A geometric approach to determine an optimal 2-dimensional flow on a graph

Joint work with Davide Mattiolo, Jozef Rajník and Gloria Tabarelli

Giuseppe Mazzuoccolo

University of Verona (Italy)

Finite Geometries 2022 - Irsee (August 29th - September 2nd)

• *G* – Simple graph

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $(\mathbb{Z}_6,+)$

- G Simple graph
- Γ Abelian group

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 $(\mathbb{Z}_6,+)$

- G Simple graph
- Γ Abelian group
- *O* assigns to each edge an orientation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $(\mathbb{Z}_6,+)$

- G Simple graph
- Γ Abelian group
- *O* assigns to each edge an orientation
- φ assigns to each edge a value from Γ

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

 $(\mathbb{Z}_6,+)$

- G Simple graph
- Γ Abelian group
- *O* assigns to each edge an orientation
- φ assigns to each edge a value from Γ
- Kirchhoff's law satisfied at each vertex

(日) (四) (日) (日) (日)

 $\mathbb{Z}_6 ext{-flow}$

- G Simple graph
- Γ Abelian group
- *O* assigns to each edge an orientation
- φ assigns to each edge a value from Γ
- Kirchhoff's law satisfied at each vertex
- Γ -flow (O, φ) on G

(日) (四) (日) (日) (日)

• Nowhere-zero k-flow is a \mathbb{Z} -flow with values from $\{\pm 1, \pm 2, \dots, \pm (k-1)\}$

Example of a nowhere-zero 4-flow

• Nowhere-zero k-flow is a \mathbb{Z} -flow with values from $\{\pm 1, \pm 2, \dots, \pm (k-1)\}$

Example of a nowhere-zero 4-flow

• Nowhere-zero k-flow is a \mathbb{Z} -flow with values from $\{\pm 1, \pm 2, \dots, \pm (k-1)\}$

Example of a nowhere-zero 3-flow

• Nowhere-zero k-flow is a \mathbb{Z} -flow with values from $\{\pm 1, \pm 2, \dots, \pm (k-1)\}$

Example of a nowhere-zero 3-flow

- Nowhere-zero k-flow is a \mathbb{Z} -flow with values from $\{\pm 1, \pm 2, \dots, \pm (k-1)\}$
- Circular nowhere-zero r-flow is an \mathbb{R} -flow with values from [1, r 1]

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Nowhere-zero k-flow is a Z-flow with values from $\{\pm 1, \pm 2, \dots, \pm (k-1)\}$
- Circular nowhere-zero r-flow is an \mathbb{R} -flow with values from [1, r 1]

5-Flow Conjecture (Tutte, 1954)

Every bridgeless graph admits a nowhere-zero 5-flow.

- Nowhere-zero k-flow is a \mathbb{Z} -flow with values from $\{\pm 1, \pm 2, \dots, \pm (k-1)\}$
- Circular nowhere-zero r-flow is an \mathbb{R} -flow with values from [1, r 1]

5-Flow Conjecture (Tutte, 1954)

Every bridgeless graph admits a nowhere-zero 5-flow.

Remark

Constant 5 cannot be improved both for $\mathbb{Z}\mbox{-flows}$ and for $\mathbb{R}\mbox{-flows}.$

A *d*-dimensional nowhere-zero *r*-flow ((r, d)-NZF) is an \mathbb{R}^d -flow using only vectors with Euclidean norm from [1, r - 1]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

A *d*-dimensional nowhere-zero *r*-flow ((r, d)-NZF) is an \mathbb{R}^d -flow using only vectors with Euclidean norm from [1, r - 1]

• *d* = 1: circular nowhere-zero *r*-flows

A *d*-dimensional nowhere-zero *r*-flow ((r, d)-NZF) is an \mathbb{R}^d -flow using only vectors with Euclidean norm from [1, r - 1]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- *d* = 1: circular nowhere-zero *r*-flows
- d = 2: complex flows [Thomassen, 2014]

A *d*-dimensional nowhere-zero *r*-flow ((r, d)-NZF) is an \mathbb{R}^d -flow using only vectors with Euclidean norm from [1, r - 1]

- *d* = 1: circular nowhere-zero *r*-flows
- d = 2: complex flows [Thomassen, 2014]
- r = 2: Unit vector flows [Wang et. al, Thomassen]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Is $1 + \sqrt{2}$ the best possible value for K_4 ?

