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Nowhere-zero flows

Nowhere-zero k-flow is a Z-flow with values from
{±1,±2, . . . ,±(k − 1)}

Circular nowhere-zero r -flow is an R-flow with values from
[1, r − 1]

Example of a nowhere-zero 4-flow
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5-Flow Conjecture (Tutte, 1954)

Every bridgeless graph admits a nowhere-zero 5-flow.

Remark

Constant 5 cannot be improved both for Z-flows and for
R-flows.
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Multidimensional flows

Definition

A d-dimensional nowhere-zero r -flow ((r , d)-NZF) is an
Rd -flow using only vectors with Euclidean norm from [1, r − 1]

d = 1: circular nowhere-zero r -flows

d = 2: complex flows [Thomassen, 2014]

r = 2: Unit vector flows [Wang et. al, Thomassen]
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Multidimensional flows: example in R2

A (1 +
√

2, 2)-flow on K4

(1, 1)

(0, 1) (1, 0)

(1, 0) (0, 1)

(1,−1)

Is 1 +
√

2 the best possible value for K4?
YES, but we have not a trivial proof
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Multidimensional flow number

Definition

The d-dimensional flow number of a bridgeless graph G is

φd(G ) = inf{r ∈ R | G has (r , d)-NZF}

Actually, it is a minimum:

(r , d)-NZF → an element of x ∈ Rd ·|E(G)|

all entries of x from [1, c]→ compact set

continuous function x 7→ maximum norm
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Multidimensional flows: an example in R3

(2, 3)-NZF of the Petersen graph P (φ3(P) = 2).

z4 z3

x1

z5 z2

z1

x2

z1, z2, z3, z4, z5, x1, x2 are unit vectors in R3

(z1 + z2 + z3 + z4 + z5 = 0)

x2 + z3, x2 + z3 + z4, x2 + z3 + z4 + z5, x2 + z3 + z4 + z5 + z1

are unit vectors in R3

x1 + z5, x1 + z5 + z2, x1 + z5 + z2 + z4, x1 + z5 + z2 + z4 + z1

are unit vectors in R3
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Multidimensional flow numbers

Relation to other conjectures:

Conjecture (Berge-Fulkerson 1971)

Each bridgeless cubic graph G has 6 perfect matchings such
that every edge of G is contained in exactly two of them. Or,
equivalently, G has a 6-cycle 4-cover.

BF Conjecture ⇒ φ6(G ) = 2

Conjecture (5-Cycle Double Cover, Seymour/Szekeres 1979)

Each bridgeless graph has 5-cycle 2-cover.

5− CDC Conjecture ⇒ φ5(G ) = 2
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Multidimensional flow numbers

Conjectures:

φ1(G ) ≤ 5 [Tutte, 1954]

φd(G ) = 2, ∀d ≥ 3 [Jain, 2007]

φ2(G ) ≤ ??? This is our starting point!



Multi 2-dimensional flows

Theorem [Thomassen, 2014]

For a graph G , the following statements are equivalent

(i) G has a (3, 1)-NZF,

(ii) G has a (2, 2)-NZF,

(iii) G has a (2, 2)-NZF with values from {z ∈ C | z3 = 1}.

Moreover, if G is cubic, then all of them are also equivalent to

(iv) G is bipartite.

For this kind of questions an answer for cubic graphs implies
an answer for the general case!
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Looking for an upper-bound for φ2

Proposition (D.Mattiolo, G.M., J.Rajnik, G.Tabarelli, 2021)

For each 3-edge-colourable cubic graph G ,

φ2(G ) ≤ 1 +
√

2.

3-EDGE-COLOURABLE: φ2 ≤ 1+
√

2

BIPARTITE: φ2 = 2

SNARKS φ2 ≤???

BRIDGELESS CUBIC GRAPHS
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Looking for an upper-bound for φ2

We succeeded to prove a possible general upper bound for φ2

(spoiler: we strongly suspect it is not optimal!).

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G ,

φ2(G ) ≤ 1 +
√

5.

Proof:

Seymour 6-flow theorem (φ1(G ) ≤ 6)

G has a 2-flow ϕ2 and a 3-flow ϕ3 (zeros allowed)

∀e ∈ E (G ) : ϕ2(e) 6= 0 or ϕ3(e) 6= 0

ϕ(e) = (ϕ2(e), ϕ3(e))

1 ≤ ||ϕ(e)|| ≤
√

12 + 22 =
√

5
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Looking for a better upper-bound for φ2

Theorem (Mattiolo, M., Rajnik, Tabarelli)

If G has an oriented k-cycle double cover, then

φ2(G ) = 2, if k = 3;

φ2(G ) ≤ 1 +
√

2, if k = 4;

φ2(G ) ≤ Φ2, if k = 5. (where Φ = 1+
√

5
2

)

The proof is based on finding a set of k points in the
complex plane such that the ratio of maximum distance to
minimum distance is the smallest possible.

