-set-intersecting set in Sn is at most
t!(n− t)! for n sufficiently large compared to t and equality holds if and only if the t-set-intersecting
set is a coset of the stabilizer of a t-set.

In this talk we discuss q-analogs of these results. We define a subset Y of GL(n, q) to be t-
intersecting if x−1y fixes a t-dimensional subspace of Fnq pointwise for all x, y ∈ Y . Whereas we define
Y to be t-space-intersecting if x−1y fixes a t-dimensional subspace of Fnq for all x, y ∈ Y . It is shown
that the size of a t-intersecting subset of GL(n, q) is at most

[n− t]q!
(q − 1)nq(

n
2)

(q − 1)tq(
t
2)

for n sufficiently large compared to t. In addition it is shown that the size of a t-space-intersecting
subset of GL(n, q) is at most

[t]q![n− t]q!(q − 1)nq(
n
2)

for n sufficiently large compared to t. Moreover we give a characterisation of the cases for which
equality holds.
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A modular equality for m-ovoids of elliptic quadrics

Alexander Gavrilyuk

Shimane University

(Joint work with Klaus Metsch and Francesco Pavese)

An m-ovoid of a finite polar space P is a set O of points such that every maximal subspace of P
contains exactly m points of O. In the case when P is an elliptic quadric Q−(2r + 1, q) of rank r in
F2r+2
q , we prove [1] that an m-ovoid exists only if m satisfies

F (m) ≡ 0 (mod q + 1),

where

F (m) =


m2 −m if r is odd,

m2 if r is even and q is even,

m2 + q+1
2 m if r is even and q is odd,

which rules out many of the possible values of m (previously, only a lower bound on m was known
[2]).
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On subspaces of classical polar spaces

Luca Giuzzi

University of Brescia

(Joint work with Ilaria Cardinali and Antonio Pasini)

Let Γ = (P,L) be a non-degenerate embeddable polar space of finite rank n ≥ 2. Barring two
exceptional cases of rank n = 2, the space Γ admits the universal embedding ε : Γ → PG(V ). A
subspace of Γ is a subset S of the points P of Γ such that the pointset of any line ` ∈ L of Γ meeting
S in at least two distinct points is fully contained in L. We say that S arises from an embedding
ε : Γ→ PG(V ) if there is a subspace X of PG(V ) such that S = ε−1(X).

In this talk the following result shall be presented.

Theorem 1 Let Γ be an embeddable non-degenerate polar space of finite rank n ≥ 2 admitting uni-
versal embedding ε : Γ → PG(V ). Then, any subspace S of Γ which, regarded as polar space, has
non-degenerate rank at least 2 arises from ε.
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Non-existence of block-transitive subspace designs

Daniel Hawtin

University of Rijeka

(Joint work with Jesse Lansdown)

Subspace designs are the q-analogues of balanced incomplete block designs. We prove that there
are no nontrivial subspace designs that admit a group of automorphisms acting transitively on the set
of blocks of the design [1].
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Conditions on Large Caps

Ferdinand Ihringer

Universiteit Gent

A cap in a finite projective space of dimension n over a finite field of order q is a set of points
with no three points collinear. It is easy to see that caps have size at most O(qn−1), while the largest

known constructions for caps have only size Θ(qb
2
3
nc) (as q → ∞ or n → ∞). We discuss spectral

existence conditions on caps of size Ω(q
3
4
n).
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Cyclic line-spreads and linear spaces

Cian Jameson

University College Dublin

(Joint work with John Sheekey)

There has been much progress towards classifying linear spaces that possess a flag-transitive au-
tomorphism group. However, a complete classification is not available, as the case in which the auto-
morphism group is a subgroup of one-dimensional affine transformations remains open; in particular,
linear spaces constructed from spreads possessing a transitive automorphism group.

In [1], Pauley and Bamberg constructed new flag-transitive linear spaces via spreads upon which
a cyclic group acts transitively, and provided a condition for such spreads to exist in terms of an
associated polynomial.

