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Automorphisms of algebraic curves

Curves with many automorphisms ⇒ nice geometric and
combinatorial properties,
sometimes, with some new features impossible in zero
characteristic.
Are some of these curves of interest in applications? (Finite
geometry, Coding theory, etc.)
Typical situation in applications:
the curve is embedded in PG (r , q) as an absolutely irreducible (not
necessarily non-singular) curve, and
application wants basic data of the geometry of the curve,
(degree, singular points, number of points over Fqm , combinatorial
properties of the configuration of those points, intersection
multiplicities with hyperplanes at a point of the curve).
The study of the geometry of a curve (like other objects) may
benefit from its symmetries.
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Symmetries of a curve

The (classical) term symmetry of a curve = projective
automorphism (or linear transformation, or projectivity) of
PG (r , q) which leaves the curve invariant.
Formally, C is a curve of PG (r , q), σ is a projective automorphism
of C ⇔ σ ∈ PGL(r + 1, q) and σ(C) = C.
In Algebraic geometry, an automorphism of an algebraic curve may
also be birational (and not necessarily linear).
Remark
Birational non-linear automorphism does not preserve the shape of
our geometric object, i.e. its combinatorial properties, and
therefore has minor or no interest in Finite geometry.
⇒ motivation for the study of linear automorphism group of a
curve.
For a given curve, the problem of finding its linear automorphisms
is frequently challenging, although the action on points (and/or on
lines, blocks etc.) is bounded by the specific geometric (and
combinatorial) properties of the curve.
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Set up for the study of the linear automorphism group of a
plane algebraic curve.

p ≥ 2:= prime, q a power of p
PGL(3, q):= 3-dimensional projective linear group defined over a
finite field Fq

G := subgroup of PGL(3, q)
Remark PGL(3, q) is a subgroup of PGL(3, qm) for m ≥ 1 ⇒,
G ≤ PGL(3, qm)
It makes sense to investigate G -invariant plane curves C of
PG (2, qm) where m ≥ 1.
Intuitively, if G is large (with respect to q) then the degree of C
must also be large.

How large deg(C) must be at least for a G -invariant plane curve C?
What about the plane curves C hitting the minimum?
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Projective automorphisms of a plane algebraic curve.

Some more notation
d(G ):= the smallest integer that is the degree of a G -invariant
irreducible plane curve C, other than a line.
Remark
d(G ) only depends on the conjugacy class of G in PGL(3, q).
Σ:=Spectrum of the degrees of G -invariant curves.
Main problems

(i) find d(G ) for a given subgroup G of PGL(3, q); (i.e. d(G ) is
the smallest value in Σ)

(ii) find the largest positive integer ε(G ) depending on q s.t.
there is no G -invariant irreducible plane curve of degree
< d(G ) + ε(G ). (i.e. d(G ) + ε(G ) is the second smallest
value in Σ, and ε(G )− 1 is the first gap).

(iii) find all G -invariant irreducible plane curves of degree d(G ).

Essential tool in investigating the above problems: Pencil of plane
algebraic curves
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G -fixed pencil of plane algebraic curves

F1,F2 ∈ Fqm [x1, x2, x3], homogenous polynomials of degree d
Cλ:= (degree d) plane curve of equation F1 + λF2 = 0
C∞ :=the plane curve of equation F2 = 0
pencil Λ := {Cλ|λ ∈ Fqrm , r ≥ 1} ∪ {C∞} = < C0,C∞ >.
Λ is G -fixed pencil if G preserves each curve in Λ.

Theorem Let Λ be a G -fixed pencil of curves of degree d without
common component. Let U be any further G -invariant curve.
Then deg(U) ≥ |G |/d .
Proof |G | is a lower bound on the number of common points of U
with a generically chosen (absolutely irreducible) curve C from Λ.
Comparison of this lower bound with the upper bound derived
from the Bézout theorem yields d · deg(U) ≥ |G |.
Corollary Let |G | > d2. Then d(G ) ≤ d . If deg(C ) = d(G ) then
C is either in Λ, or C is a nonlinear component of a curve in Λ.
Problem Find G -invariant pencils! (in general difficult, no general
method from classical Algebraic geometry)
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Sufficient condition for a pencil to be G -fixed

Lemma If Λ has at least three G -invariant curves, then Λ is a
G -fixed pencil.
Remark Two G -invariant curves in Λ are not enough in general,
unless in particular cases.
One of these cases: Take Γ ≤ GL(3, q) which is the pullback of G
in the natural homomorphism GL(3, q)→ PGL(3, q).
If F1,F2 ∈ Fqm [x1, x2, x3] are both Γ-invariant homogeneous
polynomials of the same degree d , then any linear combination
F = F1 + λF2 is also a Γ-invariant form.
By projectivization, the pencil < F1,F2 > is G -fixed.
Remark It is enough that the rational function F1/F2 is Γ-invariant.
Focus on the following problem:
Problem How to find G -invariant pencils for large subgroups G of
PGL(3, q), in particular for maximal subgroups G of PGL(3, q)?
These G -invariant pencils change depending on which maximal
subgroup is taken for G ; a case-by-case analysis is needed.
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Maximal subgroups of PGL(3, q)

(i) PSL(3, q) for q ≡ 1 (mod 3), having order
1
3(q2 + q + 1)q3(q + 1)(q − 1)2

(ii) the stabilizer of a point of PG (2, q), having order
q3(q + 1)(q − 1)2

(iii) the stabilizer of a line of PG (2, q), having order
q3(q + 1)(q − 1)2

(iv) the stabilizer of an Hermitian curve of PG (2, q) for q = n2,
having order n3(n3 + 1)(n − 1)2

(v) the stabilizer of a triangle of PG (2, q), having order 6(q − 1)2

(vi) the stabilizer of an imaginary triangle (i.e., a triangle in
PG (2, q3) \ PG (2, q)), having order 3(q2 + q + 1)

(vii) for q odd, the stabilizer of an irreducible conic, having order
q(q + 1)(q − 1)

(viii) sporadic subgroups (of order ≤ 2520)
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Case G = PGL(3, q), |G | = (q2 + q + 1)q3(q + 1)(q − 1)2

Example (Borges 2009) m, n:= positive integers, gcd(m, n) = 1
Fn,m:= plane curve in PG (2, q) with affine equation:

(X qn − X )(Y qm − Y )− (Y qn − Y )(X qm − X )

(X q2 − X )(Y q − Y )− (Y q2 − Y )(X q − X )
= 0.

F3,1, named DGZ (Dickson-Guralnick-Zieve) curve,
F3,2, the dual DGZ curve.

< Fq+1
3,1 ,Fq

3,2 > is a PGL(3, q)-fixed pencil.

d(PGL(3, q)) = q3 − q2, d(PGL(3, q)) + ε(PGL(3, q)) = q3 − q,

the DGZ curve is the unique PGL(3, q)-invariant irreducible plane
curve of degree q3 − q2

the dual DGZ curve is an example for
d(PGL(3, q)) + ε(PGL(3, q)) = q3 − q.
For q ≡ 1 (mod 3), PSL(3, q) is a maximal subgroup of PGL(3, q)
of index 3, but the same results hold.
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Case G = AGL(2, q), |G | = q2(q − 1)(q3 − q)

AGL(2, q) is viewed as the subgroup of PGL(3, q) preserving the
line of infinity.
an AGL(2, q)-invariant pencil is:

(X q3 − X )(Y q − Y )− (Y q3 − Y )(X q − X )

(X q2 − X )(Y q − Y )− (Y q2 − Y )(X q − X )
− λ = 0.

d(AGL(2, q)) = q3 − q2, d(AGL(2, q)) + ε(AGL(2, q)) = q3 − q.

the DGZ curve is the unique AGL(2, q)-invariant irreducible plane
curve of degree q3 − q2

the dual DGZ curve is an example for
d(AGL(2, q)) + ε(AGL(2, q)) = q3 − q.
All AGL(2, q)-invariant irreducible curves of degree q3 − q2 belong,
up to projectivity, to the above pencil
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Case G = PGU(3, n), q = n2,

|G | = (n3 + 1)n3(n2 − 1) = (q3/2 + 1)q3/2(q − 1)

well known example the Hermitian curve Hn of affine equation

Y n + Y − X n+1 = 0.

d(PGU(3, n)) = n + 1, d(PGU(3, n)) + ε(PGU(3, n)) = n3 + 1,

Hn is the unique PGU(3, n)-invariant irreducible plane curve of
degree n + 1.
Theorem All PGU(3, n)-invariant irreducible plane curves of
degree d < nq(q − 1) = n3(n2 − 1) other than the Hermitian curve
have degree n3 + 1 and belongs to the PGU(3, n)-fixed pencil

Y n3 + Y − X n3+1 − λ(Y n + Y − X n+1)q−n+1 = 0.

For λ = 1, the curve splits into n3 + 1 lines.
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Case G = ∆q preserves a triangle in PG (2, q),
|G | = 6(q − 1)2

Remark ∆q = (Cq−1 × Cq−1) o S3

d(∆q) = q − 1, d(∆q) + ε(∆q) = 2q − 2,

unique ∆q-invariant irreducible plane curve of degree q − 1 is the
Fermat curve of homogeneous equation.

X q−1 + Y q−1 + Zq−1 = 0.

All ∆q-invariant curves with d(∆q) + ε(∆q) = 2q − 2 belong to
the pencil

λ(X q−1 + Y q−1 + Zq−1)2 + (XY )q−1 + (YZ )q−1 + (ZX )q−1) = 0.

Plane algebraic curves with many symmetries, and complete (k, n)-arcs
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Case G = NSq preserves a triangle in
PG (2, q3) \ PG (2, q), |G | = 3(q2 + q + 1)

NSq:= normalizer of the Singer subgroup of PG (2, q)
NSq = Cq2+q+1 o C3.
Remark
All irreducible plane curves of degree d ≤ 2q + 2 invariant by the
Singer subgroup are known, (Cossidente, Siciliano, Pellikaan).

d(NSq) = q + 2, d(NSq) + ε(NSq) = 2q + 1,

the Pellikaan curve of homogenous equation

X q+1Y + Y q+1Z + Zq+1X = 0

is the unique NSq-invariant curve of degree q + 2.
Example of an NSq-invariant curve of degree 2q + 1:

X q+1Y q + Y q+1Zq + Zq+1X q = 0

Plane algebraic curves with many symmetries, and complete (k, n)-arcs
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Case q odd, G = PGL(2, q) preserves an irreducible conic
in PG (2, q), |G | = q3 − q

Apart from the unique PGL(2, q)-invariant conic C2, those of
minimum degree q + 1 belong to the PGL(2, q)-fixed pencil

Y q+1 − (X qZ + XZq)− λ(Y 2 − 2XZ )(q+1)/2 = 0. (1)

Therefore,

d(PGL(2, q)) = 2, d(PGL(2, q)) + ε(PGL(2, q)) = q + 1.

C1 is completely reducible, product of the tangents to C2 at its
points in PG (2, q);
C−1 is rational and has interesting combinatorial properties:
the q + 1 points of C2 in PG (2, q) are simple points of C,
the 1

2q(q − 1) internal points to C2 are double points of C.

Plane algebraic curves with many symmetries, and complete (k, n)-arcs
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the 1

2q(q − 1) internal points to C2 are double points of C.
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Plane (k , n)-arcs from algebraic curves

Natural candidate for a plane (k , n)-arc is the set of the points of a
plane algebraic curve of degree n.
Well known example of such a (k , n)-arc is the Hermitian unital.
C:=plane algebraic curve (naturally defined) of PG (2, qm) and
viewed as a curve in PG (2, qrm), r ≥ 1.
(k , n)-arc arising from C in PG (2, qrm):= set of all points of C in
PG (2, qrm).
Remark For r big enough, k ≈ qrm, i.e. the (k, n)-arc is small.
Remark Complete (k , n)-arcs in PG (2, qrm) ⇔ non-extendible
[k , n, k − n]qrm Almost-MDS codes.
Examples of complete (k, n)-arcs (from Frobenius non-classical
curves) due to Giulietti, Pambianco, Ughi and Torres (2008).
Their work was the first important step towards an algebraic theory
of complete (k , n)-arcs, based on Galois theory (and results of van
der Waerden (1933) and Abhyankar (1992))
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The approach from Galois theory

Basic idea is in the papers of Guralnick, Zieve, Möller (2010) (and
some others) on permutation polynomials
Adaption for (k , n)-arcs is due to Bartoli and Micheli (2021).
Complete (k , n)-arcs in PG (2, qrm) with r ≫ n from rational and
hyperelliptic curves defined over Fqm (Bartoli-Micheli 2021)
Problem Construction of complete (k , n)-arcs in PG (2, qrm) for
almost all r (using other curves defined over Fqm)
Question Among the curves arising from maximal subgroups we
have come across, which provide a solution for the above Problem?
So far we have solved positively this problem for the Hermitian
curve and for the PGL(2, q)-invariant curve C−1.

Y q+1 − (X q + X ) + (Y 2 − 2X )(q+1)/2 = 0.

The other cases are open.
Here we deal with the Hermitian curve. Our method also applies
to C−1 (proofs are even simpler).
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The case of the Hermitian curve

r ≥ 3 integer
Hq := Hermitian curve of degree q + 1, regarded as a curve in
PG (2, q2r )
Ω := set of all points of Hq in PG (2, q2r ), i.e. Ω = Hq(Fq2r )
k := |Ω| where k = q2r + 1± qr+1(q − 1) according as r is odd or
even
Ω is a small (k , q + 1)-arc in PG (2, q2r ).
Theorem (K. Szőnyi, G.P. Nagy, 2022) Ω is complete for r ≥ 5.
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Theorem (K. Szőnyi, G.P. Nagy, 2022) Ω is complete for r ≥ 5.

Plane algebraic curves with many symmetries, and complete (k, n)-arcs



The case of the Hermitian curve

r ≥ 3 integer
Hq := Hermitian curve of degree q + 1, regarded as a curve in
PG (2, q2r )
Ω := set of all points of Hq in PG (2, q2r ), i.e. Ω = Hq(Fq2r )
k := |Ω| where k = q2r + 1± qr+1(q − 1) according as r is odd or
even
Ω is a small (k , q + 1)-arc in PG (2, q2r ).
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Sketch of the proof, set up

Hq := Hermitian curve of affine equation Y q + Y + X q+1 = 0
P = P(a, b), aq+1 + bq + b 6= 0, P(a, b) ∈ PG (2, q2r ) \ PG (2, q2)
`t := the (non vertical) line through P with slope t, i.e. `t :
Y = t(X − a) + b
F (X ) = X q+1 + X q(a + tq) + X (aq + t) + aq+1 + bq + b
`t is a (q + 1)-secant of Hq in PG (2, q2r ) ⇔ F (X ) has q + 1
pairwise distinct roots in Fq2r

K := the rational field F̄q2(t)
F (X ) = X q+1 + X q(a + tq) + X (aq + t) + aq+1 + bq + b ∈
Fq2r (t)[X ] ⊂ K [X ].
F (X ) is irreducible
L := K (u) with F (u) = 0 the field extension L : K ; it is not Galois
M:= Galois closure of L : K , i.e. M is the splitting field of F (X )
over K
G := Gal(M : K ) Galois group, i.e. the geometric monodromy
group of F (X ) over K
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Sketch of the proof, results

G ∼= PGL(2, q) (tool is Abyhankar’s twisted derivative)
M has as many as (q + 1)2 ramified places in the Galois extension
M : K (depends on the geometry of Hq)
G has q + 1 short orbits on the set of places of M
G acts on each short orbit as PGL(2, q) in its 3-transitive
permutation representation (tool is van der Waerden’s result)
The genus g(M) of M is given by

2g(M)− 2 = q4 + q3 − 4q2 − 3q + 1.

(tool is Serre’s ramification theory)
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Conclusion of the proof

P is covered by at least one (non-vertical) (q + 1)-secant ⇔ M has
at least one Fq2r -rational place which is unramified in the Galois
extension M : K

The Hasse-Weil lower bound ⇒: such an unramified place exists
whenever
q2r + 1 > qr+4 + q3+r − 4q2+r − 3q1+r + 3qr + q2 + 2q + 1
in particular for r ≥ 5

If r ≥ 5 then the set of all points of Hq in PG (2, q2r ) is a
complete (k, q + 1)-arc.

Remark

Cases r = 3, 4 are open
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The case r = 3

What do we know on case r = 3 for the Hermitian curve?

Let P(a, b) ∈ Hq and P(a, b) ∈ PG (2, q2r ) \ PG (2, q2)

Proposition Through P(a, b), we have as many as
2q4 + q2 + q + 1 q + 1-secants to Hq.
Proof The above method is used with some variations.
The Galois group G = Gal(M : K ) has order q(q − 1)
(∼= AGL(1, q)),
M is a maximal function field over F6

q.
Remark B. Csajbók gave an elementary proof for the Proposition
(Norm functions + highly non trivial computation).
Magma computation shows for q = 3 that the above (892, 4)-arc
in PG (2, 36) is complete.
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The case r = 3

What do we know on case r = 3 for the Hermitian curve?

Let P(a, b) ∈ Hq and P(a, b) ∈ PG (2, q2r ) \ PG (2, q2)

Proposition Through P(a, b), we have as many as
2q4 + q2 + q + 1 q + 1-secants to Hq.
Proof The above method is used with some variations.
The Galois group G = Gal(M : K ) has order q(q − 1)
(∼= AGL(1, q)),
M is a maximal function field over F6

q.
Remark B. Csajbók gave an elementary proof for the Proposition
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Application to the Galois-inverse problems

Theorem

Let K = F̄q2(t) and L := K (u) where
uq+1 + uqtq + ut − ((ta− b)q + ta− b). Then the (geometric)
monodromy group of L : K is isomorphic to PGL(2, q), and the
Galois closure M of L : K is
M = F̄q2(t, u, v ,w) where

uq+1 + uqtq + ut − ((ta− b)q + ta− b);

vq + (u + tq)vq−1 + uq + t = 0;

v + u + tq − (u + tq)wq−1 = 0.
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