approach to determine an optimal 2-dimensional flow on a graph

Joint work with Davide Mattiolo, Jozef Rajník and Gloria Tabarelli

Giuseppe Mazzuoccolo

University of Verona (Italy)

Finite Geometries 2022-Irsee (August 29th - September 2nd)

Flows

- G - Simple graph

Flows
$\left(\mathbb{Z}_{6},+\right)$

- G - Simple graph
- 「 - Abelian group

Flows

$\left(\mathbb{Z}_{6},+\right)$

- G - Simple graph
- 「 - Abelian group
- O assigns to each edge an orientation

Flows

$$
\left(\mathbb{Z}_{6},+\right)
$$

- G - Simple graph
- 「 - Abelian group
- O assigns to each edge an orientation
- φ assigns to each edge a value from 「

Flows

$$
\left(\mathbb{Z}_{6},+\right)
$$

- G - Simple graph
- 「 - Abelian group
- O assigns to each edge an orientation
- φ assigns to each edge a value from 「
- Kirchhoff's law satisfied at each vertex

Flows

\mathbb{Z}_{6}－flow

－G－Simple graph
－「－Abelian group
－O assigns to each edge an orientation
－φ assigns to each edge a value from 「
－Kirchhoff＇s law satisfied at
 each vertex
－「－flow (O, φ) on G

Nowhere-zero flows

- Nowhere-zero k-flow is a \mathbb{Z}-flow with values from $\{ \pm 1, \pm 2, \ldots, \pm(k-1)\}$

Example of a nowhere-zero 4-flow

Nowhere-zero flows

- Nowhere-zero k-flow is a \mathbb{Z}-flow with values from $\{ \pm 1, \pm 2, \ldots, \pm(k-1)\}$

Example of a nowhere-zero 4-flow

Nowhere-zero flows

- Nowhere-zero k-flow is a \mathbb{Z}-flow with values from $\{ \pm 1, \pm 2, \ldots, \pm(k-1)\}$

Example of a nowhere-zero 3-flow

Nowhere-zero flows

- Nowhere-zero k-flow is a \mathbb{Z}-flow with values from $\{ \pm 1, \pm 2, \ldots, \pm(k-1)\}$

Example of a nowhere-zero 3-flow

Nowhere-zero flows

- Nowhere-zero k-flow is a \mathbb{Z}-flow with values from $\{ \pm 1, \pm 2, \ldots, \pm(k-1)\}$
- Circular nowhere-zero r-flow is an \mathbb{R}-flow with values from $[1, r-1]$

Nowhere-zero flows

- Nowhere-zero k-flow is a \mathbb{Z}-flow with values from $\{ \pm 1, \pm 2, \ldots, \pm(k-1)\}$
- Circular nowhere-zero r-flow is an \mathbb{R}-flow with values from $[1, r-1]$

5-Flow Conjecture (Tutte, 1954)

Every bridgeless graph admits a nowhere-zero 5-flow.

Nowhere-zero flows

- Nowhere-zero k-flow is a \mathbb{Z}-flow with values from $\{ \pm 1, \pm 2, \ldots, \pm(k-1)\}$
- Circular nowhere-zero r-flow is an \mathbb{R}-flow with values from $[1, r-1]$

5-Flow Conjecture (Tutte, 1954)

Every bridgeless graph admits a nowhere-zero 5-flow.

Remark

Constant 5 cannot be improved both for \mathbb{Z}-flows and for \mathbb{R}-flows.

Multidimensional flows

Definition

A d-dimensional nowhere-zero r-flow $((r, d)$-NZF) is an \mathbb{R}^{d}-flow using only vectors with Euclidean norm from $[1, r-1]$

Multidimensional flows

Definition

A d-dimensional nowhere-zero r-flow $((r, d)$-NZF) is an \mathbb{R}^{d}-flow using only vectors with Euclidean norm from $[1, r-1]$

- $d=1$: circular nowhere-zero r-flows

Multidimensional flows

Definition

A d-dimensional nowhere-zero r-flow $((r, d)$-NZF) is an \mathbb{R}^{d}-flow using only vectors with Euclidean norm from $[1, r-1]$

- $d=1$: circular nowhere-zero r-flows
- $d=2$: complex flows [Thomassen, 2014]

