Plane algebraic curves with many symmetries, and complete (k, n)-arcs

Gábor Korchmáros

University of Basilicata, Italy, and
Eötvös L. University of Budapest (Hungary) AC Research Group
joint work with H. Borghes, G.P. Nagy, P. Speziali, and T. Szőnyi
Finite Geometries, Sixth Irsee Conference

August 28 - September 3 2022, Irsee (Germany)

Automorphisms of algebraic curves

Plane algebraic curves with many symmetries, and complete (k,

Automorphisms of algebraic curves

Curves with many automorphisms \Rightarrow nice geometric and combinatorial properties,

Automorphisms of algebraic curves

Curves with many automorphisms \Rightarrow nice geometric and combinatorial properties, sometimes, with some new features impossible in zero characteristic.

Automorphisms of algebraic curves

Curves with many automorphisms \Rightarrow nice geometric and combinatorial properties, sometimes, with some new features impossible in zero characteristic.
Are some of these curves of interest in applications? (Finite geometry, Coding theory, etc.)

Automorphisms of algebraic curves

Curves with many automorphisms \Rightarrow nice geometric and combinatorial properties, sometimes, with some new features impossible in zero characteristic.
Are some of these curves of interest in applications? (Finite geometry, Coding theory, etc.)
Typical situation in applications:

Automorphisms of algebraic curves

Curves with many automorphisms \Rightarrow nice geometric and combinatorial properties, sometimes, with some new features impossible in zero characteristic.
Are some of these curves of interest in applications? (Finite geometry, Coding theory, etc.)
Typical situation in applications: the curve is embedded in $P G(r, q)$ as an absolutely irreducible (not necessarily non-singular) curve, and

Automorphisms of algebraic curves

Curves with many automorphisms \Rightarrow nice geometric and combinatorial properties, sometimes, with some new features impossible in zero characteristic.
Are some of these curves of interest in applications? (Finite geometry, Coding theory, etc.)
Typical situation in applications:
the curve is embedded in $P G(r, q)$ as an absolutely irreducible (not necessarily non-singular) curve, and application wants basic data of the geometry of the curve,

Automorphisms of algebraic curves

Curves with many automorphisms \Rightarrow nice geometric and combinatorial properties, sometimes, with some new features impossible in zero characteristic.
Are some of these curves of interest in applications? (Finite geometry, Coding theory, etc.)
Typical situation in applications:
the curve is embedded in $P G(r, q)$ as an absolutely irreducible (not necessarily non-singular) curve, and application wants basic data of the geometry of the curve, (degree, singular points, number of points over $\mathbb{F}_{q^{m}}$, combinatorial properties of the configuration of those points, intersection multiplicities with hyperplanes at a point of the curve).

Automorphisms of algebraic curves

Curves with many automorphisms \Rightarrow nice geometric and combinatorial properties, sometimes, with some new features impossible in zero characteristic.
Are some of these curves of interest in applications? (Finite geometry, Coding theory, etc.)
Typical situation in applications:
the curve is embedded in $P G(r, q)$ as an absolutely irreducible (not necessarily non-singular) curve, and application wants basic data of the geometry of the curve, (degree, singular points, number of points over $\mathbb{F}_{q^{m}}$, combinatorial properties of the configuration of those points, intersection multiplicities with hyperplanes at a point of the curve).
The study of the geometry of a curve (like other objects) may benefit from its symmetries.

Automorphisms of algebraic curves

Curves with many automorphisms \Rightarrow nice geometric and combinatorial properties, sometimes, with some new features impossible in zero characteristic.
Are some of these curves of interest in applications? (Finite geometry, Coding theory, etc.)
Typical situation in applications:
the curve is embedded in $P G(r, q)$ as an absolutely irreducible (not necessarily non-singular) curve, and application wants basic data of the geometry of the curve, (degree, singular points, number of points over $\mathbb{F}_{q^{m}}$, combinatorial properties of the configuration of those points, intersection multiplicities with hyperplanes at a point of the curve).
The study of the geometry of a curve (like other objects) may benefit from its symmetries.

Symmetries of a curve

Symmetries of a curve

The (classical) term symmetry of a curve $=$ projective automorphism (or linear transformation, or projectivity) of $P G(r, q)$ which leaves the curve invariant.

Symmetries of a curve

The (classical) term symmetry of a curve $=$ projective automorphism (or linear transformation, or projectivity) of $P G(r, q)$ which leaves the curve invariant.
Formally, \mathcal{C} is a curve of $P G(r, q), \sigma$ is a projective automorphism of $\mathcal{C} \Leftrightarrow \sigma \in P G L(r+1, q)$ and $\sigma(\mathcal{C})=\mathcal{C}$.