イロト 不得 トイヨト イヨト

э

Is $1 + \sqrt{2}$ the best possible value for K_4 ? YES, but we have not a trivial proof

・ロト ・ 同ト ・ ヨト ・ ヨト

э

The *d*-dimensional flow number of a bridgeless graph G is

 $\phi_d(G) = \inf\{r \in \mathbb{R} \mid G \text{ has } (r, d) \text{-NZF}\}$

The *d*-dimensional flow number of a bridgeless graph G is

 $\phi_d(G) = \inf\{r \in \mathbb{R} \mid G \text{ has } (r, d) \text{-NZF}\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Actually, it is a minimum:

• (r, d)-NZF \rightarrow an element of $x \in \mathbb{R}^{d \cdot |E(G)|}$

The *d*-dimensional flow number of a bridgeless graph G is

 $\phi_d(G) = \inf\{r \in \mathbb{R} \mid G \text{ has } (r, d) \text{-NZF}\}$

Actually, it is a minimum:

- (r, d)-NZF \rightarrow an element of $x \in \mathbb{R}^{d \cdot |E(G)|}$
- all entries of x from $[1, c] \rightarrow$ compact set

The *d*-dimensional flow number of a bridgeless graph G is

 $\phi_d(G) = \inf\{r \in \mathbb{R} \mid G \text{ has } (r, d) \text{-NZF}\}$

Actually, it is a minimum:

- (r, d)-NZF \rightarrow an element of $x \in \mathbb{R}^{d \cdot |E(G)|}$
- all entries of x from $[1, c] \rightarrow$ compact set
- continuous function $x \mapsto$ maximum norm

(2,3)-NZF of the Petersen graph P ($\phi_3(P) = 2$).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(2,3)-NZF of the Petersen graph $P(\phi_3(P) = 2)$.

• $z_1, z_2, z_3, z_4, z_5, x_1, x_2$ are unit vectors in \mathbb{R}^3 $(z_1 + z_2 + z_3 + z_4 + z_5 = 0)$

(2,3)-NZF of the Petersen graph P ($\phi_3(P) = 2$).

- $z_1, z_2, z_3, z_4, z_5, x_1, x_2$ are unit vectors in \mathbb{R}^3 $(z_1 + z_2 + z_3 + z_4 + z_5 = 0)$
- $x_2 + z_3, x_2 + z_3 + z_4, x_2 + z_3 + z_4 + z_5, x_2 + z_3 + z_4 + z_5 + z_1$ are unit vectors in \mathbb{R}^3

(2,3)-NZF of the Petersen graph P ($\phi_3(P) = 2$).

- $z_1, z_2, z_3, z_4, z_5, x_1, x_2$ are unit vectors in \mathbb{R}^3 $(z_1 + z_2 + z_3 + z_4 + z_5 = 0)$
- $x_2 + z_3, x_2 + z_3 + z_4, x_2 + z_3 + z_4 + z_5, x_2 + z_3 + z_4 + z_5 + z_1$ are unit vectors in \mathbb{R}^3
- $x_1 + z_5, x_1 + z_5 + z_2, x_1 + z_5 + z_2 + z_4, x_1 + z_5 + z_2 + z_4 + z_1$ are unit vectors in \mathbb{R}^3

(2,3)-NZF of the Petersen graph P ($\phi_3(P) = 2$).

