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o G — Simple graph

o [ — Abelian group

e O assigns to each edge an
orientation

e (p assigns to each edge a
value from I

e Kirchhoff's law satisfied at
each vertex

o [-flow (O, ¢) on G
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Nowhere-zero flows

o Nowhere-zero k-flow is a Z-flow with values from
{£1,£2,...,£(k—1)}

o Circular nowhere-zero r-flow is an R-flow with values from
[1,r—1]

5-Flow Conjecture (Tutte, 1954)

Every bridgeless graph admits a nowhere-zero 5-flow.

Constant 5 cannot be improved both for Z-flows and for
R-flows.
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Multidimensional flows

Definition

A d-dimensional nowhere-zero r-flow ((r,d)-NZF) is an
R9-flow using only vectors with Euclidean norm from [1, r — 1]

e d = 1: circular nowhere-zero r-flows
o d = 2: complex flows [Thomassen, 2014]
o r = 2: Unit vector flows [Wang et. al, Thomassen]
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Multidimensional flows: example in R?

A (1+ v/2,2)-flow on K,

0,1) (1,0)
¢ = >
Is 1 4+ v/2 the best possible value for K;?
YES, but we have not a trivial proof
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Definition

The d-dimensional flow number of a bridgeless graph G is

¢4(G) =inf{r € R| G has (r, d)-NZF}

Actually, it is a minimum:
o (r,d)-NZF — an element of x € RYIE(C)
o all entries of x from [1, c] — compact set
e continuous function x — maximum norm
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(2,3)-NZF of the Petersen graph P (¢3(P) = 2).

e 71,2, 73, Z4, Z5, X1, X» are unit vectors in R3
(z1+ 20+ 23+ 24 + 25 = 0)

@ X0+ 23,0 +Z3+Zn, X0+ Z3+Z4+Z5, X0 +23+ 24+ 25 + 21
are unit vectors in R3
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Multidimensional flows: an example in R3

(2,3)-NZF of the Petersen graph P (¢3(P) = 2).

e 71,2, 73, Za, Z5, X1, X» are unit vectors in R3
(z1+ 20+ 23+ 24 + 25 = 0)

@ X0+ 23,0 +Z3+Zn, X0+ Z3+Z4+Z5, X0 +23+ 24+ 25 + 21
are unit vectors in R3

0 X1 +Z5, X1 +Zy+20, X1 +Z5+20+Z4, X1+ 25 +20+ 24+ 29
are unit vectors in R3
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Multidimensional flow numbers

For every bridgeless graph G:
o ¢4(G) nonincreasing in d
o ¢1(G) < 6 [Seymour, 1981]
o ¢7(G) = 2 (observed by Thomassen [2014])



Multidimensional flow numbers

Relation to other conjectures:



Multidimensional flow numbers

Relation to other conjectures:

Conjecture (Berge-Fulkerson 1971)

Each bridgeless cubic graph G has 6 perfect matchings such
that every edge of G is contained in exactly two of them. Or,
equivalently, G has a 6-cycle 4-cover.




Multidimensional flow numbers

Relation to other conjectures:

Conjecture (Berge-Fulkerson 1971)

Each bridgeless cubic graph G has 6 perfect matchings such
that every edge of G is contained in exactly two of them. Or,
equivalently, G has a 6-cycle 4-cover.

BF Conjecture = ¢6(G) =2



Multidimensional flow numbers

Relation to other conjectures:
BF Conjecture = ¢6(G) = 2

Conjecture (5-Cycle Double Cover, Seymour/Szekeres 1979)

Each bridgeless graph has 5-cycle 2-cover.




Multidimensional flow numbers

Relation to other conjectures:
BF Conjecture = ¢6(G) = 2

Conjecture (5-Cycle Double Cover, Seymour/Szekeres 1979)
Each bridgeless graph has 5-cycle 2-cover.

5 — CDC Conjecture = ¢5(G) =2
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Multidimensional flow numbers

Conjectures:
o ¢1(G) < 5 [Tutte, 1954]
o ¢q(G) =2,Vd > 3 [Jain, 2007]
o ¢(G) <777 This is our starting point!
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Multt -dimensional flows

Theorem [Thomassen, 2014]

For a graph G, the following statements are equivalent

(i) G has a (3,1)-NZF,

(i) G has a (2,2)-NZF,

(iii) G has a (2,2)-NZF with values from {z € C | 2* = 1}.
Moreover, if G is cubic, then all of them are also equivalent to
(iv) G is bipartite.

For this kind of questions an answer for cubic graphs implies
an answer for the general case!
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Looking for an upper-bound for ¢,

Proposition (D.Mattiolo, G.M., J.Rajnik, G.Tabarelli, 2021)

For each 3-edge-colourable cubic graph G,
$2(G) < 1+ V2.