Symmetries of a curve

The (classical) term symmetry of a curve $=$ projective automorphism (or linear transformation, or projectivity) of $P G(r, q)$ which leaves the curve invariant.
Formally, \mathcal{C} is a curve of $P G(r, q), \sigma$ is a projective automorphism of $\mathcal{C} \Leftrightarrow \sigma \in P G L(r+1, q)$ and $\sigma(\mathcal{C})=\mathcal{C}$.
In Algebraic geometry, an automorphism of an algebraic curve may also be birational (and not necessarily linear).

Symmetries of a curve

The (classical) term symmetry of a curve $=$ projective automorphism (or linear transformation, or projectivity) of $P G(r, q)$ which leaves the curve invariant.
Formally, \mathcal{C} is a curve of $P G(r, q), \sigma$ is a projective automorphism of $\mathcal{C} \Leftrightarrow \sigma \in P G L(r+1, q)$ and $\sigma(\mathcal{C})=\mathcal{C}$.
In Algebraic geometry, an automorphism of an algebraic curve may also be birational (and not necessarily linear). Remark

Symmetries of a curve

The (classical) term symmetry of a curve $=$ projective automorphism (or linear transformation, or projectivity) of $P G(r, q)$ which leaves the curve invariant.
Formally, \mathcal{C} is a curve of $P G(r, q), \sigma$ is a projective automorphism of $\mathcal{C} \Leftrightarrow \sigma \in P G L(r+1, q)$ and $\sigma(\mathcal{C})=\mathcal{C}$.
In Algebraic geometry, an automorphism of an algebraic curve may also be birational (and not necessarily linear).
Remark
Birational non-linear automorphism does not preserve the shape of our geometric object, i.e. its combinatorial properties,

Symmetries of a curve

The (classical) term symmetry of a curve $=$ projective automorphism (or linear transformation, or projectivity) of $P G(r, q)$ which leaves the curve invariant.
Formally, \mathcal{C} is a curve of $P G(r, q), \sigma$ is a projective automorphism of $\mathcal{C} \Leftrightarrow \sigma \in P G L(r+1, q)$ and $\sigma(\mathcal{C})=\mathcal{C}$.
In Algebraic geometry, an automorphism of an algebraic curve may also be birational (and not necessarily linear).
Remark
Birational non-linear automorphism does not preserve the shape of our geometric object, i.e. its combinatorial properties, and therefore has minor or no interest in Finite geometry.

Symmetries of a curve

The (classical) term symmetry of a curve $=$ projective automorphism (or linear transformation, or projectivity) of $P G(r, q)$ which leaves the curve invariant.
Formally, \mathcal{C} is a curve of $P G(r, q), \sigma$ is a projective automorphism of $\mathcal{C} \Leftrightarrow \sigma \in P G L(r+1, q)$ and $\sigma(\mathcal{C})=\mathcal{C}$.
In Algebraic geometry, an automorphism of an algebraic curve may also be birational (and not necessarily linear).
Remark
Birational non-linear automorphism does not preserve the shape of our geometric object, i.e. its combinatorial properties, and therefore has minor or no interest in Finite geometry.
\Rightarrow motivation for the study of linear automorphism group of a curve.

Symmetries of a curve

The (classical) term symmetry of a curve $=$ projective automorphism (or linear transformation, or projectivity) of $P G(r, q)$ which leaves the curve invariant.
Formally, \mathcal{C} is a curve of $P G(r, q), \sigma$ is a projective automorphism of $\mathcal{C} \Leftrightarrow \sigma \in P G L(r+1, q)$ and $\sigma(\mathcal{C})=\mathcal{C}$.
In Algebraic geometry, an automorphism of an algebraic curve may also be birational (and not necessarily linear).
Remark
Birational non-linear automorphism does not preserve the shape of our geometric object, i.e. its combinatorial properties, and therefore has minor or no interest in Finite geometry.
\Rightarrow motivation for the study of linear automorphism group of a
curve.
For a given curve, the problem of finding its linear automorphisms is frequently challenging,

Symmetries of a curve

The (classical) term symmetry of a curve $=$ projective automorphism (or linear transformation, or projectivity) of $P G(r, q)$ which leaves the curve invariant.
Formally, \mathcal{C} is a curve of $P G(r, q), \sigma$ is a projective automorphism of $\mathcal{C} \Leftrightarrow \sigma \in P G L(r+1, q)$ and $\sigma(\mathcal{C})=\mathcal{C}$.
In Algebraic geometry, an automorphism of an algebraic curve may also be birational (and not necessarily linear).
Remark
Birational non-linear automorphism does not preserve the shape of our geometric object, i.e. its combinatorial properties, and therefore has minor or no interest in Finite geometry.
\Rightarrow motivation for the study of linear automorphism group of a curve.
For a given curve, the problem of finding its linear automorphisms is frequently challenging, although the action on points (and/or on lines, blocks etc.) is bounded by the specific geometric (and combinatorial) properties of the curve.