In this talk, we will present our work on describing and classifying the polynomials that give rise to
the desired spreads and linear spaces. We will focus on the case of cubic polynomials, corresponding
to cyclic line spreads in PG(5, q), and also discuss some connections with permutation polynomials.
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The direct sum of q-matroids

Relinde Jurrius

Netherlands Defence Academy

(Joint work with Michela Ceria)

In combinatorics, a q-analogue can be thought of as a generalisation from finite sets to finite di-
mensional spaces. Sometimes q-analogues are straightforward, but sometimes they are quite counter-
intuitive. The reason for this is that the Boolean lattice, the poset of a finite set and all its subsets,
differs from the subspace lattice, the poset of a finite dimensional space and all its subspaces.

In this talk we discuss a not-so-straightforward q-analogue: that of the direct sum of matroids.
For classical matroids, the direct sum is one of the most simple methods to make a new matroid out
of existing ones. For q-matroids, the q-analogues of matroids, this is a lot less straightforward. The
main goal of this talk is to provide an intuitive understanding of this problem, even for those who are
not fluent in (q-)matroids.

We will then sketch a definition of the direct sum of q-matroids, using q-polymatroids and the
q-analogue of matroid union. We motivate this definition by listing some of its desirable properties.

This talk is based on [1].

References

[1] Ceria, M. and Jurrius, R. (2021). The direct sum of q-matroids.
https://arxiv.org/abs/2109.13637. Submitted.

35



On linear codes

associated with the Desarguesian ovoids in Q+(7, q)

Michael Kiermaier

Universität Bayreuth

(Joint work with Tao Feng, Peixian Lin and Kai-Uwe Schmidt)

The Desarguesian ovoids in Q+(7, q), q even, have first been introduced by Kantor by examining
the 8-dimensional absolutely irreducible modular representations of PSL(2, q3) [1].

We investigate this module for all prime power values of q. The shortest PSL(2, q3)-orbit O gives
the Desarguesian ovoid in Q+(7, q) for q even, and it is known to yield a complete partial ovoid of the
symplectic polar space W (7, q) for q odd.

In this talk, the hyperplane sections of O will be determined. As a result, the parameters and
the weight distribution of the associated Fq-linear code CO is derived, and the parameters of the dual
code C⊥O are computed. After a general discussion of different optimality notions for linear codes, the
optimality properties of the codes CO and C⊥O will be investigated. In particular, it will be shown that
both codes CO and C⊥O are length-optimal for all prime power values of q.
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Network Decoding and Packing Problems

Altan Berdan Kılıç

Eindhoven University of Technology

(Joint work with Allison Beemer and Alberto Ravagnani)

Adversarial networks are communication networks where an adversary can act on the network
edges, according to some restrictions. This talk is about the 1-shot capacity of such networks, which
measures the maximum number of alphabet symbols that can be sent error-free in a single transmission
round.

In this talk, I will focus on bounding the size of an error-correcting code in arbitrary adversarial
networks, where the final goal is computing the largest possible size of a code that can ”defeat” the
adversary.

I will describe what the main challenges in this field are and present two bounds on the 1-shot
capacity of an adversarial network using a mix of projection and packing arguments. I will then
explain how to apply these bounds in concrete examples.
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Bivariate semifields and their isotopies

Lukas Kölsch

University of South Florida

(Joint work with Faruk Göloğlu)

Semifields offer one of the classic constructions of translation planes. Many semifields (Dickson
semifields, semifields quadratic over a weak nucleus,. . . ) use a bivariate construction, i.e. they are
defined over Fp2m ∼= Fpm × Fpm via a semifield multiplication

(x, y) ∗ (u, v) = (f(x, y, u, v), g(x, y, u, v)).

We focus on specific examples of these bivariate semifields that are constructed via projective poly-
nomials. We present a new family of commutative semifields of this form. This is the first family
of commutative semifields that contains exponentially (in m) many non-isotopic semifields [1]. We
show more generally how it is possible to completely determine when such semifields are isotopic or
not using a novel group theoretic approach. This leads to a new improved lower bound for the total
number of non-isotopic semifields of odd order [2].
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Strong (t mod q) arcs in PG(k − 1, q)

Sascha Kurz

University of Bayreuth

(Joint work with Ivan Landjev and Assia Rousseva)

Several extendability results for linear codes can be explained geometrically using the structure of
so-called (strong) (t mod q) arcs in PG(k− 1, q). In this talk we provide a new classification theorem
for strong (3 mod 5) arcs in PG(3, 5), where three examples disprove a conjecture of Landjev and
Rousseva. The classification is used to show the non-existence of a [104, 4, 82]5 code.
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A Note on Sperner’s Theorem for Modules over Finite Chain Rings

Ivan Landjev

New Bulgarian University

(Joint work with Emiliyan Rogachev)

Let P be a partially ordered set (or poset). We say that the element y of P covers the element
x ∈ P if x ≺ y and x ≺ y′ � y implies y = y′. This is denoted by x≺· y. We call P a ranked poset if
there exists a function r : P → N0 with r(x) = 0 for some minimal element x ∈ P and r(y) = r(x) + 1
for all x, y ∈ P with x≺· y.