BRIDGELESS CUBIC GRAPHS

3-EDGE-COLOURABLE: ¢, < 1 +/2

SNARKS ¢, <?7?
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Looking for an upper-bound for ¢,

We succeeded to prove a possible general upper bound for ¢,
(spoiler: we strongly suspect it is not optimall).

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G,
$2(G) <1+ V5.

Proof:
o Seymour 6-flow theorem (¢1(G) < 6)
o G has a 2-flow ¢, and a 3-flow 3 (zeros allowed)
o Ve € E(G): pa(e) # 0 or p3(e) #0
o p(e) = (va(e), p3(e))
1< |lp(e) S VETZ = 5
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Theorem (Mattiolo, M., Rajnik, Tabarelli)

If G has an oriented k-cycle double cover, then
o ¢(G)=2,if k=3
o po(G) < 1+2, if k=4

o 45(G) < @2, if k = 5. (where & = 1£¥5)

e The proof is based on finding a set of k points in the
complex plane such that the ratio of maximum distance to
minimum distance is the smallest possible.

e For k = 3,4,5 the best possible configurations are proved
to be the vertices of a regular k-gon. [Bateman, Erdos
(1951)]
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Looking for a upper-bound for ¢,

Oriented 5-CDC Conjecture (Jaeger, 1988)

Each bridgeless graph has a collection of five oriented cycles
such that each edge is contained in exactly two of them, once
in each direction.

Corollary (Mattiolo, M., Rajnik, Tabarelli, 2021)

If the oriented 5-CDC conjecture holds true, then
$2(G) < 2 ~ 2.618 for every bridgeless graph G.
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A 5-NZF of the Petersen graph
It is well-known that ¢1(P) =5
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Looking for a graph with large 2-dimensional flow number.
1°t attempt: Petersen graph

A (®2 2)-NZF of the Petersen graph (Recall 1 + ¢ = $2)



Looking for a graph with large 2-dimensional flow number:

a better 2-dimensional flow on the Petersen graph

We use a different geometric construction to improve previous
result.

Best upper bound known so far

$2(P) < 14 /7/3 ~ 25275 (92 ~ 2.6180)
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Flow triangulations

An r-flow triangulation of a graph G is a collection of triangles
T, Vv e V(G):
@ each edge incident with v corresponds to a unique side of T,

@ Yuv € E(G): corresponding sides of T, and T, are attachable
@ side lengths from [1,r — 1]




Examples of flow triangulations
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Flow triangulations of K, and Kj 3



Flow triangulations

Proposition (Mattiolo, M., Rajnik, Tabarelli)

A bridgeless cubic graph G has an r-flow triangulation if and
only if G has an (r,2)-flow.




$2(P) < 1+ +/7/3 =~ 2.5275
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Nice flow triangulations

What triangulation is nice
e non-intersecting triangles
e sides coincides only if they correspond to an edge
e such edges induce a connected spanning subgraph of G

Problem

Is a nice r-flow triangulation possible for every (r,2)-flow of
G?
o What if G is bipartite?
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Once again: General upper bound for ¢»(G)?

o New possible conjecture: ¢»(G) <1+ /7/3 = 2.5275 for
all G7

e Apparently not true

o It seems that ¢»(Pa) > ¢2(P)

o Computer assisted: ¢,(Pa) < 2.590296429
o We conjecture: ¢»(G) < $? ~ 2.6180
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1-dimensional flow number of cubic graphs

If G is a cubic graph, then on of the following holds:
o ¢1(G) = 3 and G is bipartite
o ¢1(G) =4 and G is 3-edge-colourable (non-bipartite)
o ¢1(G) > 4 and G is not 3-edge-colourable

BRIDGELESS CUBIC GRAPHS

3-EDGE-COLOURABLE: ¢; <4

SNARKS ¢, >4




2-dimensional flows and 3-edge-colourings

No such classification for ¢,:
o $o(Js) < 2.387893647 < 14 /2 = ¢o(Ky)

1.387803647
-

10 5




A general lower bound for ¢»(G) ?

Theorem - Mattiolo, M., Rajnik, Tabarelli 2022
Let G be a cubic graph and let g be its odd-girth. Then,

62(G) > 1+2sin(g - %) ifg=13 mod6,
AR = 1+2sin(%-%r1) ifg=5 mod 6.




A general lower bound for ¢»(G) ?




Theorem - Mattiolo, M., Rajnik, Tabarelli 2022
Let W; be a wheel of order g + 1. Then,

2 if g even,
$2(We) = ¢ 1+2sin(5 - ;%) ifg=1,3 mod6,
142sin(g - &) ifg=5 mod6.

Proof (more than 15 pages): the following three types of
configurations are optimal

-
el b S
Z PJ;‘\ ——— T},

n="T n=9
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Open Problems

o(bg —1—1-\/ 3?

o Can every (r,2)-NZF be represented as a nice r-flow
triangulation for each G (or at least for some specific
class)?

o ¢(G) < ®? for every bridgeless graph G?
o Does a graph G such that ¢,(G) = ®? exist?



Thanks for your attention