Set up for the study of the linear automorphism group of a plane algebraic curve.

Set up for the study of the linear automorphism group of a plane algebraic curve.

$$
p \geq 2:=\text { prime, } q \text { a power of } p
$$

Set up for the study of the linear automorphism group of a plane algebraic curve.

$p \geq 2$:= prime, q a power of p
$P G L(3, q):=3$-dimensional projective linear group defined over a finite field \mathbb{F}_{q}

Set up for the study of the linear automorphism group of a plane algebraic curve.

$p \geq 2$:= prime, q a power of p
$P G L(3, q):=3$-dimensional projective linear group defined over a finite field \mathbb{F}_{q}
$G:=$ subgroup of $\operatorname{PGL}(3, q)$

Set up for the study of the linear automorphism group of a plane algebraic curve.

$p \geq 2:=$ prime, q a power of p
$P G L(3, q):=$ 3-dimensional projective linear group defined over a finite field \mathbb{F}_{q}
$G:=$ subgroup of $\operatorname{PGL}(3, q)$
Remark $\operatorname{PGL}(3, q)$ is a subgroup of $\operatorname{PGL}\left(3, q^{m}\right)$ for $m \geq 1 \Rightarrow$, $G \leq P G L\left(3, q^{m}\right)$

Set up for the study of the linear automorphism group of a plane algebraic curve.
$p \geq 2$:= prime, q a power of p
$P G L(3, q):=$ 3-dimensional projective linear group defined over a finite field \mathbb{F}_{q}
$G:=$ subgroup of $P G L(3, q)$
Remark $\operatorname{PGL}(3, q)$ is a subgroup of $\operatorname{PGL}\left(3, q^{m}\right)$ for $m \geq 1 \Rightarrow$, $G \leq P G L\left(3, q^{m}\right)$
It makes sense to investigate G-invariant plane curves \mathcal{C} of $P G\left(2, q^{m}\right)$ where $m \geq 1$.

Set up for the study of the linear automorphism group of a plane algebraic curve.
$p \geq 2$:= prime, q a power of p
$P G L(3, q):=3$-dimensional projective linear group defined over a finite field \mathbb{F}_{q}
$G:=$ subgroup of $P G L(3, q)$
Remark $\operatorname{PGL}(3, q)$ is a subgroup of $\operatorname{PGL}\left(3, q^{m}\right)$ for $m \geq 1 \Rightarrow$, $G \leq P G L\left(3, q^{m}\right)$
It makes sense to investigate G-invariant plane curves \mathcal{C} of $P G\left(2, q^{m}\right)$ where $m \geq 1$.
Intuitively, if G is large (with respect to q) then the degree of \mathcal{C} must also be large.

Set up for the study of the linear automorphism group of a plane algebraic curve.
$p \geq 2$:= prime, q a power of p
$P G L(3, q):=$ 3-dimensional projective linear group defined over a finite field \mathbb{F}_{q}
$G:=$ subgroup of $P G L(3, q)$
Remark $\operatorname{PGL}(3, q)$ is a subgroup of $\operatorname{PGL}\left(3, q^{m}\right)$ for $m \geq 1 \Rightarrow$, $G \leq P G L\left(3, q^{m}\right)$
It makes sense to investigate G-invariant plane curves \mathcal{C} of $P G\left(2, q^{m}\right)$ where $m \geq 1$.
Intuitively, if G is large (with respect to q) then the degree of \mathcal{C} must also be large.

How large $\operatorname{deg}(\mathcal{C})$ must be at least for a G-invariant plane curve \mathcal{C} ?

Set up for the study of the linear automorphism group of a plane algebraic curve.
$p \geq 2:=$ prime, q a power of p
$P G L(3, q):=$ 3-dimensional projective linear group defined over a finite field \mathbb{F}_{q}
$G:=$ subgroup of $P G L(3, q)$
Remark $\operatorname{PGL}(3, q)$ is a subgroup of $\operatorname{PGL}\left(3, q^{m}\right)$ for $m \geq 1 \Rightarrow$, $G \leq P G L\left(3, q^{m}\right)$
It makes sense to investigate G-invariant plane curves \mathcal{C} of $P G\left(2, q^{m}\right)$ where $m \geq 1$.
Intuitively, if G is large (with respect to q) then the degree of \mathcal{C} must also be large.

How large $\operatorname{deg}(\mathcal{C})$ must be at least for a G-invariant plane curve \mathcal{C} ? What about the plane curves \mathcal{C} hitting the minimum?

Projective automorphisms of a plane algebraic curve.