The maximal rank of an element of P is called the rank of P. The i-th level of a ranked poset P
is defined by

Li(P) = {x ∈ P | r(x) = i}.

The i-th Whitney number is the cardinality of Li: Wi(P) = |Li(P)|. A graded poset is a ranked poset
in which all minimal elements have rank 0. A ranked poset is said to have the Sperner property if the
maximum cardinality of an antichain is equal to the largest Whitney number.

Let R be a finite chain ring with |R| = qm and R/ radR ∼= Fq. Consider a finitely generated module

RM over R and the partially ordered set P(M) of all of its (left) submodules. The rank function in

RM is defined in the following way: for a submodule RN < RM r(N) := logq |N |; equivalently, if RN

is of shape mλ1(m− 1)λ2 . . . 1λm then

r(N) = λ1m+ λ2(m− 1) + . . .+ λm.

We investigate the question of determining the maximal size of an antichain in P(M).
If M is a free module, i.e. RM = RR

n, it turns out that P(M) has the Sperner property. In

particular, the largest antichain contains all submodules N of (poset) rank r(N) =
mn

2
if at least one

of m and n is even, and all submodules of size r(N) = bmn
2
c or dmn

2
e if m and n are odd.

In the case of a non-free module M , the poset P(M) does not have necessarily the Sperner property.
For instance, this is true for

M = R⊕ (θR)n−1

where θ ∈ R \ radR, and n is even. In this particular case, a maximal antichain contains submodules
of two different poset ranks.
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Planes intersecting the Veronese surface in PG(5, q), q even

Michel Lavrauw

Sabanci University

(Joint work with Nour Alnajjarine)

Let W be the 6-dimensional vector space defined as the set of 2-forms on PG(2, q). Subspaces
of PG(W ) are known as linear systems of conics in PG(2, q). In particular, pencils, nets and webs
of conics are the 1-dimensional, 2-dimensional and 3-dimensional subspaces, respectively. Classifying
linear systems of conics in PG(2, q) corresponds to classifying subspaces of PG(5, q). In 2020, Lavrauw
and Sheekey classified lines of PG(5, q) under the action of the group K of PGL(6, q) stabilising the
Veronese surface, as a consequence they obtained the classification of webs of conics in PG(2, q) up
to projective equivalence. Later, K-orbits of planes intersecting the Veronese surface in PG(5, q), q
odd, were determined by Lavrauw, Popiel and Sheekey, yielding to the classification of rank-1 nets of
conics, namely nets with at least one double line. Recently, we considered the equivalent problem of
classifying planes meeting the Veronese surface over finite fields of characteristic 2. Particularly, we
proved that we have exactly 15 such orbits unless q = 2.

In this talk, we elaborate on the connection between subspaces of PG(5, q) and linear systems of
conics. Furthermore, we present a summary of the different types of planes meeting the Veronese
surface non-trivially in PG(5, q), q even. We discuss as well some of their properties and complete
invariants. We end by a comparison with the similar classification over finite fields of odd characteristic.
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Erdős-Ko-Rado results for flags in spherical buildings

Sam Mattheus

Vrije Universiteit Brussel

(Joint work with Jan De Beule and Klaus Metsch)

Over the last few years, Erdős-Ko-Rado theorems have been found in many different geometrical
contexts including for example sets of subspaces in projective [2] or polar spaces [3]. A recurring theme
throughout these theorems is that one can find sharp upper bounds by applying the Delsarte-Hoffman
coclique bound to a matrix belonging to the relevant association scheme. In the aforementioned cases,
the association schemes turn out to be commutative, greatly simplifying the matter. However, when
we do not consider subspaces of a certain dimension but more general flags, we lose this property. In
this talk, we will explain how to overcome this problem, using a result originally due to Brouwer [1].
This result, which has seemingly been flying under the radar so far, allows us to derive upper bounds
for certain flags in projective spaces and general flags in polar spaces and exceptional geometries. We
will show how Chevalley groups, buildings, Iwahori-Hecke algebras and representation theory tie into
this story and discuss their connections to the theory of non-commutative association schemes.
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Low Boolean degree d functions in Grassmann graphs