- $z_1, z_2, z_3, z_4, z_5, x_1, x_2$ are unit vectors in \mathbb{R}^3 $(z_1 + z_2 + z_3 + z_4 + z_5 = 0)$
- $x_2 + z_3, x_2 + z_3 + z_4, x_2 + z_3 + z_4 + z_5, x_2 + z_3 + z_4 + z_5 + z_1$ are unit vectors in \mathbb{R}^3
- $x_1 + z_5, x_1 + z_5 + z_2, x_1 + z_5 + z_2 + z_4, x_1 + z_5 + z_2 + z_4 + z_1$ are unit vectors in \mathbb{R}^3

For every bridgeless graph G:
φ_d(G) nonincreasing in d

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For every bridgeless graph G:

- $\phi_d(G)$ nonincreasing in d
- $\phi_1(G) \le 6$ [Seymour, 1981]

For every bridgeless graph G:

- $\phi_d(G)$ nonincreasing in d
- $\phi_1(G) \leq 6$ [Seymour, 1981]
- $\phi_7(G) = 2$ (observed by Thomassen [2014])

Relation to other conjectures:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Relation to other conjectures:

Conjecture (Berge-Fulkerson 1971)

Each bridgeless cubic graph G has 6 perfect matchings such that every edge of G is contained in exactly two of them. Or, equivalently, G has a 6-cycle 4-cover.

Relation to other conjectures:

Conjecture (Berge-Fulkerson 1971)

Each bridgeless cubic graph G has 6 perfect matchings such that every edge of G is contained in exactly two of them. Or, equivalently, G has a 6-cycle 4-cover.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

BF Conjecture $\Rightarrow \phi_6(G) = 2$
Relation to other conjectures: BF Conjecture $\Rightarrow \phi_6(G) = 2$

Conjecture (5-Cycle Double Cover, Seymour/Szekeres 1979)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Each bridgeless graph has 5-cycle 2-cover.

Relation to other conjectures: BF Conjecture $\Rightarrow \phi_6(G) = 2$

Conjecture (5-Cycle Double Cover, Seymour/Szekeres 1979)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Each bridgeless graph has 5-cycle 2-cover.

$$5 - CDC$$
 Conjecture $\Rightarrow \phi_5(G) = 2$

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

• $\phi_1(G) \leq 5$ [Tutte, 1954]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $\phi_1(G) \le 5$ [Tutte, 1954] • $\phi_d(G) = 2, \forall d \ge 3$ [Jain, 2007]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $\phi_1(G) \le 5$ [Tutte, 1954] • $\phi_d(G) = 2, \forall d \ge 3$ [Jain, 2007] • $\phi_2(G) < ???$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $\phi_1(G) \le 5$ [Tutte, 1954]
- $\phi_d(G) = 2, \forall d \ge 3$ [Jain, 2007]
- $\phi_2(G) \leq ???$ This is our starting point!

Multi 2-dimensional flows

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Theorem [Thomassen, 2014]

For a graph G, the following statements are equivalent

- (i) G has a (3,1)-NZF,
- (ii) G has a (2,2)-NZF,
- (iii) G has a (2,2)-NZF with values from $\{z \in \mathbb{C} \mid z^3 = 1\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem [Thomassen, 2014]

For a graph G, the following statements are equivalent

- (i) G has a (3,1)-NZF,
- (ii) G has a (2,2)-NZF,

(iii) G has a (2,2)-NZF with values from $\{z \in \mathbb{C} \mid z^3 = 1\}$.

Moreover, if G is cubic, then all of them are also equivalent to (iv) G is bipartite.

Theorem [Thomassen, 2014]

For a graph G, the following statements are equivalent

- (i) G has a (3,1)-NZF,
- (ii) G has a (2,2)-NZF,

(iii) G has a (2,2)-NZF with values from $\{z \in \mathbb{C} \mid z^3 = 1\}$.

Moreover, if G is cubic, then all of them are also equivalent to (iv) G is bipartite.