Projective automorphisms of a plane algebraic curve.
Some more notation

Projective automorphisms of a plane algebraic curve.
Some more notation $d(G):=$ the smallest integer that is the degree of a G-invariant irreducible plane curve \mathcal{C}, other than a line.

Projective automorphisms of a plane algebraic curve.
Some more notation
$d(G):=$ the smallest integer that is the degree of a G-invariant irreducible plane curve \mathcal{C}, other than a line.
Remark
$d(G)$ only depends on the conjugacy class of G in $\operatorname{PGL}(3, q)$.

Projective automorphisms of a plane algebraic curve.
Some more notation
$d(G):=$ the smallest integer that is the degree of a G-invariant irreducible plane curve \mathcal{C}, other than a line.
Remark
$d(G)$ only depends on the conjugacy class of G in $\operatorname{PGL}(3, q)$.
$\Sigma:=$ Spectrum of the degrees of G-invariant curves.

Some more notation
$d(G):=$ the smallest integer that is the degree of a G-invariant irreducible plane curve \mathcal{C}, other than a line.
Remark
$d(G)$ only depends on the conjugacy class of G in $\operatorname{PGL}(3, q)$.
$\Sigma:=$ Spectrum of the degrees of G-invariant curves.
Main problems

Some more notation
$d(G):=$ the smallest integer that is the degree of a G-invariant irreducible plane curve \mathcal{C}, other than a line.
Remark
$d(G)$ only depends on the conjugacy class of G in $\operatorname{PGL}(3, q)$.
$\Sigma:=$ Spectrum of the degrees of G-invariant curves.
Main problems
(i) find $d(G)$ for a given subgroup G of $P G L(3, q)$; (i.e. $d(G)$ is the smallest value in Σ)

Some more notation
$d(G):=$ the smallest integer that is the degree of a G-invariant irreducible plane curve \mathcal{C}, other than a line.
Remark
$d(G)$ only depends on the conjugacy class of G in $\operatorname{PGL}(3, q)$.
$\Sigma:=$ Spectrum of the degrees of G-invariant curves.
Main problems
(i) find $d(G)$ for a given subgroup G of $\operatorname{PGL}(3, q)$; (i.e. $d(G)$ is the smallest value in Σ)
(ii) find the largest positive integer $\varepsilon(G)$ depending on q s.t. there is no G-invariant irreducible plane curve of degree $<d(G)+\varepsilon(G)$. (i.e. $d(G)+\varepsilon(G)$ is the second smallest value in Σ, and $\varepsilon(G)-1$ is the first gap).

Projective automorphisms of a plane algebraic curve.

Some more notation
$d(G):=$ the smallest integer that is the degree of a G-invariant irreducible plane curve \mathcal{C}, other than a line.
Remark
$d(G)$ only depends on the conjugacy class of G in $\operatorname{PGL}(3, q)$.
$\Sigma:=$ Spectrum of the degrees of G-invariant curves.
Main problems
(i) find $d(G)$ for a given subgroup G of $\operatorname{PGL}(3, q)$; (i.e. $d(G)$ is the smallest value in Σ)
(ii) find the largest positive integer $\varepsilon(G)$ depending on q s.t. there is no G-invariant irreducible plane curve of degree $<d(G)+\varepsilon(G)$. (i.e. $d(G)+\varepsilon(G)$ is the second smallest value in Σ, and $\varepsilon(G)-1$ is the first gap).
(iii) find all G-invariant irreducible plane curves of degree $d(G)$.

Projective automorphisms of a plane algebraic curve.

Some more notation
$d(G):=$ the smallest integer that is the degree of a G-invariant irreducible plane curve \mathcal{C}, other than a line.
Remark
$d(G)$ only depends on the conjugacy class of G in $\operatorname{PGL}(3, q)$.
$\Sigma:=$ Spectrum of the degrees of G-invariant curves.
Main problems
(i) find $d(G)$ for a given subgroup G of $\operatorname{PGL}(3, q)$; (i.e. $d(G)$ is the smallest value in Σ)
(ii) find the largest positive integer $\varepsilon(G)$ depending on q s.t. there is no G-invariant irreducible plane curve of degree $<d(G)+\varepsilon(G)$. (i.e. $d(G)+\varepsilon(G)$ is the second smallest value in Σ, and $\varepsilon(G)-1$ is the first gap).
(iii) find all G-invariant irreducible plane curves of degree $d(G)$.

Essential tool in investigating the above problems: Pencil of plane algebraic curves

Projective automorphisms of a plane algebraic curve.