Jonathan Mannaert

Vrije Universiteit Brussel

(Joint work with Jan De Beule, Jozefien D’haeseleer and Ferdinand Ihringer)

Consider the n-dimensional vectorspace Fnq and consider Boolean functions on the Grassmann graph
of k-spaces. One example of such a Boolean function can be constructed as follows: let T be a d-
dimensional subspace, then we can define a Boolean function x+T such that x+T (S) = 1 if and only if
T ⊆ S.
Secondly, Using these examples, we define a Boolean degree d function on this Grassmann graph
as a Boolean function that can be written as a linear combination (over the reals) of all x+T , with
dim(T ) = d. These Boolean functions appear in a variety of other contexts. One of these connections
is the connection with Cameron-Liebler sets of k-spaces. It can be shown that the characteristic
function of these sets are precisely Boolean degree 1 functions. More information can be found in
[1, 3]. Moreover, this connection resulted in an extended study of Boolean degree 1 functions. Yet
for general degree d not so much is known. In this talk we focus on an introduction to these Boolean
degree d functions, we look by the connection with Cameron-Liebler sets of k-spaces and end with an
exhaustive survey of (non-trivial) examples and non-existence results for Boolean degree 2 functions.
This can be found in [2].
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(Non-)embeddings of the Ree unitals in finite projective planes

Gábor P. Nagy

Budapest University of Technology and Economics (Hungary)
and University of Szeged (Hungary)

We show that the Ree unital R(q) has an embedding in a projective plane over a field F if and
only if q = 3 and F8 is a subfield of F . In this case, the embedding is unique up to projective linear
transformations. Besides elementary calculations, our proof uses the classification of the maximal
subgroups of the simple Ree groups. The main result is the following:

Theorem 1 Let n be a positive integer, and q = 32n+1. Suppose that Π is a projective plane such that
for each embedding ϕ : R(3) → Π, the image ϕ(R(3)) is contained in a pappian subplane. Then the
Ree unital R(q) has no embedding in Π. In particular, R(q) has no embedding in a projective plane
over a field.

These results suggest that the problem of projective embeddings of the Ree unitals can be reduced
to the question whether the smallest Ree unital has an embedding in a non-desarguesian projective
plane. This question is surprisingly hard, even if we assume that the embedding is admissible.
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Asymptotically good strong blocking sets

Alessandro Neri

Max Planck Institute for Mathematics in the Sciences

(Joint work with Anurag Bishnoi and Shagnik Das)

Minimal linear codes were first introduced by Cohen and Lempel over the binary field under the
name of linear intersecting codes [2]. They later gained interest due to their application to secret
sharing schemes proposed by Massey [4]. Recently, it has been shown that k-dimensional minimal
linear codes in Fnq are in one-to-one correspondence with strong blocking sets [1, 5], which are special
sets of n points in PG(k − 1, q), such that their intersection with each hyperplane generates the
hyperplane itself. The notion of strong blocking set was however already known, since they were
originally introduced as a tool for deriving covering codes [3].

In this talk we propose a new general method to construct small strong blocking sets – and hence
short minimal linear codes – starting from a set of points in PG(k − 1, q) and a graph with special
connectivity properties. In particular, we explore how one can get explicit constructions of families of
asymptotically good minimal linear codes, by means of expander graphs and families of asymptotically
good linear codes.
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Small complete caps in PG(4n + 1, q)

Francesco Pavese

Polytechnic University of Bari

(Joint work with A. Cossidente, B. Csajbók, G. Marino)

Let PG(r, q) denote the r-dimensional projective space over the finite field with q elements Fq.
A k-cap of PG(r, q) is a set of k points no three of which are collinear. A k-cap of PG(r, q) is said
to be complete if it is not contained in a (k + 1)-cap of PG(r, q). The study of caps is not only of
geometrical interest, but arises from coding theory. Indeed, by identifying the representatives of the
points of a complete k-cap of PG(r, q) with columns of a parity check matrix of a q–ary linear code,
it follows that (apart from two sporadic exceptions) complete k-caps of PG(r, q) with k > r + 1 and
non-extendable linear [k, k − r − 1, 4]q 2–codes are equivalent objects.