Multidimensional flows

Definition

A d-dimensional nowhere-zero r-flow $((r, d)$-NZF) is an \mathbb{R}^{d}-flow using only vectors with Euclidean norm from $[1, r-1]$

- $d=1$: circular nowhere-zero r-flows
- $d=2$: complex flows [Thomassen, 2014]
- $r=2$: Unit vector flows [Wang et. al, Thomassen]

Multidimensional flows: example in \mathbb{R}^{2}

A $(1+\sqrt{2}, 2)$-flow on K_{4}

Multidimensional flows: example in \mathbb{R}^{2}

Is $1+\sqrt{2}$ the best possible value for K_{4} ?

Multidimensional flows: example in \mathbb{R}^{2}

Is $1+\sqrt{2}$ the best possible value for K_{4} ? YES, but we have not a trivial proof

Multidimensional flow number

Definition

The d-dimensional flow number of a bridgeless graph G is

$$
\phi_{d}(G)=\inf \{r \in \mathbb{R} \mid G \text { has }(r, d)-N Z F\}
$$

Multidimensional flow number

Definition

The d-dimensional flow number of a bridgeless graph G is

$$
\phi_{d}(G)=\inf \{r \in \mathbb{R} \mid G \text { has }(r, d) \text {-NZF }\}
$$

Actually, it is a minimum:

- (r, d)-NZF \rightarrow an element of $x \in \mathbb{R}^{d \cdot|E(G)|}$

Multidimensional flow number

Definition

The d-dimensional flow number of a bridgeless graph G is

$$
\phi_{d}(G)=\inf \{r \in \mathbb{R} \mid G \text { has }(r, d) \text {-NZF }\}
$$

Actually, it is a minimum:

- (r, d)-NZF \rightarrow an element of $x \in \mathbb{R}^{d \cdot|E(G)|}$
- all entries of x from $[1, c] \rightarrow$ compact set

Multidimensional flow number

Definition

The d-dimensional flow number of a bridgeless graph G is

$$
\phi_{d}(G)=\inf \{r \in \mathbb{R} \mid G \text { has }(r, d) \text {-NZF }\}
$$

Actually, it is a minimum:

- (r, d)-NZF \rightarrow an element of $x \in \mathbb{R}^{d \cdot|E(G)|}$
- all entries of x from $[1, c] \rightarrow$ compact set
- continuous function $x \mapsto$ maximum norm

Multidimensional flows: an example in \mathbb{R}^{3}

$(2,3)$-NZF of the Petersen graph $P\left(\phi_{3}(P)=2\right)$.

Multidimensional flows: an example in \mathbb{R}^{3}

$(2,3)$-NZF of the Petersen graph $P\left(\phi_{3}(P)=2\right)$.

- $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, x_{1}, x_{2}$ are unit vectors in \mathbb{R}^{3} $\left(z_{1}+z_{2}+z_{3}+z_{4}+z_{5}=0\right)$

Multidimensional flows: an example in \mathbb{R}^{3}

$(2,3)$-NZF of the Petersen graph $P\left(\phi_{3}(P)=2\right)$.

- $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, x_{1}, x_{2}$ are unit vectors in \mathbb{R}^{3}
$\left(z_{1}+z_{2}+z_{3}+z_{4}+z_{5}=0\right)$
- $x_{2}+z_{3}, x_{2}+z_{3}+z_{4}, x_{2}+z_{3}+z_{4}+z_{5}, x_{2}+z_{3}+z_{4}+z_{5}+z_{1}$ are unit vectors in \mathbb{R}^{3}

Multidimensional flows: an example in \mathbb{R}^{3}

$(2,3)$-NZF of the Petersen graph $P\left(\phi_{3}(P)=2\right)$.

- $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, x_{1}, x_{2}$ are unit vectors in \mathbb{R}^{3}
$\left(z_{1}+z_{2}+z_{3}+z_{4}+z_{5}=0\right)$
- $x_{2}+z_{3}, x_{2}+z_{3}+z_{4}, x_{2}+z_{3}+z_{4}+z_{5}, x_{2}+z_{3}+z_{4}+z_{5}+z_{1}$ are unit vectors in \mathbb{R}^{3}
- $x_{1}+z_{5}, x_{1}+z_{5}+z_{2}, x_{1}+z_{5}+z_{2}+z_{4}, x_{1}+z_{5}+z_{2}+z_{4}+z_{1}$ are unit vectors in \mathbb{R}^{3}

Multidimensional flows: an example in \mathbb{R}^{3}

$(2,3)$-NZF of the Petersen graph $P\left(\phi_{3}(P)=2\right)$.