Some more notation
$d(G):=$ the smallest integer that is the degree of a G-invariant irreducible plane curve \mathcal{C}, other than a line.
Remark
$d(G)$ only depends on the conjugacy class of G in $\operatorname{PGL}(3, q)$.
$\Sigma:=$ Spectrum of the degrees of G-invariant curves.
Main problems
(i) find $d(G)$ for a given subgroup G of $\operatorname{PGL}(3, q)$; (i.e. $d(G)$ is the smallest value in Σ)
(ii) find the largest positive integer $\varepsilon(G)$ depending on q s.t. there is no G-invariant irreducible plane curve of degree $<d(G)+\varepsilon(G)$. (i.e. $d(G)+\varepsilon(G)$ is the second smallest value in Σ, and $\varepsilon(G)-1$ is the first gap).
(iii) find all G-invariant irreducible plane curves of degree $d(G)$.

Essential tool in investigating the above problems: Pencil of plane algebraic curves

G-fixed pencil of plane algebraic curves

Plane algebraic curves with many symmetries, and complete (k,

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d
$C_{\lambda}:=($ degree $d)$ plane curve of equation $F_{1}+\lambda F_{2}=0$

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d $C_{\lambda}:=\left(\right.$ degree d) plane curve of equation $F_{1}+\lambda F_{2}=0$
$C_{\infty}:=$ the plane curve of equation $F_{2}=0$

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d $C_{\lambda}:=\left(\right.$ degree d) plane curve of equation $F_{1}+\lambda F_{2}=0$
$C_{\infty}:=$ the plane curve of equation $F_{2}=0$ pencil $\Lambda:=\left\{C_{\lambda} \mid \lambda \in \mathbb{F}_{q^{r m}}, r \geq 1\right\} \cup\left\{C_{\infty}\right\}$

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d $C_{\lambda}:=\left(\right.$ degree d) plane curve of equation $F_{1}+\lambda F_{2}=0$ $C_{\infty}:=$ the plane curve of equation $F_{2}=0$ pencil $\Lambda:=\left\{C_{\lambda} \mid \lambda \in \mathbb{F}_{q^{r m}}, r \geq 1\right\} \cup\left\{C_{\infty}\right\}=<C_{0}, C_{\infty}>$.

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d $C_{\lambda}:=\left(\right.$ degree d) plane curve of equation $F_{1}+\lambda F_{2}=0$ C_{∞} :=the plane curve of equation $F_{2}=0$ pencil $\Lambda:=\left\{C_{\lambda} \mid \lambda \in \mathbb{F}_{q^{r m}}, r \geq 1\right\} \cup\left\{C_{\infty}\right\}=<C_{0}, C_{\infty}>$. Λ is G-fixed pencil if G preserves each curve in Λ.

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d $C_{\lambda}:=($ degree $d)$ plane curve of equation $F_{1}+\lambda F_{2}=0$
$C_{\infty}:=$ the plane curve of equation $F_{2}=0$ pencil $\Lambda:=\left\{C_{\lambda} \mid \lambda \in \mathbb{F}_{q^{r m}}, r \geq 1\right\} \cup\left\{C_{\infty}\right\}=<C_{0}, C_{\infty}>$. Λ is G-fixed pencil if G preserves each curve in Λ.

Theorem Let \wedge be a G-fixed pencil of curves of degree d without common component. Let \mathcal{U} be any further G-invariant curve. Then $\operatorname{deg}(\mathcal{U}) \geq|G| / d$.

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d $C_{\lambda}:=\left(\right.$ degree d) plane curve of equation $F_{1}+\lambda F_{2}=0$
$C_{\infty}:=$ the plane curve of equation $F_{2}=0$
pencil $\Lambda:=\left\{C_{\lambda} \mid \lambda \in \mathbb{F}_{q^{r m}}, r \geq 1\right\} \cup\left\{C_{\infty}\right\}=<C_{0}, C_{\infty}>$.
Λ is G-fixed pencil if G preserves each curve in Λ.
Theorem Let Λ be a G-fixed pencil of curves of degree d without common component. Let \mathcal{U} be any further G-invariant curve.
Then $\operatorname{deg}(\mathcal{U}) \geq|G| / d$.
$\operatorname{Proof}|G|$ is a lower bound on the number of common points of \mathcal{U} with a generically chosen (absolutely irreducible) curve \mathcal{C} from Λ. Comparison of this lower bound with the upper bound derived from the Bézout theorem yields $d \cdot \operatorname{deg}(\mathcal{U}) \geq|G|$.