For this kind of questions an answer for cubic graphs implies an answer for the general case! Proposition (D.Mattiolo, G.M., J.Rajnik, G.Tabarelli, 2021)

For each 3-edge-colourable cubic graph G,

 $\phi_2(G) \leq 1 + \sqrt{2}.$

Proposition (D.Mattiolo, G.M., J.Rajnik, G.Tabarelli, 2021)

For each 3-edge-colourable cubic graph G,

$$\phi_2(G) \leq 1 + \sqrt{2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G,

 $\phi_2(G) \leq 1 + \sqrt{5}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G,

 $\phi_2(G)\leq 1+\sqrt{5}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof:

• Seymour 6-flow theorem $(\phi_1(G) \leq 6)$

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G,

$$\phi_2(G)\leq 1+\sqrt{5}.$$

A D N A 目 N A E N A E N A B N A C N

Proof:

- Seymour 6-flow theorem $(\phi_1(G) \leq 6)$
- G has a 2-flow φ_2 and a 3-flow φ_3 (zeros allowed)
- $\forall e \in E(G) \colon \varphi_2(e) \neq 0 \text{ or } \varphi_3(e) \neq 0$

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G,

$$\phi_2(G)\leq 1+\sqrt{5}.$$

A D N A 目 N A E N A E N A B N A C N

Proof:

- Seymour 6-flow theorem $(\phi_1(G) \leq 6)$
- G has a 2-flow φ_2 and a 3-flow φ_3 (zeros allowed)
- $\forall e \in E(G) \colon \varphi_2(e) \neq 0 \text{ or } \varphi_3(e) \neq 0$
- $\varphi(e) = (\varphi_2(e), \varphi_3(e))$

Theorem (Mattiolo, M., Rajnik, Tabarelli, 2021)

For every bridgeless graph G,

$$\phi_2(G)\leq 1+\sqrt{5}.$$

A D N A 目 N A E N A E N A B N A C N

Proof:

- Seymour 6-flow theorem ($\phi_1(G) \leq 6$)
- G has a 2-flow φ_2 and a 3-flow φ_3 (zeros allowed)
- $\forall e \in E(G) \colon \varphi_2(e) \neq 0 \text{ or } \varphi_3(e) \neq 0$
- $\varphi(e) = (\varphi_2(e), \varphi_3(e))$
- $1 \le ||\varphi(e)|| \le \sqrt{1^2 + 2^2} = \sqrt{5}$

Theorem (Mattiolo, M., Rajnik, Tabarelli)

If G has an oriented k-cycle double cover, then

•
$$\phi_2(G) = 2$$
, if $k = 3$;

•
$$\phi_2(G) \le 1 + \sqrt{2}$$
, if $k = 4$;

•
$$\phi_2(G) \leq \Phi^2$$
, if $k = 5$. (where $\Phi = \frac{1+\sqrt{5}}{2}$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Mattiolo, M., Rajnik, Tabarelli)

If G has an oriented k-cycle double cover, then

•
$$\phi_2(G) = 2$$
, if $k = 3$;

•
$$\phi_2(G) \le 1 + \sqrt{2}$$
, if $k = 4$;

•
$$\phi_2(\mathcal{G}) \leq \Phi^2$$
, if $k = 5$. (where $\Phi = rac{1+\sqrt{5}}{2}$)

• The proof is based on finding a set of k points in the complex plane such that the ratio of maximum distance to minimum distance is the smallest possible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Mattiolo, M., Rajnik, Tabarelli)

If G has an oriented k-cycle double cover, then

•
$$\phi_2(G) = 2$$
, if $k = 3$;

•
$$\phi_2(G) \le 1 + \sqrt{2}$$
, if $k = 4$;

•
$$\phi_2(G) \leq \Phi^2$$
, if $k = 5$. (where $\Phi = rac{1+\sqrt{5}}{2}$)

- The proof is based on finding a set of k points in the complex plane such that the ratio of maximum distance to minimum distance is the smallest possible.
- For k = 3, 4, 5 the best possible configurations are proved to be the vertices of a regular k-gon. [Bateman, Erdös (1951)]

Oriented 5-CDC Conjecture (Jaeger, 1988)

Each bridgeless graph has a collection of five oriented cycles such that each edge is contained in exactly two of them, once in each direction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Oriented 5-CDC Conjecture (Jaeger, 1988)

Each bridgeless graph has a collection of five oriented cycles such that each edge is contained in exactly two of them, once in each direction.