- $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, x_{1}, x_{2}$ are unit vectors in \mathbb{R}^{3} $\left(z_{1}+z_{2}+z_{3}+z_{4}+z_{5}=0\right)$
- $x_{2}+z_{3}, x_{2}+z_{3}+z_{4}, x_{2}+z_{3}+z_{4}+z_{5}, x_{2}+z_{3}+z_{4}+z_{5}+z_{1}$ are unit vectors in \mathbb{R}^{3}
- $x_{1}+z_{5}, x_{1}+z_{5}+z_{2}, x_{1}+z_{5}+z_{2}+z_{4}, x_{1}+z_{5}+z_{2}+z_{4}+z_{1}$ are unit vectors in \mathbb{R}^{3}

Multidimensional flow numbers

For every bridgeless graph G :

- $\phi_{d}(G)$ nonincreasing in d

Multidimensional flow numbers

For every bridgeless graph G :

- $\phi_{d}(G)$ nonincreasing in d
- $\phi_{1}(G) \leq 6$ [Seymour, 1981]

Multidimensional flow numbers

For every bridgeless graph G :

- $\phi_{d}(G)$ nonincreasing in d
- $\phi_{1}(G) \leq 6$ [Seymour, 1981]
- $\phi_{7}(G)=2$ (observed by Thomassen [2014])

Multidimensional flow numbers

Relation to other conjectures:

Multidimensional flow numbers

Relation to other conjectures:
Conjecture (Berge-Fulkerson 1971)
Each bridgeless cubic graph G has 6 perfect matchings such that every edge of G is contained in exactly two of them. Or, equivalently, G has a 6 -cycle 4 -cover.

Multidimensional flow numbers

Relation to other conjectures:
Conjecture (Berge-Fulkerson 1971)
Each bridgeless cubic graph G has 6 perfect matchings such that every edge of G is contained in exactly two of them. Or, equivalently, G has a 6 -cycle 4 -cover.
$B F$ Conjecture $\Rightarrow \phi_{6}(G)=2$

Multidimensional flow numbers

Relation to other conjectures:
$B F$ Conjecture $\Rightarrow \phi_{6}(G)=2$
Conjecture (5-Cycle Double Cover, Seymour/Szekeres 1979)
Each bridgeless graph has 5-cycle 2-cover.

Multidimensional flow numbers

Relation to other conjectures:
$B F$ Conjecture $\Rightarrow \phi_{6}(G)=2$
Conjecture (5-Cycle Double Cover, Seymour/Szekeres 1979)
Each bridgeless graph has 5-cycle 2-cover.
$5-$ CDC Conjecture $\Rightarrow \phi_{5}(G)=2$

Multidimensional flow numbers

Conjectures:

Multidimensional flow numbers

Conjectures:

- $\phi_{1}(G) \leq 5$ [Tutte, 1954]

Multidimensional flow numbers

Conjectures:

- $\phi_{1}(G) \leq 5$ [Tutte, 1954]
- $\phi_{d}(G)=2, \forall d \geq 3$ [Jain, 2007]

Multidimensional flow numbers

Conjectures:

- $\phi_{1}(G) \leq 5$ [Tutte, 1954]
- $\phi_{d}(G)=2, \forall d \geq 3$ [Jain, 2007]
- $\phi_{2}(G) \leq ? ? ?$

Multidimensional flow numbers

Conjectures:

- $\phi_{1}(G) \leq 5$ [Tutte, 1954]
- $\phi_{d}(G)=2, \forall d \geq 3$ [Jain, 2007]
- $\phi_{2}(G) \leq$??? This is our starting point!