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d
$C_{\lambda}:=\left(\right.$ degree d) plane curve of equation $F_{1}+\lambda F_{2}=0$
C_{∞} :=the plane curve of equation $F_{2}=0$
pencil $\Lambda:=\left\{C_{\lambda} \mid \lambda \in \mathbb{F}_{q^{r m}}, r \geq 1\right\} \cup\left\{C_{\infty}\right\}=\left\langle C_{0}, C_{\infty}\right\rangle$.
Λ is G-fixed pencil if G preserves each curve in Λ.
Theorem Let \wedge be a G-fixed pencil of curves of degree d without common component. Let \mathcal{U} be any further G-invariant curve. Then $\operatorname{deg}(\mathcal{U}) \geq|G| / d$.
$\operatorname{Proof}|G|$ is a lower bound on the number of common points of \mathcal{U} with a generically chosen (absolutely irreducible) curve \mathcal{C} from Λ. Comparison of this lower bound with the upper bound derived from the Bézout theorem yields $d \cdot \operatorname{deg}(\mathcal{U}) \geq|G|$.
Corollary Let $|G|>d^{2}$. Then $d(G) \leq d$. If $\operatorname{deg}(C)=d(G)$ then C is either in Λ, or C is a nonlinear component of a curve in Λ.

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d
$C_{\lambda}:=\left(\right.$ degree d) plane curve of equation $F_{1}+\lambda F_{2}=0$
C_{∞} :=the plane curve of equation $F_{2}=0$
pencil $\Lambda:=\left\{C_{\lambda} \mid \lambda \in \mathbb{F}_{q^{m}}, r \geq 1\right\} \cup\left\{C_{\infty}\right\}=\left\langle C_{0}, C_{\infty}\right\rangle$.
Λ is G-fixed pencil if G preserves each curve in Λ.
Theorem Let \wedge be a G-fixed pencil of curves of degree d without common component. Let \mathcal{U} be any further G-invariant curve. Then $\operatorname{deg}(\mathcal{U}) \geq|G| / d$.
$\operatorname{Proof}|G|$ is a lower bound on the number of common points of \mathcal{U} with a generically chosen (absolutely irreducible) curve \mathcal{C} from Λ. Comparison of this lower bound with the upper bound derived from the Bézout theorem yields $d \cdot \operatorname{deg}(\mathcal{U}) \geq|G|$.
Corollary Let $|G|>d^{2}$. Then $d(G) \leq d$. If $\operatorname{deg}(C)=d(G)$ then C is either in Λ, or C is a nonlinear component of a curve in Λ. Problem Find G-invariant pencils!

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d
$C_{\lambda}:=\left(\right.$ degree d) plane curve of equation $F_{1}+\lambda F_{2}=0$
C_{∞} :=the plane curve of equation $F_{2}=0$
pencil $\Lambda:=\left\{C_{\lambda} \mid \lambda \in \mathbb{F}_{q^{r m}}, r \geq 1\right\} \cup\left\{C_{\infty}\right\}=\left\langle C_{0}, C_{\infty}\right\rangle$.
Λ is G-fixed pencil if G preserves each curve in Λ.
Theorem Let \wedge be a G-fixed pencil of curves of degree d without common component. Let \mathcal{U} be any further G-invariant curve. Then $\operatorname{deg}(\mathcal{U}) \geq|G| / d$.
$\operatorname{Proof}|G|$ is a lower bound on the number of common points of \mathcal{U} with a generically chosen (absolutely irreducible) curve \mathcal{C} from Λ. Comparison of this lower bound with the upper bound derived from the Bézout theorem yields $d \cdot \operatorname{deg}(\mathcal{U}) \geq|G|$.
Corollary Let $|G|>d^{2}$. Then $d(G) \leq d$. If $\operatorname{deg}(C)=d(G)$ then C is either in Λ, or C is a nonlinear component of a curve in Λ. Problem Find G-invariant pencils! (in general difficult, no general method from classical Algebraic geometry)

G-fixed pencil of plane algebraic curves

$F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$, homogenous polynomials of degree d
$C_{\lambda}:=\left(\right.$ degree d) plane curve of equation $F_{1}+\lambda F_{2}=0$
C_{∞} :=the plane curve of equation $F_{2}=0$
pencil $\Lambda:=\left\{C_{\lambda} \mid \lambda \in \mathbb{F}_{q^{r m}}, r \geq 1\right\} \cup\left\{C_{\infty}\right\}=\left\langle C_{0}, C_{\infty}\right\rangle$.
Λ is G-fixed pencil if G preserves each curve in Λ.
Theorem Let \wedge be a G-fixed pencil of curves of degree d without common component. Let \mathcal{U} be any further G-invariant curve. Then $\operatorname{deg}(\mathcal{U}) \geq|G| / d$.
$\operatorname{Proof}|G|$ is a lower bound on the number of common points of \mathcal{U} with a generically chosen (absolutely irreducible) curve \mathcal{C} from Λ. Comparison of this lower bound with the upper bound derived from the Bézout theorem yields $d \cdot \operatorname{deg}(\mathcal{U}) \geq|G|$.
Corollary Let $|G|>d^{2}$. Then $d(G) \leq d$. If $\operatorname{deg}(C)=d(G)$ then C is either in Λ, or C is a nonlinear component of a curve in Λ. Problem Find G-invariant pencils! (in general difficult, no general method from classical Algebraic geometry)

Sufficient condition for a pencil to be G-fixed

Plane algebraic curves with many symmetries, and complete (k,

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.
Remark Two G-invariant curves in Λ are not enough in general, unless in particular cases.