One of the main issue is to determine the spectrum of the sizes of complete caps in a given projective
space and in particular their maximal and minimal possible values. For the size t2(r, q) of the smallest

complete cap in PG(r, q), the trivial lower bound is t2(r, q) >
√

2q
r−1
2 . Apart from the case q even,

all known infinite families of complete caps explicitly constructed in PG(r, q) have size far from the
trivial bound. See [1, 2] and references therein.

In this talk I will describe the construction of a complete cap of PG(4n+1, q) of size 2(q2n+ . . .+1)
that is obtained by projecting two disjoint Veronese varieties of PG(n(2n + 3), q) from a suitable
(2n2 − n − 2)-dimensional projective space, see [3]. This establishes that the trivial lower bound on
t2(4n+ 1, q) is essentially sharp.
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On the minimum distance of the C(H3,6) polar Hermitian Grassmann code

Fernando Piñero

University of Puerto Rico in Ponce

(Joint work with Sarah Gregory, Doel Rivera Laboy and Lani Southern)

We prove that the minimum distance of the polar Hermitian Grassmann code C(H3,6) is q9 − q7.
Our technique is based on partitioning the Polar Hermitian Grassmannian into different sets such
that on each partition the code C(H3,6)is identified with evaluations of determinants on sets of Skew–
Hermitian matrices. Our bounds come from elementary algebraic methods counting the zeroes of
particular classes of polynomials. We extend known results [1] on the minimum distance of polar
Hermitian Grassmann codes.
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The Critical Problem for Combinatorial Geometries
and Coding Theory

Alberto Ravagnani

Eindhoven University of Technology

The Critical Problem for combinatorial geometries was proposed by Crapo and Rota in the seven-
ties. It asks to compute the largest dimension of a linear subspace that avoid a collection of projective
points. This talk will be about the connections between the generalizations of this very classical
problem in combinatorial geometry and some fundamental open questions in contemporary coding
theory.
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Linear Codes, Arcs, Blocking Sets and the Main Problem in Coding Theory

Assia Rousseva

Sofia University

(Joint work with Ivan Landjev)

Let k and d be positive integers and let q = ph be a prime power. Write d as d = sqk−1 −
ak−2q

k−2− . . .−a1q−a0, where 0 ≤ ai < q for all i. It is known that the existence of a Griesmer code
with parameters [n, k, d]q is equivalent to that of a blocking multiset (minihyper) in PG(k− 1, q) with

parameters (
∑k−2

i=0 aivi+1,
∑k−2

i=0 aivi) with maximal point multiplicity s = dd/qk−1e. Here, as usual,
vr = qr−1

q−1 . Minihypers with these parameters always do exist. They can be obtained as the sum of
ak−2 hyperplanes, ak−3 hyperlines, ... , a0 points. Minihypers produced in this way will be called
canonical. A second construction starts with a (

∑k−3
i=0 aivi+1,

∑k−3
i=0 aivi)-minihyper F in a hyperplane

H0 of PG(k − 1, q). A minihyper F ′ is produced in the following way: fix a point P off H0 and set
F ′(P ) =

∑k−3
i=0 ai. For every point R 6= P , F ′(R) = F(Q), where Q = H0 ∩ 〈P,R〉. The minihyper F ′

has parameters (
∑k−2

i=0 aivi+2,
∑k−2

i=0 aivi+1). Minihypers produced in this way will be called lifted.
We investigate the problem of finding conditions on the numbers ai that force a minihyper with

the above parameters to be canonical or lifted. Interesting special cases of this problem have been
considered by Ball, Hill, Landjev, Ward, Storme, Vandendriesche in [1, 2, 3], as well as by Hamada
in numerous publications in the early 90’s. In this talk, we present steps towards the proof of the
following conjecture.

Conjecture. Let F be a (
∑k−2

i=1 aivi+1,
∑k−2

i=1 aivi)-minihyper in PG(k − 1, q), q = ph prime, where
0 ≤ ai < q.

(i) If h = 1 and
∑

i ai ≤ q − 1, then F is canonical or lifted;

(ii) if h > 1 and
∑

i ai ≤ q − q/p, then F is canonical or lifted.
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Minimum size linear sets

Paolo Santonastaso

Università degli Studi della Campania “Luigi Vanvitelli” (Italy)

(Joint work with Vito Napolitano, Olga Polverino and Ferdinando Zullo)

Linear sets are natural generalization of subgeometries and, in recent years, they have been inten-
sively used to construct and classify several gemetrical and algebraic objects. In [1], De Beule and
Van de Voorde proved a lower bound on the size of a linear set. In this talk we will deal with linear
sets attaining this bound in the projective line. Examples of these linear sets have been found by
Lunardon and Polverino in 2000 and, more recently, by Jena and Van de Voorde in [2]. Classification
results for linear sets having minimum size of rank k are known only for k ≤ 5. First, we will pro-
vide classification results for linear sets of minimum size when n is prime. When n is not a prime,
we will show how to construct minimum size linear sets that cannot be obtained as instances of the
construction given in [2]. The talk is based on [3].
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Designs in finite general linear groups

Kai-Uwe Schmidt

Paderborn University (Germany)

(Joint work with Alena Ernst)

It is known that the notion of a transitive subgroup of a permutation group G extends naturally
to subsets of G. This talk is about subsets of the general linear group GL(n, q) acting transitively
on flag-like structures, which are common generalisations of t-dimensional subspaces of Fnq and bases
of t-dimensional subspaces of Fnq . I shall discuss structural characterisations of transitive subsets of
GL(n, q) using the character theory of GL(n, q) and interprete such subsets as designs in the conjugacy
class association scheme of GL(n, q). While transitive subgroups of GL(n, q) are quite rare, it will be
shown that, for all fixed t, there exist nontrivial subsets of GL(n, q) that are transitive on linearly
independent t-tuples of Fnq , which also shows the existence of nontrivial subsets of GL(n, q) that
are transitive on more general flag-like structures. These results can be interpreted as q-analogs of
corresponding results for the symmetric group.
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Partial permutation decoding of the binary code of the projective plane
PG(2, q), q even

Leo Storme

Ghent University
Department of Mathematics: Analysis, Logic and Discrete Mathematics

Krijgslaan 281 - Building S8
9000 Ghent

Belgium

(Joint work with D. Crnković, N. Mostarac and B.G. Rodrigues)

(Partial) permutation decoding was introduced by F.J. MacWilliams [2]. The algorithm uses sets
of code automorphisms, called PD-sets, that are defined with respect to a given information set of the
code. The idea of the algorithm is to move the error positions outside of the information set positions,
to correct the errors.

The goal is to construct PD-sets as small as possible. An s-PD-set is a set of code automorphisms
which can correct s errors that occurred during the transmission of a codeword.

In [3], P. Vandendriessche constructed a particular basis for the binary code arising from the
incidence matrix of the projective planes PG(2, q), q = 2h, 5 ≤ h ≤ 9.

Using this basis, we construct a 2-PD-set of size 16 and a 3-PD-set of size 75 for the binary code
arising from the incidence matrix of the projective planes PG(2, q), q = 2h, 5 ≤ h ≤ 9 [1].

.
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Renitent lines

Peter Sziklai

ELTE, Budapest

(Joint work with B. Csajbók and Zs. Weiner)

One of the key motivations in the history of finite geometries is the study of symmetric structures,
i.e. structures admitting a large symmetry group. These structures (quadrics, Hermitian varieties,
subgeometries over a subfield, etc.) are typically very “regular” when you consider their intersection
properties with the subspaces of the ambient geometry; and there exist many “classification-type”
results, stating that an “intersection-wise very regular” set must be one on the list of the (classical,
symmetric) structures.

A natural next step is to investigate point sets, which behave “almost regularly” with respect to
the subspaces of the ambient space. In this talk we restrict ourselves to point sets of a desarguesian
affine plane AG(2, q), where q is a power of the prime p (although we have natural but not obvious
extensions to other spaces.) It may well happen, that our point set intersects almost all lines of a
parallel class in the same number of points (possibly mod p). If it happens for many parallel classes
then one may guess that the reason is that our point set has a hidden structure, i.e. the non-regular
intersections may be “corrected”, or at least they also possess some regularity themselves.

Now we define renitent lines.
Definition. LetM be a multiset of AG(2, q). For some integer λ ≤ (q− 1)/2 a direction (d) is called
(q − λ)-uniform if there are at least (q − λ) affine lines with slope d meeting M in the same number
of points modulo p. This number will be called the typical intersection number at (d). The rest of the
lines with direction (d) will be called renitent.
Note that different directions may have different typical intersection numbers.

Some general versions of the following theorem will be presented in the talk, roughly saying that
under natural assumptions, the renitent lines are contained in a curve of the dual plane, of relatively
small degree:

Theorem. Take a multiset T of AG(2, q) and let Eλ denote a set of at most q directions which are
(q − λ)-uniform such that the following hold:

(i) 0 < λ ≤ min{q − 2, p− 1},

(ii) for each (d) ∈ Eλ the renitent lines meet T in the same number, say td, of points modulo p,

(iii) for each (d) ∈ Eλ if md denote the typical intersection number at direction (d), then td−md mod
p does not depend on the choice of (d).

Then the renitent lines with direction in Eλ are contained in an algebraic envelope of class λ.
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Generalized Korchmáros-Mazzocca arcs and renitent lines

Zsuzsa Weiner

ELKH-ELTE GAC

(Joint work with Bence Csajbók and Péter Sziklai)

Korchmáros-Mazzocca arcs are point sets of size q + t intersecting each line in 0, 2 or t points
in a finite projective plane of order q. When t 6= 2, this means that each point of the point set is
incident with exactly one line meeting the point set in t points. For t = 1, we get the ovals, for
t = 2 the hyperovals; thus this concept generalizes well-known objects of finite geometry. They were
introduced and first studied by Korchmáros and Mazzocca in 1990, see [3]. In [1], with Bence Csajbók,
we generalized the concept of Korchmáros-Mazzocca arcs, namely in PG(2, q), we changed 2 in the
definition above to any integer m. Also, we introduced the mod p variants of these objects. In this
talk, I will give examples and some characterization type result on these objects, for example I will
describe all examples when m or t is not divisible by p. Under some condition, we also proved the
existence of a nucleus. In order to do so, we had to show that ’the renitent’ lines (the t-secants)
through the points of an m-secant have a nucleus (and a similar lemma hold for the mod p variant
of the problem). Recently, together with Bence Csajbók and Péter Sziklai ([2]), we studied possible
generalization of the above phenomenon, i.e. we investigated point sets of a desarguesian affine plane,
for which there exist some (sometimes: many) parallel classes of lines, such that almost all lines of
one parallel class intersect our set in the same number of points (possibly mod p, the characteristic).
We proved results on the (regular) behaviour of the lines with exceptional intersection numbers. In
this talk, I will also give some insight into this study.
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The linear programming bounds in

classical association schemes

Charlene Weiß

Paderborn University

(Joint work with Kai-Uwe Schmidt)

Many interesting codes such as q-ary codes, rank-metric codes, and subspace codes can be viewed
as subsets of association schemes. The corresponding association schemes are the Hamming scheme,
the Johnson scheme, and several q-analogs of them. Based on the theory of association schemes,
Delsarte introduced a linear program that yields an upper bound for the size of codes. This linear
program has been studied for many years in the case of the Hamming scheme and the Johnson scheme,
but it is still unknown what the optimal solutions of their linear programs look like. By using a unified
way, we will give the optimal solution of the linear program for codes in the projective space, in the
bipartite halves (Greeks and Latins) of the hyperbolic polar space, and in one of the Hermitian polar
spaces, as well as for their affine counterparts: bilinear forms scheme, alternating forms scheme, and
Hermitian forms scheme.

Moreover, the bounds for the bipartite halves and for one of the Hermitian polar spaces can be
used to derive bounds for codes in all the remaining polar spaces. These bounds will be used to give
an almost complete classification of t-Steiner systems in polar spaces.
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A standard form for scattered linearized polynomials and properties of the
related translation planes

Corrado Zanella

Università degli Studi di Padova

(Joint work with Giovanni Longobardi)

A scattered polynomial is an Fq-linearized polynomial f(x) =
∑n−1

i=0 aix
qi ∈ Fqn [x] such that for

any y, z ∈ Fqn the condition zf(y)− yf(z) = 0 implies that y and z are Fq-linearly dependent. When
f(x) is a scattered polynomial, then Uf = {(x, f(x)) : x ∈ Fqn} is a scattered Fq-subspace with respect
of the Desarguesian spread D = {〈v〉Fqn