Multi -dimensional flows

Multi -dimensional flows

Theorem [Thomassen, 2014]

For a graph G, the following statements are equivalent
(i) G has a $(3,1)-N Z F$,
(ii) G has a $(2,2)-N Z F$,
(iii) G has a (2,2)-NZF with values from $\left\{z \in \mathbb{C} \mid z^{3}=1\right\}$.

Multi -dimensional flows

Theorem [Thomassen, 2014]

For a graph G, the following statements are equivalent
(i) G has a $(3,1)-N Z F$,
(ii) G has a $(2,2)-N Z F$,
(iii) G has a (2,2)-NZF with values from $\left\{z \in \mathbb{C} \mid z^{3}=1\right\}$.

Moreover, if G is cubic, then all of them are also equivalent to (iv) G is bipartite.

Multi -dimensional flows

Theorem [Thomassen, 2014]

For a graph G, the following statements are equivalent
(i) G has a $(3,1)-N Z F$,
(ii) G has a $(2,2)-N Z F$,
(iii) G has a (2,2)-NZF with values from $\left\{z \in \mathbb{C} \mid z^{3}=1\right\}$.

Moreover, if G is cubic, then all of them are also equivalent to (iv) G is bipartite.

For this kind of questions an answer for cubic graphs implies an answer for the general case!

Looking for an upper-bound for ϕ_{2}

Proposition (D.Mattiolo, G.M., J.Rajnik, G.Tabarelli, 2021)
For each 3-edge-colourable cubic graph G,

$$
\phi_{2}(G) \leq 1+\sqrt{2} .
$$

Looking for an upper-bound for ϕ_{2}

Proposition (D.Mattiolo, G.M., J.Rajnik, G.Tabarelli, 2021)
For each 3-edge-colourable cubic graph G,

$$
\phi_{2}(G) \leq 1+\sqrt{2} .
$$

BRIDGELESS CUBIC GRAPHS

Looking for an upper-bound for ϕ_{2}

We succeeded to prove a possible general upper bound for ϕ_{2} (spoiler: we strongly suspect it is not optimal!).

Looking for an upper-bound for ϕ_{2}

We succeeded to prove a possible general upper bound for ϕ_{2} (spoiler: we strongly suspect it is not optimal!).

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)
For every bridgeless graph G,

$$
\phi_{2}(G) \leq 1+\sqrt{5} .
$$

Looking for an upper-bound for ϕ_{2}

We succeeded to prove a possible general upper bound for ϕ_{2} (spoiler: we strongly suspect it is not optimal!).

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G,

$$
\phi_{2}(G) \leq 1+\sqrt{5} .
$$

Proof:

- Seymour 6-flow theorem $\left(\phi_{1}(G) \leq 6\right)$

Looking for an upper-bound for ϕ_{2}

We succeeded to prove a possible general upper bound for ϕ_{2} (spoiler: we strongly suspect it is not optimal!).

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G,

$$
\phi_{2}(G) \leq 1+\sqrt{5} .
$$

Proof:

- Seymour 6-flow theorem ($\left.\phi_{1}(G) \leq 6\right)$
- G has a 2-flow φ_{2} and a 3-flow φ_{3} (zeros allowed)
- $\forall e \in E(G): \varphi_{2}(e) \neq 0$ or $\varphi_{3}(e) \neq 0$

Looking for an upper-bound for ϕ_{2}

We succeeded to prove a possible general upper bound for ϕ_{2} (spoiler: we strongly suspect it is not optimal!).

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G,

$$
\phi_{2}(G) \leq 1+\sqrt{5} .
$$

Proof:

- Seymour 6-flow theorem ($\left.\phi_{1}(G) \leq 6\right)$
- G has a 2-flow φ_{2} and a 3-flow φ_{3} (zeros allowed)
- $\forall e \in E(G): \varphi_{2}(e) \neq 0$ or $\varphi_{3}(e) \neq 0$
- $\varphi(e)=\left(\varphi_{2}(e), \varphi_{3}(e)\right)$

Looking for an upper-bound for ϕ_{2}

We succeeded to prove a possible general upper bound for ϕ_{2} (spoiler: we strongly suspect it is not optimal!!).