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.
Remark Two G-invariant curves in Λ are not enough in general, unless in particular cases.
One of these cases:

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.
Remark Two G-invariant curves in Λ are not enough in general, unless in particular cases.
One of these cases: Take $\Gamma \leq \mathrm{GL}(3, q)$ which is the pullback of G in the natural homomorphism $\operatorname{GL}(3, q) \rightarrow P G L(3, q)$.

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.
Remark Two G-invariant curves in Λ are not enough in general, unless in particular cases.
One of these cases: Take $\Gamma \leq \mathrm{GL}(3, q)$ which is the pullback of G in the natural homomorphism $\operatorname{GL}(3, q) \rightarrow P G L(3, q)$.
If $F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$ are both Γ-invariant homogeneous polynomials of the same degree d, then any linear combination $F=F_{1}+\lambda F_{2}$ is also a Γ-invariant form.

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.
Remark Two G-invariant curves in Λ are not enough in general, unless in particular cases.
One of these cases: Take $\Gamma \leq \operatorname{GL}(3, q)$ which is the pullback of G in the natural homomorphism $\operatorname{GL}(3, q) \rightarrow P G L(3, q)$.
If $F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$ are both Γ-invariant homogeneous polynomials of the same degree d, then any linear combination $F=F_{1}+\lambda F_{2}$ is also a Γ-invariant form.
By projectivization, the pencil $\left.<F_{1}, F_{2}\right\rangle$ is G-fixed.

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.
Remark Two G-invariant curves in Λ are not enough in general, unless in particular cases.
One of these cases: Take $\Gamma \leq \mathrm{GL}(3, q)$ which is the pullback of G in the natural homomorphism $\operatorname{GL}(3, q) \rightarrow P G L(3, q)$.
If $F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$ are both Γ-invariant homogeneous polynomials of the same degree d, then any linear combination $F=F_{1}+\lambda F_{2}$ is also a Γ-invariant form.
By projectivization, the pencil $\left.<F_{1}, F_{2}\right\rangle$ is G-fixed. Remark It is enough that the rational function F_{1} / F_{2} is Γ-invariant.

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.
Remark Two G-invariant curves in Λ are not enough in general, unless in particular cases.
One of these cases: Take $\Gamma \leq \mathrm{GL}(3, q)$ which is the pullback of G in the natural homomorphism $\operatorname{GL}(3, q) \rightarrow P G L(3, q)$.
If $F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$ are both Γ-invariant homogeneous polynomials of the same degree d, then any linear combination $F=F_{1}+\lambda F_{2}$ is also a Γ-invariant form.
By projectivization, the pencil $\left.<F_{1}, F_{2}\right\rangle$ is G-fixed.
Remark It is enough that the rational function F_{1} / F_{2} is Γ-invariant.
Focus on the following problem:

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.
Remark Two G-invariant curves in Λ are not enough in general, unless in particular cases.
One of these cases: Take $\Gamma \leq \mathrm{GL}(3, q)$ which is the pullback of G in the natural homomorphism $\operatorname{GL}(3, q) \rightarrow P G L(3, q)$.
If $F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$ are both Γ-invariant homogeneous polynomials of the same degree d, then any linear combination $F=F_{1}+\lambda F_{2}$ is also a Γ-invariant form.
By projectivization, the pencil $\left\langle F_{1}, F_{2}\right\rangle$ is G-fixed.
Remark It is enough that the rational function F_{1} / F_{2} is Γ-invariant.
Focus on the following problem:
Problem How to find G-invariant pencils for large subgroups G of $\operatorname{PGL}(3, q)$, in particular for maximal subgroups G of $\operatorname{PGL}(3, q)$?

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.
Remark Two G-invariant curves in Λ are not enough in general, unless in particular cases.
One of these cases: Take $\Gamma \leq \operatorname{GL}(3, q)$ which is the pullback of G in the natural homomorphism $\operatorname{GL}(3, q) \rightarrow P G L(3, q)$.
If $F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$ are both Γ-invariant homogeneous polynomials of the same degree d, then any linear combination $F=F_{1}+\lambda F_{2}$ is also a Γ-invariant form.
By projectivization, the pencil $\left.<F_{1}, F_{2}\right\rangle$ is G-fixed.
Remark It is enough that the rational function F_{1} / F_{2} is Γ-invariant.
Focus on the following problem:
Problem How to find G-invariant pencils for large subgroups G of $\operatorname{PGL}(3, q)$, in particular for maximal subgroups G of $\operatorname{PGL}(3, q)$? These G-invariant pencils change depending on which maximal subgroup is taken for G;

