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Remark

Birational non-linear automorphism does not preserve the shape of
our geometric object, i.e. its combinatorial properties, and
therefore has minor or no interest in Finite geometry.

= motivation for the study of linear automorphism group of a
curve.

For a given curve, the problem of finding its linear automorphisms
is frequently challenging, although the action on points (and/or on
lines, blocks etc.) is bounded by the specific geometric (and
combinatorial) properties of the curve.
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What about the plane curves C hitting the minimum?

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Some more notation

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Some more notation
d(G):= the smallest integer that is the degree of a G-invariant
irreducible plane curve C, other than a line.

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Some more notation

d(G):= the smallest integer that is the degree of a G-invariant
irreducible plane curve C, other than a line.
Remark

d(G) only depends on the conjugacy class of G in PGL(3, q).

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Some more notation

d(G):= the smallest integer that is the degree of a G-invariant
irreducible plane curve C, other than a line.

Remark

d(G) only depends on the conjugacy class of G in PGL(3, q).
Y :=Spectrum of the degrees of G-invariant curves.

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Some more notation

d(G):= the smallest integer that is the degree of a G-invariant
irreducible plane curve C, other than a line.

Remark

d(G) only depends on the conjugacy class of G in PGL(3, q).
Y :=Spectrum of the degrees of G-invariant curves.

Main problems

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Some more notation

d(G):= the smallest integer that is the degree of a G-invariant
irreducible plane curve C, other than a line.

Remark

d(G) only depends on the conjugacy class of G in PGL(3, q).
Y :=Spectrum of the degrees of G-invariant curves.

Main problems

(i) find d(G) for a given subgroup G of PGL(3,q); (i.e. d(G) is
the smallest value in ¥)

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Some more notation

d(G):= the smallest integer that is the degree of a G-invariant

irreducible plane curve C, other than a line.

Remark

d(G) only depends on the conjugacy class of G in PGL(3, q).

Y :=Spectrum of the degrees of G-invariant curves.

Main problems

(i) find d(G) for a given subgroup G of PGL(3,q); (i.e. d(G) is
the smallest value in ¥)

(ii) find the largest positive integer €(G) depending on g s.t.
there is no G-invariant irreducible plane curve of degree
< d(G) +¢(G). (i.e. d(G)+£(G) is the second smallest
value in X, and ¢(G) — 1 is the first gap).

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Some more notation

d(G):= the smallest integer that is the degree of a G-invariant

irreducible plane curve C, other than a line.

Remark

d(G) only depends on the conjugacy class of G in PGL(3, q).

Y :=Spectrum of the degrees of G-invariant curves.

Main problems

(i) find d(G) for a given subgroup G of PGL(3,q); (i.e. d(G) is
the smallest value in ¥)

(ii) find the largest positive integer €(G) depending on g s.t.
there is no G-invariant irreducible plane curve of degree
< d(G) +¢(G). (i.e. d(G)+£(G) is the second smallest
value in X, and ¢(G) — 1 is the first gap).

(i) find all G-invariant irreducible plane curves of degree d(G).

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Some more notation

d(G):= the smallest integer that is the degree of a G-invariant

irreducible plane curve C, other than a line.

Remark

d(G) only depends on the conjugacy class of G in PGL(3, q).

Y :=Spectrum of the degrees of G-invariant curves.

Main problems

(i) find d(G) for a given subgroup G of PGL(3,q); (i.e. d(G) is
the smallest value in ¥)

(ii) find the largest positive integer €(G) depending on g s.t.
there is no G-invariant irreducible plane curve of degree
< d(G) +¢(G). (i.e. d(G)+£(G) is the second smallest
value in X, and ¢(G) — 1 is the first gap).

(i) find all G-invariant irreducible plane curves of degree d(G).

Essential tool in investigating the above problems: Pencil of plane
algebraic curves

Plane algebraic curves with many symmetries, and complete (k,



Projective automorphisms of a plane algebraic curve.

Some more notation

d(G):= the smallest integer that is the degree of a G-invariant

irreducible plane curve C, other than a line.

Remark

d(G) only depends on the conjugacy class of G in PGL(3, q).

Y :=Spectrum of the degrees of G-invariant curves.

Main problems

(i) find d(G) for a given subgroup G of PGL(3,q); (i.e. d(G) is
the smallest value in ¥)

(ii) find the largest positive integer €(G) depending on g s.t.
there is no G-invariant irreducible plane curve of degree
< d(G) +¢(G). (i.e. d(G)+£(G) is the second smallest
value in X, and ¢(G) — 1 is the first gap).

(i) find all G-invariant irreducible plane curves of degree d(G).

Essential tool in investigating the above problems: Pencil of plane
algebraic curves

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0
Cw :=the plane curve of equation F, =0

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0

Coo :=the plane curve of equation F, =0

pencil A := {C\|A € Fgm,r > 1} U {Co}

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0

Coo :=the plane curve of equation F, =0

pencil A := {Cy|A € Fgm,r > 1} U{Cs} = < G, Co >.

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0

Cw :=the plane curve of equation F, =0

pencil A := {Cy|A € Fgm,r > 1} U{Cs} = < G, Co >.

N is G-fixed pencil if G preserves each curve in A.

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0

Cw :=the plane curve of equation F, =0

pencil A := {Cy|A € Fgm,r > 1} U{Cs} = < G, Co >.

N is G-fixed pencil if G preserves each curve in A.

Theorem Let A\ be a G-fixed pencil of curves of degree d without
common component. Let U be any further G-invariant curve.
Then deg(U) > |G|/d.

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0

Cw :=the plane curve of equation F, =0

pencil A := {Cy|A € Fgm,r > 1} U{Cs} = < G, Co >.

N is G-fixed pencil if G preserves each curve in A.

Theorem Let A\ be a G-fixed pencil of curves of degree d without
common component. Let U be any further G-invariant curve.
Then deg(U) > |G|/d.

Proof |G| is a lower bound on the number of common points of U
with a generically chosen (absolutely irreducible) curve C from A.
Comparison of this lower bound with the upper bound derived
from the Bézout theorem vyields d - deg(U/) > |G|.

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0

Cw :=the plane curve of equation F, =0

pencil A := {Cy|A € Fgm,r > 1} U{Cs} = < G, Co >.

N is G-fixed pencil if G preserves each curve in A.

Theorem Let A\ be a G-fixed pencil of curves of degree d without
common component. Let U be any further G-invariant curve.
Then deg(U) > |G|/d.

Proof |G| is a lower bound on the number of common points of U
with a generically chosen (absolutely irreducible) curve C from A.
Comparison of this lower bound with the upper bound derived
from the Bézout theorem vyields d - deg(U/) > |G|.

Corollary Let |G| > d?. Then d(G) < d. Ifdeg(C) = d(G) then
C is either in N\, or C is a nonlinear component of a curve in A.

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0

Cw :=the plane curve of equation F, =0

pencil A := {Cy|A € Fgm,r > 1} U{Cs} = < G, Co >.

N is G-fixed pencil if G preserves each curve in A.

Theorem Let A\ be a G-fixed pencil of curves of degree d without
common component. Let U be any further G-invariant curve.
Then deg(U) > |G|/d.

Proof |G| is a lower bound on the number of common points of U
with a generically chosen (absolutely irreducible) curve C from A.
Comparison of this lower bound with the upper bound derived
from the Bézout theorem vyields d - deg(U/) > |G|.

Corollary Let |G| > d?. Then d(G) < d. Ifdeg(C) = d(G) then
C is either in N\, or C is a nonlinear component of a curve in A.
Problem Find G-invariant pencils!

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0

Cw :=the plane curve of equation F, =0

pencil A := {Cy|A € Fgm,r > 1} U{Cs} = < G, Co >.

N is G-fixed pencil if G preserves each curve in A.

Theorem Let A\ be a G-fixed pencil of curves of degree d without
common component. Let U be any further G-invariant curve.
Then deg(U) > |G|/d.

Proof |G| is a lower bound on the number of common points of U
with a generically chosen (absolutely irreducible) curve C from A.
Comparison of this lower bound with the upper bound derived
from the Bézout theorem vyields d - deg(U/) > |G|.

Corollary Let |G| > d?. Then d(G) < d. Ifdeg(C) = d(G) then
C is either in N\, or C is a nonlinear component of a curve in A.
Problem Find G-invariant pencils! (in general difficult, no general
method from classical Algebraic geometry)

Plane algebraic curves with many symmetries, and complete (k,



G-fixed pencil of plane algebraic curves

Fi, F> € Fgm[x1, x2, x3], homogenous polynomials of degree d
Cy:= (degree d) plane curve of equation F; + AF, =0

Cw :=the plane curve of equation F, =0

pencil A := {Cy|A € Fgm,r > 1} U{Cs} = < G, Co >.

N is G-fixed pencil if G preserves each curve in A.

Theorem Let A\ be a G-fixed pencil of curves of degree d without
common component. Let U be any further G-invariant curve.
Then deg(U) > |G|/d.

Proof |G| is a lower bound on the number of common points of U
with a generically chosen (absolutely irreducible) curve C from A.
Comparison of this lower bound with the upper bound derived
from the Bézout theorem vyields d - deg(U/) > |G|.

Corollary Let |G| > d?. Then d(G) < d. Ifdeg(C) = d(G) then
C is either in N\, or C is a nonlinear component of a curve in A.
Problem Find G-invariant pencils! (in general difficult, no general
method from classical Algebraic geometry)

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Remark Two G-invariant curves in A are not enough in general,
unless in particular cases.

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Remark Two G-invariant curves in A are not enough in general,
unless in particular cases.

One of these cases:

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Remark Two G-invariant curves in A are not enough in general,
unless in particular cases.

One of these cases: Take I < GL(3, g) which is the pullback of G
in the natural homomorphism GL(3, q) — PGL(3,q).

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Remark Two G-invariant curves in A are not enough in general,
unless in particular cases.

One of these cases: Take I < GL(3, g) which is the pullback of G
in the natural homomorphism GL(3, q) — PGL(3,q).

If Fi, Fo € Fgm[x1, X2, x3] are both l-invariant homogeneous
polynomials of the same degree d, then any linear combination

F = FL + \F; is also a -invariant form.

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Remark Two G-invariant curves in A are not enough in general,
unless in particular cases.

One of these cases: Take I < GL(3, g) which is the pullback of G
in the natural homomorphism GL(3, q) — PGL(3,q).

If Fi, Fo € Fgm[x1, X2, x3] are both l-invariant homogeneous
polynomials of the same degree d, then any linear combination

F = FL + \F; is also a -invariant form.

By projectivization, the pencil < Fi, Fp > is G-fixed.

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Remark Two G-invariant curves in A are not enough in general,
unless in particular cases.

One of these cases: Take I < GL(3, g) which is the pullback of G
in the natural homomorphism GL(3, q) — PGL(3,q).

If Fi, Fo € Fgm[x1, X2, x3] are both l-invariant homogeneous
polynomials of the same degree d, then any linear combination

F = FL + \F; is also a -invariant form.

By projectivization, the pencil < Fi, Fp > is G-fixed.

Remark It is enough that the rational function F;/F; is [-invariant.

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Remark Two G-invariant curves in A are not enough in general,
unless in particular cases.

One of these cases: Take I < GL(3, g) which is the pullback of G
in the natural homomorphism GL(3, q) — PGL(3,q).

If Fi, Fo € Fgm[x1, X2, x3] are both l-invariant homogeneous
polynomials of the same degree d, then any linear combination

F = FL + \F; is also a -invariant form.

By projectivization, the pencil < Fi, Fp > is G-fixed.

Remark It is enough that the rational function F;/F; is [-invariant.
Focus on the following problem:

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Remark Two G-invariant curves in A are not enough in general,
unless in particular cases.

One of these cases: Take I < GL(3, g) which is the pullback of G
in the natural homomorphism GL(3, q) — PGL(3,q).

If Fi, Fo € Fgm[x1, X2, x3] are both l-invariant homogeneous
polynomials of the same degree d, then any linear combination

F = FL + \F; is also a -invariant form.

By projectivization, the pencil < Fi, Fp > is G-fixed.

Remark It is enough that the rational function F;/F; is [-invariant.
Focus on the following problem:

Problem How to find G-invariant pencils for large subgroups G of
PGL(3,q), in particular for maximal subgroups G of PGL(3,q)?

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Remark Two G-invariant curves in A are not enough in general,
unless in particular cases.

One of these cases: Take I < GL(3, g) which is the pullback of G
in the natural homomorphism GL(3, q) — PGL(3,q).

If Fi, Fo € Fgm[x1, X2, x3] are both l-invariant homogeneous
polynomials of the same degree d, then any linear combination

F = FL + \F; is also a -invariant form.

By projectivization, the pencil < Fi, Fp > is G-fixed.

Remark It is enough that the rational function F;/F; is [-invariant.
Focus on the following problem:

Problem How to find G-invariant pencils for large subgroups G of
PGL(3,q), in particular for maximal subgroups G of PGL(3,q)?
These G-invariant pencils change depending on which maximal
subgroup is taken for G;

Plane algebraic curves with many symmetries, and complete (k,



Sufficient condition for a pencil to be G-fixed

Lemma If A has at least three G-invariant curves, then A is a
G-fixed pencil.

Remark Two G-invariant curves in A are not enough in general,
unless in particular cases.

One of these cases: Take I < GL(3, g) which is the pullback of G
in the natural homomorphism GL(3, q) — PGL(3,q).

If Fi, Fo € Fgm[x1, X2, x3] are both l-invariant homogeneous
polynomials of the same degree d, then any linear combination

F = FL + \F; is also a -invariant form.

By projectivization, the pencil < Fi, Fp > is G-fixed.

Remark It is enough that the rational function F;/F; is [-invariant.
Focus on the following problem:

Problem How to find G-invariant pencils for large subgroups G of
PGL(3,q), in particular for maximal subgroups G of PGL(3,q)?
These G-invariant pencils change depending on which maximal
subgroup is taken for G; a case-by-case analysis is needed.

Plane algebraic curves with many symmetries, and complete (k,



Maximal subgroups of PGL(3, q)

Plane algebraic curves with many symmetries, and complete (k,



Maximal subgroups of PGL(3, q)

(i) PSL(3,q) for g =1 (mod 3), having order
3(@+a+1)a*(qg+1)(q - 1)
(ii) the stabilizer of a point of PG(2, g), having order
¢*(q+1)(q - 1)?
(iii) the stabilizer of a line of PG(2, q), having order
¢*(g+1)(g —1)?
(iv) the stabilizer of an Hermitian curve of PG(2, q) for g = n?,
having order n3(n3 +1)(n —1)?
(v) the stabilizer of a triangle of PG(2, q), having order 6(q — 1)?
(vi) the stabilizer of an imaginary triangle (i.e., a triangle in
PG(2,q%)\ PG(2,q)), having order 3(g®> + q + 1)
(vii) for g odd, the stabilizer of an irreducible conic, having order
q(g+1)(g-1)
(viii) sporadic subgroups (of order < 2520)

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGL(3,q), |G| = (¢> + g+ 1)g°(g + 1)(qg — 1)?

ic curves with many symmetries, and complete (k,



Case G = PGL(3, q),
Example (Borges 2009)

Gl=(0°+qg+1)g*(g+1)(g— 1)

ic curves with many symmetries, and complete (k,



Case G = PGL(3,q), |G| = (¢ + g +1)¢*(q + 1)(q — 1)’
Example (Borges 2009) m, n:= positive integers, gcd(m, n) =1

ic curves with many symmetries, and complete (k,



Case G = PGL(3,q), |G| = (¢> + g+ 1)g°(g + 1)(qg — 1)?

Example (Borges 2009) m, n:= positive integers, gcd(m, n) =1
Fnm:= plane curve in PG(2, q) with affine equation:

(X" = X)(YI" —Y)— (Y9 = Y)(XI" - X)

(X7 = X) (Y9 = ¥) = (Y7~ V)(XT - X)

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGL(3,q), |G| = (¢> + g+ 1)g°(g + 1)(qg — 1)?

Example (Borges 2009) m, n:= positive integers, gcd(m, n) =1
Fnm:= plane curve in PG(2, q) with affine equation:

(X" = X)(YI" —Y)— (Y9 = Y)(XI" - X)

(X7 = X) (Y9 = ¥) = (Y7~ V)(XT - X)

F3.1, named DGZ (Dickson-Guralnick-Zieve) curve,

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGL(3,q), |G| = (¢> + g+ 1)g°(g + 1)(qg — 1)?

Example (Borges 2009) m, n:= positive integers, gcd(m, n) =1
Fnm:= plane curve in PG(2, q) with affine equation:

(X" = X)(YI" —Y)— (Y9 = Y)(XI" - X)
(X7 = X) (Y9 = ¥) = (Y7~ V)(XT - X)

F3.1, named DGZ (Dickson-Guralnick-Zieve) curve,
F3,2, the dual DGZ curve.

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGL(3,q), |G| = (¢> + g+ 1)g°(g + 1)(qg — 1)?

Example (Borges 2009) m, n:= positive integers, gcd(m, n) =1
Fnm:= plane curve in PG(2, q) with affine equation:

(X" = X)(YI" —Y)— (Y9 = Y)(XI" - X)
(X7 = X) (Y9 = ¥) = (Y7~ V)(XT - X)

F3.1, named DGZ (Dickson-Guralnick-Zieve) curve,
F3,2, the dual DGZ curve.
< F§i1, F{, > is a PGL(3, q)-fixed pencil.

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGL(3,q), |G| = (¢> + g+ 1)g°(g + 1)(qg — 1)?

Example (Borges 2009) m, n:= positive integers, gcd(m, n) =1
Fnm:= plane curve in PG(2, q) with affine equation:

(X" = X)(YI" —Y)— (Y9 = Y)(XI" - X)
(X7 = X) (Y9 = ¥) = (Y7~ V)(XT - X)

F3.1, named DGZ (Dickson-Guralnick-Zieve) curve,
F3,2, the dual DGZ curve.

< FITLFL, > is 3 PGL3.q)fned pencil

d(PGL(3,9)) = ¢° — ¢°, d(PGL(3,q)) + £(PGL(3,q)) = ¢* — q,

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGL(3,q), |G| = (¢> + g+ 1)g°(g + 1)(qg — 1)?

Example (Borges 2009) m, n:= positive integers, gcd(m, n) =1
Fnm:= plane curve in PG(2, q) with affine equation:

(X" = X)(YI" —Y)— (Y9 = Y)(XI" - X)
(X7 = X) (Y9 = ¥) = (Y7~ V)(XT - X)

F3.1, named DGZ (Dickson-Guralnick-Zieve) curve,
F3,2, the dual DGZ curve.
< F§i1, F{, > is a PGL(3, q)-fixed pencil.

d(PGL(3,9)) = ¢° — ¢°, d(PGL(3,q)) + £(PGL(3,q)) = ¢* — q,

the DGZ curve is the unique PGL(3, g)-invariant irreducible plane
curve of degree g3 — ¢°

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGL(3,q), |G| = (¢> + g+ 1)g°(g + 1)(qg — 1)?

Example (Borges 2009) m, n:= positive integers, gcd(m, n) =1
Fnm:= plane curve in PG(2, q) with affine equation:

(X" = X)(YI" —Y)— (Y9 = Y)(XI" - X)
(X7 = X) (Y9 = ¥) = (Y7~ V)(XT - X)

F3.1, named DGZ (Dickson-Guralnick-Zieve) curve,
F3,2, the dual DGZ curve.
< F§i1, F{, > is a PGL(3, q)-fixed pencil.

d(PGL(3,9)) = ¢° — ¢°, d(PGL(3,q)) + £(PGL(3,q)) = ¢* — q,

the DGZ curve is the unique PGL(3, g)-invariant irreducible plane
curve of degree g3 — ¢°

the dual DGZ curve is an example for

d(PGL(3,q)) + <(PGL(3,q)) = ¢° — q.

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGL(3,q), |G| = (¢> + g+ 1)g°(g + 1)(qg — 1)?

Example (Borges 2009) m, n:= positive integers, gcd(m, n) =1
Fnm:= plane curve in PG(2, q) with affine equation:

(X" = X)(YI" —Y)— (Y9 = Y)(XI" - X)
(X7 = X) (Y9 = ¥) = (Y7~ V)(XT - X)

F3.1, named DGZ (Dickson-Guralnick-Zieve) curve,
F3,2, the dual DGZ curve.

< F§i1, F{, > is a PGL(3, q)-fixed pencil.
d(PGL(3,9)) = ¢° — ¢°, d(PGL(3,q)) + £(PGL(3,q)) = ¢* — q,

the DGZ curve is the unique PGL(3, g)-invariant irreducible plane
curve of degree g3 — ¢°

the dual DGZ curve is an example for

d(PGL(3,q)) +¢(PGL(3,9)) = ¢° — q.

For g =1 (mod 3), PSL(3, q) is a maximal subgroup of PGL(3, q)
of index 3, but the same results hold.



Case G = AGL(2,q), |G| = ¢*(q9 — 1)(¢°® — q)

ic curves with many symmetries, and complete (k,



Case G = AGL(2,q), |G| = ¢*(q9 — 1)(¢°® — q)

AGL(2, q) is viewed as the subgroup of PGL(3, q) preserving the
line of infinity.

Plane algebraic curves with many symmetries, and complete (k,



Case G = AGL(2,q), |G| = ¢*(q9 — 1)(¢°® — q)

AGL(2, q) is viewed as the subgroup of PGL(3, q) preserving the
line of infinity.
an AGL(2, g)-invariant pencil is:

3

(XT = X)(YI=Y)— (YT = Y)(X9 = X)

X7 XY= ¥) = (YF —)(xa—x) "

Plane algebraic curves with many symmetries, and complete (k,



Case G = AGL(2,q), |G| = ¢*(q9 — 1)(¢°® — q)

AGL(2, q) is viewed as the subgroup of PGL(3, q) preserving the
line of infinity.
an AGL(2, g)-invariant pencil is:

3

(XT = X)(YI=Y)— (YT = Y)(X9 = X)

X7 XY= ¥) = (YF —)(xa—x) "

d(AGL(2,q)) = ¢° — 4%, d(AGL(2,q)) + £(AGL(2,9)) = ¢° — q.

Plane algebraic curves with many symmetries, and complete (k,



Case G = AGL(2,q), |G| = ¢*(q9 — 1)(¢°® — q)

AGL(2, q) is viewed as the subgroup of PGL(3, q) preserving the
line of infinity.
an AGL(2, g)-invariant pencil is:

3

(XT = X) (YT = Y)— (YT = Y)(X9—X)
(XT = X)(YT=Y) = (YT = ¥)(X9 = X)

A=0.
d(AGL(2,q)) = ¢° — 4%, d(AGL(2,q)) + £(AGL(2,9)) = ¢° — q.

the DGZ curve is the unique AGL(2, g)-invariant irreducible plane
curve of degree ¢ — ¢°

Plane algebraic curves with many symmetries, and complete (k,



Case G = AGL(2, q),

Gl=q°(q—1)(¢°—q)

AGL(2, q) is viewed as the subgroup of PGL(3, q) preserving the
line of infinity.
an AGL(2, g)-invariant pencil is:

3

(XT = X) (YT = Y)— (YT = Y)(X9—X)
(XT = X)(YT=Y) = (YT = ¥)(X9 = X)

A=0.

d(AGL(2,q)) = ¢° — 4%, d(AGL(2,q)) + £(AGL(2,9)) = ¢° — q.

the DGZ curve is the unique AGL(2, g)-invariant irreducible plane
curve of degree ¢ — ¢°

the dual DGZ curve is an example for

d(AGL(2,q)) + £(AGL(2,9)) = ¢°> — q.

Plane algebraic curves with many symmetries, and complete (k,



Case G = AGL(2, q),

Gl=q°(q—1)(¢°—q)

AGL(2, q) is viewed as the subgroup of PGL(3, q) preserving the
line of infinity.
an AGL(2, g)-invariant pencil is:

3

(XT = X) (YT = Y)— (YT = Y)(X9—X)
(XT = X)(YT=Y) = (YT = ¥)(X9 = X)

A=0.

d(AGL(2,q)) = ¢° — 4%, d(AGL(2,q)) + £(AGL(2,9)) = ¢° — q.

the DGZ curve is the unique AGL(2, g)-invariant irreducible plane
curve of degree ¢ — ¢°

the dual DGZ curve is an example for

d(AGL(2, q)) + £(AGL(2,9)) = ¢° — q.

All AGL(2, q)-invariant irreducible curves of degree g — g° belong,
up to projectivity, to the above pencil

Plane algebraic curves with many symmetries, and complete (k,



Case G = AGL(2,q), |G| = ¢*(q9 — 1)(¢® — q)

ic curves with many symmetries, and complete (k,



Case G = AGL(2,q), |G| = ¢*(q9 — 1)(¢® — q)

AGL(2, q) is viewed as the subgroup of PGL(3, q) fixing a point.

Plane algebraic curves with many symmetries, and complete (k,



Case G = AGL(2, q), =q¢*(q—1)(¢° — q)

L( q) is viewed as the subgroup of PGL(3, q) fixing a point.
GL(2, g)-invariant pencil is:

>

(X7 — X)(YT=Y)— (YT = Y)(XT = X)

(X9 = X)(Y9=Y)— (Y9 = Y)(X9 - X)

X = X)(YI=Y)= (YT = Y)(X9 = X)
(Yq — Y)q+1

)\( =0.

Moreover,

d(AGL(2,q)) = ¢° — ¢°, d(AGL(2,q)) + £(AGL(2,9)) = ¢> — q.

Plane algebraic curves with many symmetries, and complete (k,



Case G = AGL(2, q), =q¢*(q—1)(¢° — q)

L( q) is viewed as the subgroup of PGL(3, q) fixing a point.
GL(2, g)-invariant pencil is:

>

(X7 — X)(YT=Y)— (YT = Y)(XT = X)

(X9 = X)(YI=Y)— (YT = Y)(X9 - X)

A(X"Z ~X)(YI—Y)— (YT — YV)(X9 - X)
(Yq — Y)q+1

=0.

Moreover,

d(AGL(2,q)) = ¢° — ¢°, d(AGL(2,q)) + £(AGL(2,9)) = ¢> — q.

the DGZ curve is the unique AGL(2, g)-invariant irreducible plane
curve of degree g3 — ¢°

Plane algebraic curves with many symmetries, and complete (k,



Case G = AGL(2, q), =q¢*(q—1)(¢° — q)

A L( q) is viewed as the subgroup of PGL(3, q) fixing a point.
GL(2, g)-invariant pencil is:
(X = X) (YT = V) = (YT — V)X = X)
(X7~ X)(Ya— ¥) = (Y% — V)(X7 - X)
WXT = X)(YT = Y) = (YT - Y)(XT-X)
(Y9 — Y)a+t =0
Moreover,

d(AGL(2,q)) = ¢° — ¢°, d(AGL(2,q)) + £(AGL(2,9)) = ¢> — q.

the DGZ curve is the unique AGL(2, g)-invariant irreducible plane

curve of degree g3 — ¢°
the dual DGZ curve is an example for ¢(AGL(2,q)) = ¢° — q.

Plane algebraic curves with many symmetries, and complete (k,



Case G = AGL(2, q), =q¢*(q—1)(¢° — q)

L( q) is viewed as the subgroup of PGL(3, q) fixing a point.
GL(2, g)-invariant pencil is:

>

(X7 — X)(YT=Y)— (YT = Y)(XT = X)

(X9 = X)(YI=Y)— (YT = Y)(X9 - X)

A(X"Z ~X)(YI—Y)— (YT — YV)(X9 - X)
(Yq — Y)q+1

=0.

Moreover,

d(AGL(2,q)) = ¢° — ¢°, d(AGL(2,q)) + £(AGL(2,9)) = ¢> — q.

the DGZ curve is the unique AGL(2, q)-invariant irreducible plane
curve of degree g3 — ¢°

the dual DGZ curve is an example for ¢(AGL(2,q)) = ¢° — q.

All AGL(2, q)-invariant irreducible curves of degree g3 — g belong,
up to projectivity, to the pencil with A # 1.

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGU(3,n), q = n?,

|G| = (n® + 1)n’(n® — 1) = (¢*2 + 1)¢*?(g — 1)

ic curves with many symmetries, and complete (k,



2 +1)¢%?(q — 1)

well known example the Hermitian curve H, of affine equation
Y4y - X" =,

d(PGU(3,n)) = n+ 1, d(PGU(3, n)) + e(PGU(3, n)) = n® + 1,

Plane algebraic curves with many symmetries, and complete (k,



2

2 +1)¢%?(q — 1)

well known example the Hermitian curve H, of affine equation
Y4y - X" =,

d(PGU(3,n)) = n+ 1, d(PGU(3, n)) + e(PGU(3, n)) = n® + 1,

Hn is the unique PGU(3, n)-invariant irreducible plane curve of
degree n+ 1.

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGU(3,n), g = n?,

|G| = (n* +1)r*(n” —1) = (¢°7 + 1)g*?(q — 1)

well known example the Hermitian curve H, of affine equation
Y4y - X" =,

d(PGU(3,n)) = n+ 1, d(PGU(3, n)) + e(PGU(3, n)) = n® + 1,

Hn is the unique PGU(3, n)-invariant irreducible plane curve of
degree n+ 1.

Theorem All PGU(3, n)-invariant irreducible plane curves of
degree d < nq(q — 1) = n3(n® — 1) other than the Hermitian curve
have degree n® + 1 and belongs to the PGU(3, n)-fixed pencil

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGU(3,n), g = n?,

|G| = (n* +1)r*(n” —1) = (¢°7 + 1)g*?(q — 1)

well known example the Hermitian curve H, of affine equation
Y4y - X" =,

d(PGU(3,n)) = n+ 1, d(PGU(3, n)) + e(PGU(3, n)) = n® + 1,

Hn is the unique PGU(3, n)-invariant irreducible plane curve of
degree n+ 1.

Theorem All PGU(3, n)-invariant irreducible plane curves of
degree d < nq(q — 1) = n3(n® — 1) other than the Hermitian curve
have degree n® + 1 and belongs to the PGU(3, n)-fixed pencil

Y” 4y — XU N(Y" 4+ Y — Xt — g,

Plane algebraic curves with many symmetries, and complete (k,



Case G = PGU(3,n), g = n?,

|G| = (n* +1)r*(n” —1) = (¢°7 + 1)g*?(q — 1)

well known example the Hermitian curve H, of affine equation
Y4y - X" =,

d(PGU(3,n)) = n+ 1, d(PGU(3, n)) + e(PGU(3, n)) = n® + 1,

Hn is the unique PGU(3, n)-invariant irreducible plane curve of
degree n+ 1.

Theorem All PGU(3, n)-invariant irreducible plane curves of
degree d < nq(q — 1) = n3(n® — 1) other than the Hermitian curve
have degree n® + 1 and belongs to the PGU(3, n)-fixed pencil

Y” 4y — XU N(Y" 4+ Y — Xt — g,

For A =1, the curve splits into n3 + 1 lines.

Plane algebraic curves with many symmetries, and complete (k,



Case G = A, preserves a triangle in PG(2, q),

|G| = 6(q —1)°

curves with many symmetries, and complete (k,



Case G = A, preserves a triangle in PG(2, q),

|G| = 6(q —1)°

Remark Ag = (Cq—1 x Cq—1) X S3

d(Bg) = a1, d(Ag) +£(Bg) =29 2,

Plane algebraic curves with many symmetries, and complete (k,



Case G = A, preserves a triangle in PG(2, q),

|G| = 6(q —1)°

Remark Ag = (Cq—1 x Cq—1) X S3
d(Ag) =qg—1,d(Ag) +e(Ag) =29 -2,

unique Ag-invariant irreducible plane curve of degree g — 1 is the
Fermat curve of homogeneous equation.

Plane algebraic curves with many symmetries, and complete (k,



Case G = A, preserves a triangle in PG(2, q),

|G| = 6(q —1)°

Remark Ag = (Cq—1 x Cq—1) X S3
d(Ag) =qg—1,d(Ag) +e(Ag) =29 -2,

unique Ag-invariant irreducible plane curve of degree g — 1 is the
Fermat curve of homogeneous equation.

Xyt zol=o.

Plane algebraic curves with many symmetries, and complete (k,



Case G = A, preserves a triangle in PG(2, q),

1G] = 6(q — 1)?

Remark Ag = (Cq—1 x Cq—1) X S3
d(Ag) =qg—1,d(Ag) +e(Ag) =29 -2,

unique Ag-invariant irreducible plane curve of degree g — 1 is the
Fermat curve of homogeneous equation.

X914 yaly za-l — .

All Ag-invariant curves with d(Ag) + €(Aq) = 2q — 2 belong to
the pencil

AXITE 4 Y9t 4 Z9712 4 (XY)9E 4 (YZ)9 7+ (2X)77h) =0.

Plane algebraic curves with many symmetries, and complete (k,



Case G = NS, preserves a triangle in

PG(2,¢°) \ PG(2,q), |G| =3(¢° +q+1)

rves with many symmetries, and complete (k,



Case G = NS, preserves a triangle in

PG(2,¢°) \ PG(2,q), |G| =3(¢° +q+1)

NSq:= normalizer of the Singer subgroup of PG(2, q)
Remark

Plane algebraic curves with many symmetries, and complete (k,



Case G = NS, preserves a triangle in

PG(2,¢°) \ PG(2,q), |G| =3(¢° +q+1)

NSq:= normalizer of the Singer subgroup of PG(2, q)

NSq = Cq2+q+1 X C3.

Remark

All irreducible plane curves of degree d < 2g + 2 invariant by the
Singer subgroup are known, (Cossidente, Siciliano, Pellikaan).

d(NSg) = g+ 2, d(NSq) + e(NSq) =2q + 1,

Plane algebraic curves with many symmetries, and complete (k,



Case G = NS, preserves a triangle in
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Case g odd, G = PGL(2, q) preserves an irreducible conic
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Case g odd, G = PGL(2, q) preserves an irreducible conic

in PG(2,q), |G| =q¢>—q

Apart from the unique PGL(2, g)-invariant conic C?, those of
minimum degree g + 1 belong to the PGL(2, g)-fixed pencil

YO~ (X9Z 4+ XZ9) = \(Y2 = 2XZ)\9t D2 0. (1)
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Case g odd, G = PGL(2, q) preserves an irreducible conic

in PG(2,q), |G| =q¢>—q

Apart from the unique PGL(2, g)-invariant conic C?, those of
minimum degree g + 1 belong to the PGL(2, g)-fixed pencil

Y9t (X9Z + XZ9) - A(Y2 —2XZ)e D2 =0, (1)
Therefore,

d(PGL(2,q)) =2, d(PGL(2,q)) + e(PGL(2,q)) = q+ 1.
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Case g odd, G = PGL(2, q) preserves an irreducible conic

in PG(2,q), |G| =q¢>—q

Apart from the unique PGL(2, g)-invariant conic C?, those of
minimum degree g + 1 belong to the PGL(2, g)-fixed pencil

Y9t (X9Z + XZ9) = N(Y?2 —2xZ)atD/2 =0, (1)
Therefore,
d(PGL(2,q)) =2, d(PGL(2,q)) + (PGL(2,q)) = g+ 1.

Cy is completely reducible, product of the tangents to C? at its
points in PG(2, q);

C_1 is rational and has interesting combinatorial properties:
the g 4 1 points of C2 in PG(2, q) are simple points of C,

the %q(q — 1) internal points to C? are double points of C.
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Natural candidate for a plane (k, n)-arc is the set of the points of a
plane algebraic curve of degree n.

Well known example of such a (k, n)-arc is the Hermitian unital.
C:=plane algebraic curve (naturally defined) of PG(2,¢™) and
viewed as a curve in PG(2,q9™), r > 1.

(k, n)-arc arising from C in PG(2, q"):= set of all points of C in
PG(2,q9™).

Remark For r big enough, k = q"", i.e. the (k, n)-arc is small.
Remark Complete (k, n)-arcs in PG(2,q™) < non-extendible
[k, n, k — n]grm Almost-MDS codes.

Examples of complete (k, n)-arcs (from Frobenius non-classical
curves) due to Giulietti, Pambianco, Ughi and Torres (2008).
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Plane (k, n)-arcs from algebraic curves

Natural candidate for a plane (k, n)-arc is the set of the points of a
plane algebraic curve of degree n.

Well known example of such a (k, n)-arc is the Hermitian unital.
C:=plane algebraic curve (naturally defined) of PG(2,¢™) and
viewed as a curve in PG(2,q9™), r > 1.

(k, n)-arc arising from C in PG(2, q"):= set of all points of C in
PG(2,q9™).

Remark For r big enough, k = q"", i.e. the (k, n)-arc is small.
Remark Complete (k, n)-arcs in PG(2,q™) < non-extendible

[k, n, k — n]grm Almost-MDS codes.

Examples of complete (k, n)-arcs (from Frobenius non-classical
curves) due to Giulietti, Pambianco, Ughi and Torres (2008).
Their work was the first important step towards an algebraic theory
of complete (k, n)-arcs, based on Galois theory (and results of van
der Waerden (1933) and Abhyankar (1992))
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some others) on permutation polynomials

Adaption for (k, n)-arcs is due to Bartoli and Micheli (2021).
Complete (k, n)-arcs in PG(2,q™) with r >> n from rational and
hyperelliptic curves defined over Fym (Bartoli-Micheli 2021)
Problem Construction of complete (k, n)-arcs in PG(2,q™) for
almost all r (using other curves defined over Fgm)

Question Among the curves arising from maximal subgroups we
have come across, which provide a solution for the above Problem?
So far we have solved positively this problem for the Hermitian
curve and for the PGL(2, g)-invariant curve C_1.

Y9t (X9 4+ X) + (Y2 —2x)@h)/2 =g,
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Basic idea is in the papers of Guralnick, Zieve, Méller (2010) (and
some others) on permutation polynomials

Adaption for (k, n)-arcs is due to Bartoli and Micheli (2021).
Complete (k, n)-arcs in PG(2,q™) with r >> n from rational and
hyperelliptic curves defined over Fym (Bartoli-Micheli 2021)
Problem Construction of complete (k, n)-arcs in PG(2,q™) for
almost all r (using other curves defined over Fgm)

Question Among the curves arising from maximal subgroups we
have come across, which provide a solution for the above Problem?
So far we have solved positively this problem for the Hermitian
curve and for the PGL(2, g)-invariant curve C_1.

Y9t (X9 4+ X) + (Y2 —2x)@h)/2 =g,

The other cases are open.
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The approach from Galois theory

Basic idea is in the papers of Guralnick, Zieve, Méller (2010) (and
some others) on permutation polynomials

Adaption for (k, n)-arcs is due to Bartoli and Micheli (2021).
Complete (k, n)-arcs in PG(2,q™) with r >> n from rational and
hyperelliptic curves defined over Fym (Bartoli-Micheli 2021)
Problem Construction of complete (k, n)-arcs in PG(2,q™) for
almost all r (using other curves defined over Fgm)

Question Among the curves arising from maximal subgroups we
have come across, which provide a solution for the above Problem?
So far we have solved positively this problem for the Hermitian
curve and for the PGL(2, g)-invariant curve C_1.

Y9t (X9 4+ X) + (Y2 —2x)@h)/2 =g,

The other cases are open.
Here we deal with the Hermitian curve. Our method also applies
to C_1 (proofs are even simpler).
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r > 3 integer
Hq := Hermitian curve of degree q + 1, regarded as a curve in
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The case of the Hermitian curve

r > 3 integer

Hq := Hermitian curve of degree q + 1, regarded as a curve in
PG(2,¢%)

Q := set of all points of Hq in PG(2,¢%), i.e. Q =Hq(Fpr)

k := |Q| where k = ¢ + 1+ q"*1(q — 1) according as r is odd or
even
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The case of the Hermitian curve

r > 3 integer

Hq := Hermitian curve of degree q + 1, regarded as a curve in
PG(2, ¢*)

Q := set of all points of Hq in PG(2,¢%), i.e. Q =Hq(Fpr)

k := |Q| where k = ¢ + 1+ q"*1(q — 1) according as r is odd or
even

Q is a small (k, g + 1)-arc in PG(2, ¢*").
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The case of the Hermitian curve

r > 3 integer

Hq := Hermitian curve of degree q + 1, regarded as a curve in
PG(2, ¢*)

Q := set of all points of Hq in PG(2,¢%), i.e. Q =Hq(Fpr)

k := |Q| where k = ¢ + 1+ q"*1(q — 1) according as r is odd or
even

Q is a small (k, g + 1)-arc in PG(2, ¢*").

Theorem (K. Szényi, G.P. Nagy, 2022) Q is complete for r > 5.
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Sketch of the proof, set up

Hg := Hermitian curve of affine equation Y9+ Y 4 X9t =0
P = P(a,b), a9t + b7+ b #0, P(a, b) € PG(2,4%) \ PG(2,q?)
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P = P(a,b), a9t + b7+ b #0, P(a, b) € PG(2,4%) \ PG(2,q?)
¢ = the (non vertical) line through P with slope t, i.e. ¢;:
Y=t(X—a)+b
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Hg := Hermitian curve of affine equation Y9+ Y 4 X9t =0

P = P(a,b), a9 + b7+ b #0, P(a,b) € PG(2,¢*) \ PG(2,q?)
¢ = the (non vertical) line through P with slope t, i.e. ¢;:
Y=t(X—a)+b
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Sketch of the proof, set up

Hg := Hermitian curve of affine equation Y9+ Y 4 X9t =0
P = P(a,b), a9t + b9 + b # 0, P(a, b) € PG(2,4°") \ PG(2,q?)
¢ = the (non vertical) line through P with slope t, i.e. ¢;:
Y=t(X—a)+b
F(X)= X9t 4 X9(a+t9) + X(a9 + t) + a9t + b9 + b
l¢is a (g + 1)-secant of Hy in PG(2,¢%") & F(X) has g +1
pairwise distinct roots in F o
K := the rational field F(t)

F(X) = q+1+Xq(a+tq)+X(aq+t)+aq+1+bq+be
Fear(t)[X] C K[X].
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Sketch of the proof, set up

Hg := Hermitian curve of affine equation Y9+ Y 4 X9t =0

P = P(a,b), a9t + b7+ b #0, P(a, b) € PG(2,4%) \ PG(2,q?)
¢ = the (non vertical) line through P with slope t, i.e. ¢;:
Y=t(X—-a)+b

F(X)= X9t 4 X9(a+t9) + X(a9 + t) + a9t + b9 + b

l¢is a (g + 1)-secant of Hy in PG(2,¢%") & F(X) has g +1
pairwise distinct roots ig Fgor

K := the rational field F(t)

F(X)= X9t + X9(a+t9) + X(a9 4+ t) + a9t + b9+ b €
Fear(t)[X] C K[X].

F(X) is irreducible

L := K(u) with F(u) = 0 the field extension L : K it is not Galois
M:= Galois closure of L : K, i.e. M is the splitting field of F(X)
over K

G := Gal(M : K) Galois group, i.e. the geometric monodromy
group of F(X) over K

Plane algebraic curves with many symmetries, and complete (k,
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M has as many as (g + 1)? ramified places in the Galois extension
M : K (depends on the geometry of Hg)

G has g + 1 short orbits on the set of places of M

G acts on each short orbit as PGL(2, q) in its 3-transitive
permutation representation (tool is van der Waerden's result)

The genus g(M) of M is given by

20(M)—2=q"+¢*—4¢> —3q+ 1.

Plane algebraic curves with many symmetries, and complete (k,
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Application to the Galois-inverse problems

(Theoen
Let K = E_’qz(t) and L := K(u) where
uItt + 499 + ut — ((ta— b)9 + ta— b). Then the (geometric)
monodromy group of L : K is isomorphic to PGL(2, q), and the
Galois closure M of L : K is
M = qu(t, u, v, w) where

uItl 4+ 499 + ut — ((ta— b)9 + ta — b);
v+ (u+t9)vIt fud +t=0;
v+u+td— (u+thwi 1l =0.
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