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G,

$$
\phi_{2}(G) \leq 1+\sqrt{5} .
$$

Proof:

- Seymour 6-flow theorem $\left(\phi_{1}(G) \leq 6\right)$
- G has a 2-flow φ_{2} and a 3-flow φ_{3} (zeros allowed)
- $\forall e \in E(G): \varphi_{2}(e) \neq 0$ or $\varphi_{3}(e) \neq 0$
- $\varphi(e)=\left(\varphi_{2}(e), \varphi_{3}(e)\right)$
- $1 \leq\|\varphi(e)\| \leq \sqrt{1^{2}+2^{2}}=\sqrt{5}$

Looking for a upper-bound for ϕ_{2}

Theorem (Mattiolo, M., Rajnik, Tabarelli)
If G has an oriented k-cycle double cover, then

- $\phi_{2}(G)=2$, if $k=3$;
- $\phi_{2}(G) \leq 1+\sqrt{2}$, if $k=4$;
- $\phi_{2}(G) \leq \Phi^{2}$, if $k=5$. (where $\Phi=\frac{1+\sqrt{5}}{2}$)

Looking for a upper-bound for ϕ_{2}

Theorem (Mattiolo, M., Rajnik, Tabarelli)

If G has an oriented k-cycle double cover, then

- $\phi_{2}(G)=2$, if $k=3$;
- $\phi_{2}(G) \leq 1+\sqrt{2}$, if $k=4$;
- $\phi_{2}(G) \leq \Phi^{2}$, if $k=5$. (where $\Phi=\frac{1+\sqrt{5}}{2}$)
- The proof is based on finding a set of k points in the complex plane such that the ratio of maximum distance to minimum distance is the smallest possible.

Looking for a
 upper-bound for ϕ_{2}

Theorem (Mattiolo, M., Rajnik, Tabarelli)

If G has an oriented k-cycle double cover, then

- $\phi_{2}(G)=2$, if $k=3$;
- $\phi_{2}(G) \leq 1+\sqrt{2}$, if $k=4$;
- $\phi_{2}(G) \leq \Phi^{2}$, if $k=5$. (where $\Phi=\frac{1+\sqrt{5}}{2}$)
- The proof is based on finding a set of k points in the complex plane such that the ratio of maximum distance to minimum distance is the smallest possible.
- For $k=3,4,5$ the best possible configurations are proved to be the vertices of a regular k-gon. [Bateman, Erdös (1951)]

Looking for a upper-bound for ϕ_{2}

Oriented 5-CDC Conjecture (Jaeger, 1988)

Each bridgeless graph has a collection of five oriented cycles such that each edge is contained in exactly two of them, once in each direction.

Looking for a upper-bound for ϕ_{2}

Oriented 5-CDC Conjecture (Jaeger, 1988)

Each bridgeless graph has a collection of five oriented cycles such that each edge is contained in exactly two of them, once in each direction.

Corollary (Mattiolo, M., Rajnik, Tabarelli, 2021)

If the oriented 5 -CDC conjecture holds true, then $\phi_{2}(G) \leq \Phi^{2} \approx 2.618$ for every bridgeless graph G.

Looking for a graph with large 2-dimensional flow number. $1^{\text {st }}$ attempt: Petersen graph

Looking for a graph with large 2-dimensional flow number.

 $1^{\text {st }}$ attempt: Petersen graph

Looking for a graph with large 2-dimensional flow number.

 $1^{\text {st }}$ attempt: Petersen graph

Looking for a graph with large 2-dimensional flow number.

 $1^{\text {st }}$ attempt: Petersen graph

Looking for a graph with large 2-dimensional flow number.

 $1^{\text {st }}$ attempt: Petersen graph

An oriented 5-CDC of the Petersen graph

Looking for a graph with large 2-dimensional flow number. $1^{\text {st }}$ attempt: Petersen graph

Looking for a graph with large 2-dimensional flow number.

 $1^{\text {st }}$ attempt: Petersen graph

A 5-NZF of the Petersen graph

Looking for a graph with large 2-dimensional flow number.

 $1^{\text {st }}$ attempt: Petersen graph

A 5-NZF of the Petersen graph It is well-known that $\phi_{1}(P)=5$

Looking for a graph with large 2-dimensional flow number.

 $1^{\text {st }}$ attempt: Petersen graph

Looking for a graph with large 2-dimensional flow number.

 $1^{\text {st }}$ attempt: Petersen graph

A $\left(\Phi^{2}, 2\right)$-NZF of the Petersen graph (Recall $\left.1+\Phi=\phi^{2}\right)$

Looking for a graph with large 2-dimensional flow number:

 a better 2-dimensional flow on the Petersen graphWe use a different geometric construction to improve previous result.

Best upper bound known so far
$\phi_{2}(P) \leq 1+\sqrt{7 / 3} \approx 2.5275$
$\left(\Phi^{2} \approx 2.6180\right)$

Flow triangulations

- Triangle: set of points (sides and interior)

Flow triangulations

- Triangle: set of points (sides and interior)
- Attachable sides:

Flow triangulations

- Triangle: set of points (sides and interior)
- Attachable sides:
- parallel
- same length
- triangles on opposite sides

Flow triangulations

- Triangle: set of points (sides and interior)
- Attachable sides:
- parallel
- same length
- triangles on opposite sides

Flow triangulations

An r-flow triangulation of a graph G is a collection of triangles $T_{v}, \forall v \in V(G):$

- each edge incident with v corresponds to a unique side of T_{v}

Flow triangulations

An r-flow triangulation of a graph G is a collection of triangles $T_{v}, \forall v \in V(G):$

- each edge incident with v corresponds to a unique side of T_{v}

Flow triangulations

An r-flow triangulation of a graph G is a collection of triangles $T_{v}, \forall v \in V(G)$:

- each edge incident with v corresponds to a unique side of T_{v}
- $\forall u v \in E(G)$: corresponding sides of T_{u} and T_{v} are attachable

Flow triangulations

An r-flow triangulation of a graph G is a collection of triangles $T_{v}, \forall v \in V(G):$

- each edge incident with v corresponds to a unique side of T_{v}
- $\forall u v \in E(G)$: corresponding sides of T_{u} and T_{v} are attachable

Flow triangulations

An r-flow triangulation of a graph G is a collection of triangles $T_{v}, \forall v \in V(G):$

- each edge incident with v corresponds to a unique side of T_{v}
- $\forall u v \in E(G)$: corresponding sides of T_{u} and T_{v} are attachable
- side lengths from $[1, r-1]$

Examples of flow triangulations

Flow triangulations of K_{4} and $K_{3,3}$

Flow triangulations

Proposition (Mattiolo, M., Rajnik, Tabarelli)

A bridgeless cubic graph G has an r-flow triangulation if and only if G has an $(r, 2)$-flow.

$\phi_{2}(P) \leq 1+\sqrt{7 / 3} \approx 2.5275$

Nice flow triangulations

What triangulation is nice

- non-intersecting triangles

Nice flow triangulations

What triangulation is nice

- non-intersecting triangles
- sides coincides only if they correspond to an edge

Nice flow triangulations

What triangulation is nice

- non-intersecting triangles
- sides coincides only if they correspond to an edge
- such edges induce a connected spanning subgraph of G

Nice flow triangulations

What triangulation is nice

- non-intersecting triangles
- sides coincides only if they correspond to an edge
- such edges induce a connected spanning subgraph of G

Problem

Is a nice r-flow triangulation possible for every $(r, 2)$-flow of G ?

Nice flow triangulations

What triangulation is nice

- non-intersecting triangles
- sides coincides only if they correspond to an edge
- such edges induce a connected spanning subgraph of G

Problem

Is a nice r-flow triangulation possible for every $(r, 2)$-flow of G ?

- What if G is bipartite?

Once again: General upper bound for $\phi_{2}(G)$?

- New possible conjecture: $\phi_{2}(G) \leq 1+\sqrt{7 / 3} \approx 2.5275$ for all G ?

Once again: General upper bound for $\phi_{2}(G)$?

- New possible conjecture: $\phi_{2}(G) \leq 1+\sqrt{7 / 3} \approx 2.5275$ for all G ?
- Apparently not true
- It seems that $\phi_{2}\left(P_{\Delta}\right)>\phi_{2}(P)$

Once again: General upper bound for $\phi_{2}(G)$?