: v ∈ F2
qn \ {(0, 0)}} of F2

qn ; that is, dimFq

(
〈v〉Fqn

∩ Uf
)
≤ 1

for any v ∈ F2
qn . The collections of Fq-subspaces Hf = {〈(y, f(y))〉Fqn

: y ∈ Fqn \ {0}} and H′f =
{hUf : h ∈ Fqn \ {0}} cover the same vector set. As a consequence, (D \ Hf ) ∪ H′f is a spread of

the Fq-vector space F2
qn , and gives rise to a translation plane Af , whose general properties have been

described in [1].
In this talk I will present results concerning the stabilizer Gf of the subspace Uf , f(x) a scattered

linearized polynomial in Fqn [x], under the action of GL(2, qn). Each Gf contains at least the q − 1
maps (x, y) 7→ (ax, ay), a ∈ Fq \ {0}. The elements in Gf are simultaneously diagonalizable. This
has several consequences: (i) the polynomials such that |Gf | > q − 1 have a standard form of type∑n/t−1

j=0 ajx
qs+jt

for some s and t such that (s, t) = 1, t > 1 a divisor of n; (ii) this standard form
is essentially unique; (iii) the translation plane Af associated with f(x) admits affine homologies if
and only if |Gf | > q− 1, and in that case the affine homologies with axis through the origin form two
groups of cardinality (qt− 1)/(q− 1) that exchange axes and coaxes; (iv) no plane of type Af , f(x) a
scattered polynomial not of pseudoregulus type, is a generalized André plane.
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Subcovers of generalized GK curves and their automorphism groups

Giovanni Zini

University of Modena and Reggio Emilia

(Joint work with Maria Montanucci, Guilherme Tizziotti)

The Fq6-maximal GK curve was constructed in [3] as the first example of maximal curve which
is not covered by the corresponding Hermitian curve. Two Fq2n-maximal generalizations of the GK
curve were provided for any odd n, the first one by Garcia,Güneri and Stichtenoth [2], and the second
one by Beelen and Montanucci [1]. Subcovers X1 of the first generalized GK curve were defined in [4]
as examples of new maximal curves which are not covered by the Hermitian curve.

We construct analogous subcovers X2 of the second generalized GK curve, and obtain new maximal
curves not covered by the Hermitian curve. Also, we determine the full automorphism groups of
the curves X1 and X2, which are related to the automorphism group PGU(3, q) of the Fq2-maximal
Hermitian curve. This provides a new characterization of the GK curve in terms of its automorphism
group.
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Identifiable Waring subspaces over finite fields

Ferdinando Zullo

Università degli Studi della Campania “Luigi Vanvitelli”

(Joint work with Michel Lavrauw)

Waring’s problem, of expressing an integer as the sum of powers, has a very long history going back
to the 17th century [6], and the problem has been studied in many different contexts. A special case of
this is one of the classical problems for symmetric tensors (multilinear forms): determine the minimum
integer k such that a generic symmetric tensor f ∈ Symd(V ) can be written as the sum of k pure
tensors of Symd(V ). This problem is a reformulation of writing a homogeneous polynomial f of degree
d as the sum of d-th powers of linear forms, and hence it can be seen as a generalisation of the problem
posed by Waring. The connection is given by the correspondence between homogeneous polynomials
of degree d in F[X0, . . . , Xn] and the elements of Symd(V ). The value k is called the Waring rank of
f and the decomposition of f into the sum of k pure tensors is called a Waring decomposition. If the
linear forms appearing in a minimal decomposition are unique, up to a nonzero scalar multiple, then
f is called Waring identifiable. The question of identifiability is naturally interesting on its own and
has many applications. When F is the field of complex numbers, the Waring rank of a generic form in
Symd(Cn+1) was determined by Alexander and Hirschowitz in [1], see [3, 5, 2] for more recent results.

In this talk we introduce the notion of a Waring subspace and a Waring identifiable subspace with
respect to a projective algebraic variety X . When X is the Veronese variety, these subspaces play a
fundamental role in the theory of symmetric tensors and are related to the Waring decomposition and
Waring identifiability problem of symmetric tensors (homogeneous polynomials).
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