(日) (日) (日) (日) (日) (日) (日) (日)

Corollary (Mattiolo, M., Rajnik, Tabarelli, 2021)

If the oriented 5-CDC conjecture holds true, then $\phi_2(G) \leq \Phi^2 \approx 2.618$ for every bridgeless graph G.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲ 三ト ▲ 三ト 三三 - のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

An oriented 5-CDC of the Petersen graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A 5-NZF of the Petersen graph

- 日本 本語 本 本 田 本 王 本 田 本

A 5-NZF of the Petersen graph

It is well-known that $\phi_1(P) = 5$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

A (Φ^2 , 2)-NZF of the Petersen graph (Recall $1 + \Phi = \Phi^2$)

Looking for a graph with large 2-dimensional flow number: a better 2-dimensional flow on the Petersen graph

We use a different geometric construction to improve previous result.

Best upper bound known so far

$$\phi_2(P) \le 1 + \sqrt{7/3} \approx 2.5275$$

$$(\Phi^2 \approx 2.6180)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Flow triangulations

• Triangle: set of points (sides and interior)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙
- Triangle: set of points (sides and interior)
- Attachable sides:

- Triangle: set of points (sides and interior)
- Attachable sides:
 - parallel
 - same length
 - triangles on opposite sides

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

- Triangle: set of points (sides and interior)
- Attachable sides:
 - parallel
 - same length
 - triangles on opposite sides

イロト 不得 トイヨト イヨト ニヨー ろくで

An *r*-flow triangulation of a graph G is a collection of triangles T_v , $\forall v \in V(G)$:

• each edge incident with v corresponds to a unique side of T_v

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An *r*-flow triangulation of a graph G is a collection of triangles T_v , $\forall v \in V(G)$:

• each edge incident with v corresponds to a unique side of T_v

An *r*-flow triangulation of a graph G is a collection of triangles T_v , $\forall v \in V(G)$:

- each edge incident with v corresponds to a unique side of T_v
- $\forall uv \in E(G)$: corresponding sides of T_u and T_v are attachable

An *r*-flow triangulation of a graph G is a collection of triangles T_v , $\forall v \in V(G)$:

- each edge incident with v corresponds to a unique side of T_v
- $\forall uv \in E(G)$: corresponding sides of T_u and T_v are attachable

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An *r*-flow triangulation of a graph G is a collection of triangles T_v , $\forall v \in V(G)$:

- each edge incident with v corresponds to a unique side of T_v
- $\forall uv \in E(G)$: corresponding sides of T_u and T_v are attachable
- side lengths from [1, r 1]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples of flow triangulations

Flow triangulations of K_4 and $K_{3,3}$

ヘロト 人間ト 人間ト 人間ト

ж

Proposition (Mattiolo, M., Rajnik, Tabarelli)

A bridgeless cubic graph G has an r-flow triangulation if and only if G has an (r, 2)-flow.

$\phi_2(P) \le 1 + \sqrt{7/3} \approx 2.5275$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

non-intersecting triangles

- non-intersecting triangles
- sides coincides only if they correspond to an edge

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- non-intersecting triangles
- sides coincides only if they correspond to an edge
- such edges induce a connected spanning subgraph of G

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- non-intersecting triangles
- sides coincides only if they correspond to an edge
- such edges induce a connected spanning subgraph of G

Problem

Is a nice *r*-flow triangulation possible for every (r, 2)-flow of *G*?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- non-intersecting triangles
- sides coincides only if they correspond to an edge
- such edges induce a connected spanning subgraph of G

Problem

Is a nice *r*-flow triangulation possible for every (r, 2)-flow of *G*?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• What if G is bipartite?

Once again: General upper bound for $\phi_2(G)$?

• New possible conjecture: $\phi_2(G) \leq 1 + \sqrt{7/3} \approx 2.5275$ for all G?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Once again: General upper bound for $\phi_2(G)$?