- New possible conjecture: $\phi_{2}(G) \leq 1+\sqrt{7 / 3} \approx 2.5275$ for all G ?
- Apparently not true
- It seems that $\phi_{2}\left(P_{\Delta}\right)>\phi_{2}(P)$
- Computer assisted: $\phi_{2}\left(P_{\Delta}\right) \leq 2.590296429$

Once again: General upper bound for $\phi_{2}(G)$?

- New possible conjecture: $\phi_{2}(G) \leq 1+\sqrt{7 / 3} \approx 2.5275$ for all G ?
- Apparently not true
- It seems that $\phi_{2}\left(P_{\Delta}\right)>\phi_{2}(P)$
- Computer assisted: $\phi_{2}\left(P_{\Delta}\right) \leq 2.590296429$
- We conjecture: $\phi_{2}(G) \leq \Phi^{2} \approx 2.6180$

1-dimensional flows and 3-edge-colourings

1-dimensional flow number of cubic graphs

If G is a cubic graph, then on of the following holds:

- $\phi_{1}(G)=3$ and G is bipartite
- $\phi_{1}(G)=4$ and G is 3-edge-colourable (non-bipartite)
- $\phi_{1}(G)>4$ and G is not 3-edge-colourable

1-dimensional flows and 3-edge-colourings

1-dimensional flow number of cubic graphs

If G is a cubic graph, then on of the following holds:

- $\phi_{1}(G)=3$ and G is bipartite
- $\phi_{1}(G)=4$ and G is 3-edge-colourable (non-bipartite)
- $\phi_{1}(G)>4$ and G is not 3-edge-colourable

BRIDGELESS CUBIC GRAPHS

2-dimensional flows and 3-edge-colourings

No such classification for ϕ_{2} :

- $\phi_{2}\left(J_{5}\right) \leq 2.387893647<1+\sqrt{2}=\phi_{2}\left(K_{4}\right)$

A general lower bound for $\phi_{2}(G)$?

Theorem - Mattiolo, M., Rajnik, Tabarelli 2022

Let G be a cubic graph and let g be its odd-girth. Then,

$$
\phi_{2}(G) \geq \begin{cases}1+2 \sin \left(\frac{\pi}{6} \cdot \frac{g}{g-1}\right) & \text { if } g \equiv 1,3 \bmod 6 \\ 1+2 \sin \left(\frac{\pi}{6} \cdot \frac{g+1}{g}\right) & \text { if } g \equiv 5 \bmod 6\end{cases}
$$

A general lower bound for $\phi_{2}(G)$?

$$
\phi_{2}(G) \geq \phi_{2}\left(W_{g}\right)
$$

Theorem - Mattiolo, M., Rajnik, Tabarelli 2022

Let W_{g} be a wheel of order $g+1$. Then,

$$
\phi_{2}\left(W_{g}\right)= \begin{cases}2 & \text { if } g \text { even } \\ 1+2 \sin \left(\frac{\pi}{6} \cdot \frac{g}{g-1}\right) & \text { if } g \equiv 1,3 \bmod 6 \\ 1+2 \sin \left(\frac{\pi}{6} \cdot \frac{g+1}{g}\right) & \text { if } g \equiv 5 \bmod 6\end{cases}
$$

Proof (more than 15 pages): the following three types of configurations are optimal

$n=11$

$n=7$

Open Problems

Open Problems

$$
\text { - } \phi_{2}(P)=1+\sqrt{7 / 3} \text { ? }
$$

Open Problems

- $\phi_{2}(P)=1+\sqrt{7 / 3}$?
- Can every $(r, 2)$-NZF be represented as a nice r-flow triangulation for each G (or at least for some specific class)?

Open Problems

- $\phi_{2}(P)=1+\sqrt{7 / 3}$?
- Can every $(r, 2)$-NZF be represented as a nice r-flow triangulation for each G (or at least for some specific class)?
- $\phi_{2}(G) \leq \Phi^{2}$ for every bridgeless graph G ?

Open Problems

- $\phi_{2}(P)=1+\sqrt{7 / 3}$?
- Can every $(r, 2)$-NZF be represented as a nice r-flow triangulation for each G (or at least for some specific class)?
- $\phi_{2}(G) \leq \Phi^{2}$ for every bridgeless graph G ?
- Does a graph G such that $\phi_{2}(G)=\Phi^{2}$ exist?

Thanks for your attention