For k = 3, 4, 5 the best possible configurations are proved
to be the vertices of a regular k-gon. [Bateman, Erdös
(1951)]
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Looking for a better upper-bound for φ2

Oriented 5-CDC Conjecture (Jaeger, 1988)

Each bridgeless graph has a collection of five oriented cycles
such that each edge is contained in exactly two of them, once
in each direction.

Corollary (Mattiolo, M., Rajnik, Tabarelli, 2021)

If the oriented 5-CDC conjecture holds true, then
φ2(G ) ≤ Φ2 ≈ 2.618 for every bridgeless graph G .
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Looking for a graph with large 2-dimensional flow number.
1st attempt: Petersen graph
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A (Φ2, 2)-NZF of the Petersen graph (Recall 1 + Φ = Φ2)



Looking for a graph with large 2-dimensional flow number:
a better 2-dimensional flow on the Petersen graph

We use a different geometric construction to improve previous
result.

Best upper bound known so far

φ2(P) ≤ 1 +
√

7/3 ≈ 2.5275 (Φ2 ≈ 2.6180)



Flow triangulations

Triangle: set of points (sides and interior)

Attachable sides:

parallel
same length
triangles on opposite sides
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Flow triangulations

An r -flow triangulation of a graph G is a collection of triangles
Tv , ∀v ∈ V (G ):

each edge incident with v corresponds to a unique side of Tv

∀uv ∈ E(G) : corresponding sides of Tu and Tv are attachable

side lengths from [1, r − 1]

v Tv
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Flow triangulations

An r -flow triangulation of a graph G is a collection of triangles
Tv , ∀v ∈ V (G ):

each edge incident with v corresponds to a unique side of Tv

∀uv ∈ E(G) : corresponding sides of Tu and Tv are attachable

side lengths from [1, r − 1]

v Tv

u Tu



Examples of flow triangulations

Flow triangulations of K4 and K3,3



Flow triangulations

Proposition (Mattiolo, M., Rajnik, Tabarelli)

A bridgeless cubic graph G has an r -flow triangulation if and
only if G has an (r , 2)-flow.



φ2(P) ≤ 1 +
√

7/3 ≈ 2.5275



Nice flow triangulations

What triangulation is nice

non-intersecting triangles

sides coincides only if they correspond to an edge

such edges induce a connected spanning subgraph of G

Problem

Is a nice r -flow triangulation possible for every (r , 2)-flow of
G?

What if G is bipartite?
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Once again: General upper bound for φ2(G )?

New possible conjecture: φ2(G ) ≤ 1 +
√

7/3 ≈ 2.5275 for
all G?

Apparently not true

It seems that φ2(P∆) > φ2(P)

Computer assisted: φ2(P∆) ≤ 2.590296429

We conjecture: φ2(G ) ≤ Φ2 ≈ 2.6180
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1-dimensional flows and 3-edge-colourings

1-dimensional flow number of cubic graphs

If G is a cubic graph, then on of the following holds:

φ1(G ) = 3 and G is bipartite

φ1(G ) = 4 and G is 3-edge-colourable (non-bipartite)

φ1(G ) > 4 and G is not 3-edge-colourable

BIPARTITE: φ1 = 3

BRIDGELESS CUBIC GRAPHS

3-EDGE-COLOURABLE: φ1 ≤ 4

SNARKS φ1 > 4
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2-dimensional flows and 3-edge-colourings

No such classification for φ2:

φ2(J5) ≤ 2.387893647 < 1 +
√

2 = φ2(K4)



A general lower bound for φ2(G ) ?

Theorem - Mattiolo, M., Rajnik, Tabarelli 2022

Let G be a cubic graph and let g be its odd-girth. Then,

φ2(G ) ≥
{

1 + 2 sin(π
6
· g
g−1

) if g ≡ 1, 3 mod 6,

1 + 2 sin(π
6
· g+1

g
) if g ≡ 5 mod 6.



A general lower bound for φ2(G ) ?

φ2(G ) ≥ φ2(Wg )



Theorem - Mattiolo, M., Rajnik, Tabarelli 2022

Let Wg be a wheel of order g + 1. Then,

φ2(Wg ) =


2 if g even,

1 + 2 sin(π
6
· g
g−1

) if g ≡ 1, 3 mod 6,

1 + 2 sin(π
6
· g+1

g
) if g ≡ 5 mod 6.

Proof (more than 15 pages): the following three types of
configurations are optimal



Open Problems

φ2(P) = 1 +
√

7/3?

Can every (r , 2)-NZF be represented as a nice r -flow
triangulation for each G (or at least for some specific
class)?

φ2(G ) ≤ Φ2 for every bridgeless graph G?

Does a graph G such that φ2(G ) = Φ2 exist?
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Thanks for your attention