• New possible conjecture: $\phi_2(G) \leq 1 + \sqrt{7/3} \approx 2.5275$ for all G?

- Apparently not true
- It seems that φ₂(P_Δ) > φ₂(P)

Once again: General upper bound for $\phi_2(G)$?

• New possible conjecture: $\phi_2(G) \leq 1 + \sqrt{7/3} \approx 2.5275$ for all G?

- Apparently not true
- It seems that φ₂(P_Δ) > φ₂(P)
- Computer assisted: $\phi_2(P_{\Delta}) \leq 2.590296429$

• New possible conjecture: $\phi_2(G) \le 1 + \sqrt{7/3} \approx 2.5275$ for all G?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Apparently not true
- It seems that φ₂(P_Δ) > φ₂(P)
- Computer assisted: $\phi_2(P_\Delta) \leq 2.590296429$
- We conjecture: $\phi_2(G) \leq \Phi^2 \approx 2.6180$

1-dimensional flows and 3-edge-colourings

1-dimensional flow number of cubic graphs

If G is a cubic graph, then on of the following holds:

- $\phi_1(G) = 3$ and G is bipartite
- $\phi_1(G) = 4$ and G is 3-edge-colourable (non-bipartite)

• $\phi_1(G) > 4$ and G is not 3-edge-colourable

1-dimensional flows and 3-edge-colourings

1-dimensional flow number of cubic graphs

If G is a cubic graph, then on of the following holds:

- $\phi_1(G) = 3$ and G is bipartite
- $\phi_1(G) = 4$ and G is 3-edge-colourable (non-bipartite)
- $\phi_1(G) > 4$ and G is not 3-edge-colourable

2-dimensional flows and 3-edge-colourings

No such classification for ϕ_2 :

• $\phi_2(J_5) \le 2.387893647 < 1 + \sqrt{2} = \phi_2(K_4)$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Theorem - Mattiolo, M., Rajnik, Tabarelli 2022

Let G be a cubic graph and let g be its odd-girth. Then,

$$\phi_2(G) \geq \begin{cases} 1+2\sin(\frac{\pi}{6}\cdot\frac{g}{g-1}) & \text{if } g \equiv 1,3 \mod 6, \\ 1+2\sin(\frac{\pi}{6}\cdot\frac{g+1}{g}) & \text{if } g \equiv 5 \mod 6. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A general lower bound for $\phi_2(G)$?

$\phi_2(G) \geq \phi_2(W_g)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Theorem - Mattiolo, M., Rajnik, Tabarelli 2022

Let W_g be a wheel of order g + 1. Then,

$$\phi_2(W_g) = \begin{cases} 2 & \text{if } g \text{ even,} \\ 1 + 2\sin(\frac{\pi}{6} \cdot \frac{g}{g-1}) & \text{if } g \equiv 1,3 \mod 6, \\ 1 + 2\sin(\frac{\pi}{6} \cdot \frac{g+1}{g}) & \text{if } g \equiv 5 \mod 6. \end{cases}$$

Proof (more than 15 pages): the following three types of configurations are optimal

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Open Problems

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

•
$$\phi_2(P) = 1 + \sqrt{7/3}?$$

•
$$\phi_2(P) = 1 + \sqrt{7/3}?$$

• Can every (r, 2)-NZF be represented as a nice r-flow triangulation for each G (or at least for some specific class)?

•
$$\phi_2(P) = 1 + \sqrt{7/3}?$$

• Can every (r, 2)-NZF be represented as a nice r-flow triangulation for each G (or at least for some specific class)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\phi_2(G) \leq \Phi^2$ for every bridgeless graph G?

•
$$\phi_2(P) = 1 + \sqrt{7/3}?$$

• Can every (r, 2)-NZF be represented as a nice r-flow triangulation for each G (or at least for some specific class)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $\phi_2(G) \leq \Phi^2$ for every bridgeless graph G?
- Does a graph G such that $\phi_2(G) = \Phi^2$ exist?

Thanks for your attention

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @