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Fields and Their Friends

Finite Fields underpin a large portion of Finite Geometry.

Every finite field has prime power order, and there is a
unique field (up to isomorphism) of each prime power or-
der.

Some applications of finite fields do not require all the axioms
of a field.

Wedderburn-Dickson Theorem

Every finite associative division algebra is a finite field.
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Finite Semifields

A finite semifield S is a finite division algebra, where multi-
plication is not assumed to be commutative or associative.

The first constriction of a proper infinite semifield was the
octonions by John T. Graves (1843).

Dickson (1905) constructed the first examples of proper finite
semifields.
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Finite Semifields

A finite semifield S is a finite division algebra, where multi-
plication is not assumed to be commutative or associative.

Semifields have been studied from a number of different points
of view, with a wide variety of motivations.

Each of these settings tells us something different, has its own
advantages and disadvantages, provides different techniques,
and suggests “natural” sets of problems.

Semifields are related to every part of MATHS.
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Finite Semifields

Semifields are related to every part of MATHS.

I M is for Matrices
I A is for Algebra
I T is for Tensors
I H is for Heometry
I S is for Spreads
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Finite Semifields

Theorem (Albert/Andre/Maduram/Knuth)

Let S1, S2 be two semifields. The following are equivalent:

I M: The matrix subspaces C(Si) are equivalent∗;
I A: The algebras Si are isotopic;
I T: The tensors T (S1) are equivalent∗;
I H: The projective planes π(Si) are isomorphic;
I S: The spreads S(Si) are equivalent.

Although the classification problem is equivalent in each
setting, each one suggests different interesting classes of
semifields that are worthy of further study!
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A is for Algebra

We regard Fqn as an Fq-vector space of dimension n, and
define a new multiplication.

Every Fq-linear map from Fqn to Fqn can be represented
by a unique linearized polynomial with coefficients in Fqn :

f (x) = f0x + f1xq + · · ·+ fn−1xqn−1

For every Fq-bilinear map (multiplication) from Fqn × Fqn

to Fqn there exist unique cij ∈ Fqn such that

x ◦ y =
n−1∑
i,j=0

cijxqi
yqj
.
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A is for Algebra

In general it is very difficult to determine whether or not a
multiplication defines a semifield. However in some cases it is
straightforward.

Albert’s Generalised Twisted Fields (1961) use the ele-
ments of Fqn , with multiplication defined as

x ◦ y = xy − cxqi
yqj
,

with c fixed such that c
qn−1
q−1 6= 1.

For suppose x ◦ y = 0 with x , y 6= 0. Then c = x1−qi
y1−qj

.
Taking the field norm of both sides contradicts the condition on
c.
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A is for Algebra
Equivalence

Two semifields are isotopic if there exist invertible additive
maps A,B,C such that (x ? y)A = xB ◦ yC for all x , y .

I If we do not assume a multiplicative identity, the structure
is called a presemifield.

I Every presemifields is isotopic to a semifield, via
Kaplansky’s trick.

Question

Can we classify semifields up to isotopy?
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A is for Algebra
Classifications

Dickson (1905)

Every semifield two-dimensional over its centre is isotopic
to a field

Menichetti (1977)

Every semifield three-dimensional over its centre is iso-
topic to either a field or generalised twisted field.

Menichetti (1998)

Every semifield of prime dimension over its centre Fq with
q large enough is isotopic to either a field or generalised
twisted field.
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A is for Algebra
Classifications

Many semifields have been constructed by many authors, such
as:

I Dickson
I Hughes-Kleinfeld
I Knuth
I Cohen-Ganley
I Coulter-Matthews
I Jha-Johnson
I Dempwolff
I Kantor
I Budaghyan-Helleseth
I various subsets of [Ebert-Johnson-Marino-Polverino-Trombetti-Lunardon-Lavrauw]
I Zha-Kyureghyan-Wang
I Bierbrauer
I Pott-Zhou
I Bartoli-Bierbrauer-Kyureghyan-Giulietti-Marcugini-Pambianco
I JS
I Gologlu-Kolsch

and many more...
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A is for Algebra
Classifications

n q #Classes Reference
4 2 3 (3) Knuth 1965
4 3 27 (12) Dempwolff 2008
4 4 (28) Rua et al 2011
4 5 (42) Rua et al 2011
4 7 (120) Rua et al 2012
5 2 6 (3) Walker 1962
5 3 23 (9) Rua et al 2011
6 2 332 (80) Rua et al 2009

x=number of isotopy classes, (x)=number of Knuth orbits

Of the 332 isotopy classes of order 26, only 35 were from
known constructions.
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A is for Algebra
Equivalence

I Constructing semifields is hard...
I Distinguishing semifields from one another is hard...
I Classifying all semifields is hard...

Studying semifieds can be in some sense NP hard...

Studying semifieds can be in some sense NP hard...
they make you want to study a New Problem!
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A is for Algebra
Equivalence

Two semifields are isotopic if there exist invertible additive
maps A,B,C such that (x ? y)A = xB ◦ yC for all x , y .

I Determining whether or not two semifields are isotopic is in
general very difficult.

I Instead we usually try to come up with some values or
properties that are isotopy invariants.

I If two semifields have equal invariants, it does not
necessarily imply they are isotopic, but if any of their
invariants are different then they are not isotopic.
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Isotopy Invariants

Two semifields are isotopic if there exist invertible additive
maps A,B,C such that (x ? y)A = xB ◦ yC for all x , y .

Whenever we define an isotopy invariant we should ask
ourselves the following questions:

I Is the invariant easy to calculate?
I How fine or coarse is the invariant?
I What does the invariant tell us about the semifield?
I Can we classify all examples with given invariants?
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A is for Algebra
Nuclei and centre

The left, middle and right nucleus are defined as

Nl = {a ∈ S | (ab)c = a(bc) ∀b, c ∈ S}
Nm = {b ∈ S | (ab)c = a(bc) ∀a, c ∈ S}
Nr = {c ∈ S | (ab)c = a(bc) ∀a,b ∈ S}

The centre is the largest field over which S is a division algebra.

The nuclei are all division rings, and centre is a field. Their
sizes are isotopy invariants.

Question

Can we classify semifields with given centre and nuclei?
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A is for Algebra
Nuclei and centre

Cardinali-Polverino-Trombetti (2006)

Full classification of semifields four-dimensional over their
centre and two-dimensional over a nucleus.

Marino-Polverino-Trombetti (2007) and more

Partial classification of semifields six-dimensional over
their centre and two-dimensional over a nucleus.

Blokhuis-Ball-Lavrauw (2003); Lavrauw (2006)

Full classification of commutative semifields two-
dimensional over a nucleus for q large enough.
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A is for Algebra
Nuclei and centre

I Is the invariant easy to calculate? Yes!
I How fine or coarse is the invariant? Pretty coarse...
I Can we classify all examples with given invariants?

Sometimes!

Sometimes calculating the nuclei is sufficient to show that a
new construction is not equivalent to an old one; e.g.
(Pott-Zhou), (JS).

More often, calculating the nuclei narrows down the list of
possible candidates, but further work is required to determine
newness.
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A is for Algebra
BEL rank

Every semifield multiplication can be written in the form

x ◦ y =
r∑

k=1

fk (x)gk (y)

for some Fq-linear maps fk ,gk , where r is the rank of the matrix
(cij).

We define the BEL-rank (Lavrauw-JS) of a semifield as the
minimum across the isotopy class.

Every generalised twisted field has BEL-rank two, as does
every semifields two-dimensional over a nucleus.

The BEL-rank is difficult to calculate, but does give rise to some
interesting questions and connections.
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A is for Algebra
BEL rank

Question

Can we classify semifields of BEL-rank two?

I Equivalently: disjoint linear sets on a projective line.
I Some computational results give unknown examples of

order 26.
I Some nonexistence results (JS-Van de Voorde-Voloch,

Zini-Zullo).
I Given a semifield of BEL-rank two, we can easily construct

another that may or may not be isotopic to it via switching
(Ball-Ebert-Lavrauw).

I Also related to a construction of planar functions
(Pott-Zhou).
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A is for Algebra
Commutativity

I Although associativity implies commutativity, the converse
is not true.

I Commutative semifields have been extensively studied due
to connections with PN functions.

I The function f (x) = x ◦ x perfect nonlinear if ◦ is
commutative and q is odd.

I Semifields of the form x ◦ y = xL(y) + L(x)y have been
studied (e.g. Kyureghyan-Ozbudak). This corresponds
precisely to finding PN functions of the form xL(x).

I Computational classifications for dimension 4 over the
centre (Lavrauw-Rodgers, Lavrauw-Sheekey) seem to
suggest that a full classification is possible for small
dimension, though new ideas are needed.
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M is for Matrices

“Multiplication on the left by y ” defines a map on Fqn :

x 7→ y ◦ x =: Ly (x)

Then for x , z ∈ Fqn , λ ∈ Fq,

Ly (x + λz) = Ly (x) + λLy (z)

Ly+λz(x) = Ly (x) + λLz(x).

I Each Ly is an Fq-linear map on Fqn , and so can be
identified with an element of Mn(Fq).

I The set C(S) = {Ly : y ∈ Fqn} is an n-dimensional
subspace of Mn(Fq).

I Each Ly is invertible for y 6= 0.
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M is for Matrices

The space C(S) is called a (semifield) spread set.

A basis for C(F24) over F2 is1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
0 1 0 0

0 0 1 0
0 0 0 1
1 1 0 0

 ,
0 0 1 0

0 0 0 1
1 1 0 0
0 1 1 0

 ,
0 0 0 1

1 1 0 0
0 1 1 0
0 0 1 1



= {1,M,M2,M3},

where M is the companion matrix of an irreducible polynomial
x4 + x + 1 of degree four in F2[x ].
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M is for Matrices

The space C(S) is called a (semifield) spread set.

We can define and study a multivariate polynomial

fS(x1, . . . , xn) = det

(∑
i

xiEi

)
,

where {Ei} is an Fq-basis for C(S).

The polynomial fS is homogeneous of degree n in n variables,
and has no Fq-rational points.

Menichetti used this approach in his classification results, but
not much has been explored in this direction since.
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M is for Matrices
Rank Metric Codes

An additively closed subset C of Mm×n(Fq) of size qk such
that rank(A) ≥ d for all 0 6= A ∈ C and

k =

{
m(n − d + 1) if m ≤ n
n(m − d + 1) if m ≥ n

is called a Maximum Rank Distance code; MRD code for
short. We call d the minimum distance.

I Studied and constructed by Delsarte (1978) for coding and
combinatorial reasons, independently by Gabidulin (1985)
for cryptographic reasons.

I The case d = m = n corresponds precisely to semifields.
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M is for Matrices
Rank Metric Codes

Some computational results seem to suggest that semifields
are more common than MRD codes with d < n.

q n d Equiv
2 4 4 3
2 4 3 1
2 5 5 3
2 5 4 2
2 6 6 332
2 6 5 2
3 4 4 27
3 4 3 6

Further results for rectangular matrices
(Honold-Kiermaier-Kurz).
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M is for Matrices
Constructing Semifields

Let q be a power of an odd prime p, and k a non-square in Fqm .

Then the the finite field Fq2m ' Fqm [x ]/(x2 − k) can be
represented as

C(Fq2m ) =

{[
a kb
b a

]
: a,b ∈ Fqm

}
; det(La,b) = a2 − kb2

Dickson (1906) showed that

C(S) =

{[
a kbq

b a

]
: a,b ∈ Fqm

}
; det(La,b) = a2 − kbp+1

gives a semifield of size q2m with centre Fq, right nucleus Fqm ,
not equivalent to a field (unless m = 1).
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M is for Matrices
Nuclei

If n = sm and the right-nucleus of S has order qm, then we can
assume (up to isotopy) that

C(S) ⊂ Ms(Fqm ) ⊂ Mn(Fq).

C(S) is an Fq-subspace of Ms(Fqm )

I Via the q-projective system/linear set viewpoint on
rank-metric codes, we can thus view a semifield as a
rank-metric code in a second way;

I An s2-dimensional Fqm -linear code in (Fqm )ms.
I More generally an Fq-linear rank-metric code in Ms×t (Fqm )

of dimension k defines an st-dimensional Fqm -linear
rank-metric code in (Fqm )k .
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M is for Matrices
Nuclei

C(S) is an Fq-subspace of Ms(Fqm )

I Isotopic semifields define equivalent codes in this setting,
but non-isotopic semifields can define equivalent codes;
thus this alternative viewpoint can act as a useful isotopy
invariant.

I Though they didn’t use this language, this is the approach
used by Cardinali, Polverino. Trombetti, Marino, Johnson,
Ebert, Lavrauw in classifications of semifields
two-dimensional over a nucleus and four/six-dimensional
over the centre.
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M is for Matrices
Equivalence

C(S) is an Fq-subspace of Ms(Fqm )

Two Fq-subspaces C1,C2 of Ms(Fqm ) are equivalent if
there exist A,B ∈ GL(s,qm), ρ ∈ Aut(Fqm ) such that
C2 = ACρ

1B.

We have the action of a group

GL(s,qm)× GL(s,qm)× Aut(Fqm ) ≤ ΓL(s2,qm),

the stabiliser of a Segre variety. Thus subgroup preserves rank;
the isometries in the rank-metric.
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M is for Matrices
and H is for Geometry

Given C(S) an Fq-subspace of Ms(Fqm ), we can consider
geometric properties that are invariant under isotopy.

In particular, how does C(S) intersect the Fqm -subspaces of
Ms(Fqm )?

Effectively, we check whether C(S) are equivalent under the
action of ΓL(s2,qm), rather than the subgroup of
rank-preserving maps.
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M is for Matrices
and H is for Geometry

For example the Dickson semifields:

C(S) =

{[
a kbp

b a

]
: a,b ∈ Fq

}

Then

α

[
a kbp

b a

]
∈ C(S)⇔ b(αq − α) = 0.

Hence C(S) contains one 1-dimensional Fqm -subspace, and
meets every other 1-dimensional Fqm -subspace either trivially
or in a 1-dimensional Fq-subspace.
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M is for Matrices
and H is for Geometry

Suppose s = 2 and m = 3.

(Ebert-Marino-Polverino-Trombetti)
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M is for Matrices
and H is for Geometry

Suppose s = 2 and m = 3.

(Ebert-Marino-Polverino-Trombetti)
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M is for Matrices
and H is for Geometry

I For example, if C(S) meets every 1-dimensional
Fqm -subspace in an Fq-subspace of dimension at most 1,
the semifield is said to be scattered.

I We furthermore have a duality operation; the translation
dual, a special case of the more general Delsarte dual
operation on MRD codes (Lunardon, JS-Van de Voorde).

Question

What can we say for s > 2? Or for MRD codes? Can we
construct or classify semifields/MRD codes with extremal
intersection properties?
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T is for Tensors

By choosing an Fq-basis {ei} for a semifield with centre
containing Fq, we can represent the multiplication in a semifield
by a 3-dimensional array T (S):

ei ◦ ej =
∑

k

Tijkek .

The cube of elements from Fq can be obtained by stacking the
elements of a basis of C(S).

Knuth(1965)

Permuting the subscripts preserves the property of being
a (pre)semifield.

Thus from one semifield we obtain a set of (up to) six isotopy
classes, known as the Knuth Orbit.
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T is for Tensors
Tensor Rank

Let V⊗3 = V ⊗ V ⊗ V , where V is an n-dimensional F -
vector space.

Every tensor T ∈ V⊗3 can be written as a sum of pure (or
fundamental) tensors. We refer to an expression

T =
R∑

j=1

vj1 ⊗ vj2 ⊗ vj3

as a decomposition of T into the sum of R pure tensors.

The tensor rank of T is the minimum nonnegative integer
R such that there exists a decomposition of T into R pure
tensors. It is denoted by trk(T ).
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T is for Tensors
Tensor Rank

Liebler (1981) and Lavrauw (Irsee, 2011) proposed studying
the tensor representation of semifields, in particular the tensor
rank.

The tensor rank of an algebra is an isotopy (and Knuth
orbit) invariant.

The tensor rank measures the multiplicative complexity of
an algebra.

Question

Do there exist semifields with different tensor rank to the
field of the same order?
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T is for Tensors
Tensor Rank

Lavrauw-Pavan-Zanella (2013) showed that the fields and
twisted fields of dimension 3 over their centre have the same
tensor rank.

q = 2 q = 3
n LB UB LB UB
2 3 3 3 3
3 6 6 6 6
4 9 9 8 9
5 13 13 10 12
6 15 15 12 15
7 18 22 17 19
8 20 24 19 21
9 26 30 21 26

10 28 33 24/25 27

Lower bounds taken from Grassl (codetables.de), Upper bounds taken from Cenk-Ozbudak (2010).
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T is for Tensors
Tensor Rank

Theorem (Lavrauw-JS)

The tensor rank of both F34 and GTF34 over F3 is nine.

The tensor rank of all other semifields of order 34 over F3
is eight.

I The tensor rank is very difficult to calculate.
I We don’t know yet how broad the range of ranks may be.
I However, the possible practical applications of a semifield

with low multiplicative complexity make this an intriguing
direction for semifields.
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T is for Tensors
Tensor Rank

I Similar ideas have been explored for rank-metric codes
(Byrne-Neri-Ravagnani-JS), where low tensor rank has
benefits for efficient storage.

I New calculations of the tensor rank of MRD codes have
been performed (Byrne-Cotardo), (Bartoli-Zini-Zullo).

I Further invariants arising from tensors have been defined
and explored (Byrne-Cotardo).
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S is for Spreads

Given a semifield with multiplication ◦, we can define certain
n-dimensional Fq-subspaces of F2

qn , which we can identify with
F2n

q :

Sy := {(x , y ◦ x) : x ∈ Fqn}; S∞ := {(0, x) : x ∈ Fqn}

The set
D(S) = {Sy : y ∈ Fqn ∪ {∞}}

forms a spread of F2n
q ; every nonzero vector is contained

in precisely one element of D(S).
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S is for Spreads

I Spreads arising from semifields are called semifield
spreads.

I They are characterised by the following property: the
subgroup of GL(2n,q) fixing the spread setwise, and fixing
one element of the spread elementwise, acts transitively
on the rest of the spread.

I This special element S∞ is called the shears element.
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S is for Spreads

I If every element of D(S) is totally isotropic with respect to a
nonsingular symplectic form, the spread is called
symplectic.

I This corresponds (indirectly!) to the algebraic notion of
commutativity.

I Kantor used the spread approach to construct a large
class of commutative semifields, showing that the number
of equivalence classes is exponential for q even.
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S is for Spreads

Let D be any collection of subspaces of a vector space.

A subspace U is (D,h)-scattered if dim(U ∩ S) ≤ h for all
h ∈ D.

I First studied by Blokhuis-Lavrauw in the case h = 1.
I Closely related to evasive subspaces.

(Bartoli-Csajbok-Marino-Trombetti) (Gruica-Ravagnani-
JS-Zullo)

If D is any spread of n-dimensional spaces in V (mn,q),
then dim(U) ≤ n(m − 1) + h − 1.

If D is a Desarguesian spread, then dim(U) ≤ hmn
h+1 .
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S is for Spreads
And M is for Matrices

Let D be any collection of subspaces of a vector space.

A subspace U is (D,h)-scattered if dim(U ∩ S) ≤ h for all
h ∈ D.

The following are equivalent:
I There exists a (D(S),h)-scattered subspace of dimension

n meeting S∞ trivially.
I The covering radius of C(S) is at least n − h.

The following are equivalent:
I There exists a (D(S),h)-scattered subspace of dimension

n meeting S∞ non-trivially.
I The covering radius of C(S)−1 is at least n − h.
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S is for Spreads

Thus we have two new isotopy invariants for semifields arising
from the spread representation; the smallest h for which there
exists a (D,h)-scattered subspace (meeting S∞ trivially or not).

Gruica-Ravagnani-JS-Zullo

For any spread D there exists a (D, b
√

n + 1c)-scattered
subspace.

Thus the minimum such h could in theory range between 1 and
b
√

n + 1c.

Question

What range of values actually occur? Can we construct
or classify extremal cases?
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S is for Spreads

When q = 2, we further have that a (D(S),1)-scattered
subspace of dimension n exists if and only if the projective
plane π(S) possesses a translation hyperoval.

These have been shown to exist only in a small number of
cases; e.g. Knuth’s binary semifields (Durante-Trombetti-Zhou).
Cherowitzo conjectured that they exist for all spreads.

Allen-JS (in preparation)

The spread of V (12,2) defined by the generalised twisted
field of order 26 with nucleus of order 22 does not possess
any (D,1)-scattered subspaces of dimension 6.

This disproves Cherowitzo’s conjecture, and shows that this
invariant is non-trivial.
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MATHS is for Semifields

Theorem (Albert/Andre/Maduram/Knuth)

Let S1, S2 be two semifields. The following are equivalent:

I M: The matrix subspaces C(Si) are equivalent∗;
I A: The algebras Si are isotopic;
I T: The tensors T (S1) are equivalent∗;
I H: The projective planes π(Si) are isomorphic;
I S: The spreads S(Si) are equivalent.

Although the classification problem is equivalent in each
setting, each one suggests different interesting classes of
semifields that are worthy of further study!
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