Sufficient condition for a pencil to be G-fixed

Lemma If Λ has at least three G-invariant curves, then Λ is a G-fixed pencil.
Remark Two G-invariant curves in Λ are not enough in general, unless in particular cases.
One of these cases: Take $\Gamma \leq \operatorname{GL}(3, q)$ which is the pullback of G in the natural homomorphism $\operatorname{GL}(3, q) \rightarrow P G L(3, q)$.
If $F_{1}, F_{2} \in \mathbb{F}_{q^{m}}\left[x_{1}, x_{2}, x_{3}\right]$ are both Γ-invariant homogeneous polynomials of the same degree d, then any linear combination $F=F_{1}+\lambda F_{2}$ is also a Γ-invariant form.
By projectivization, the pencil $\left.<F_{1}, F_{2}\right\rangle$ is G-fixed.
Remark It is enough that the rational function F_{1} / F_{2} is Γ-invariant.
Focus on the following problem:
Problem How to find G-invariant pencils for large subgroups G of $\operatorname{PGL}(3, q)$, in particular for maximal subgroups G of $\operatorname{PGL}(3, q)$? These G-invariant pencils change depending on which maximal subgroup is taken for G; a case-by-case analysis is needed.

Maximal subgroups of $\operatorname{PGL}(3, q)$

Plane algebraic curves with many symmetries, and complete (k,

Maximal subgroups of $\operatorname{PGL}(3, q)$

(i) $\operatorname{PSL}(3, q)$ for $q \equiv 1(\bmod 3)$, having order $\frac{1}{3}\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$
(ii) the stabilizer of a point of $P G(2, q)$, having order $q^{3}(q+1)(q-1)^{2}$
(iii) the stabilizer of a line of $P G(2, q)$, having order $q^{3}(q+1)(q-1)^{2}$
(iv) the stabilizer of an Hermitian curve of $P G(2, q)$ for $q=n^{2}$, having order $n^{3}\left(n^{3}+1\right)(n-1)^{2}$
(v) the stabilizer of a triangle of $P G(2, q)$, having order $6(q-1)^{2}$
(vi) the stabilizer of an imaginary triangle (i.e., a triangle in $\left.P G\left(2, q^{3}\right) \backslash P G(2, q)\right)$, having order $3\left(q^{2}+q+1\right)$
(vii) for q odd, the stabilizer of an irreducible conic, having order $q(q+1)(q-1)$
(viii) sporadic subgroups (of order ≤ 2520)

Case $G=\operatorname{PGL}(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Plane algebraic curves with many symmetries, and complete (k,

Case $G=P G L(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Example (Borges 2009)

Plane algebraic curves with many symmetries, and complete (k,

Case $G=P G L(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Example (Borges 2009) $m, n:=$ positive integers, $\operatorname{gcd}(m, n)=1$

Case $G=P G L(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Example (Borges 2009) $m, n:=$ positive integers, $\operatorname{gcd}(m, n)=1$ $\mathcal{F}_{n, m}:=$ plane curve in $P G(2, q)$ with affine equation:

$$
\frac{\left(X^{q^{n}}-X\right)\left(Y^{q^{m}}-Y\right)-\left(Y^{q^{n}}-Y\right)\left(X^{q^{m}}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}=0 .
$$

Case $G=P G L(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Example (Borges 2009) $m, n:=$ positive integers, $\operatorname{gcd}(m, n)=1$ $\mathcal{F}_{n, m}:=$ plane curve in $\operatorname{PG}(2, q)$ with affine equation:

$$
\frac{\left(X^{q^{n}}-X\right)\left(Y^{q^{m}}-Y\right)-\left(Y^{q^{n}}-Y\right)\left(X^{q^{m}}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}=0
$$

$\mathcal{F}_{3,1}$, named DGZ (Dickson-Guralnick-Zieve) curve,

Case $G=P G L(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Example (Borges 2009) $m, n:=$ positive integers, $\operatorname{gcd}(m, n)=1$ $\mathcal{F}_{n, m}:=$ plane curve in $\operatorname{PG}(2, q)$ with affine equation:

$$
\frac{\left(X^{q^{n}}-X\right)\left(Y^{q^{m}}-Y\right)-\left(Y^{q^{n}}-Y\right)\left(X^{q^{m}}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}=0
$$

$\mathcal{F}_{3,1}$, named DGZ (Dickson-Guralnick-Zieve) curve, $\mathcal{F}_{3,2}$, the dual DGZ curve.

Case $G=P G L(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Example (Borges 2009) $m, n:=$ positive integers, $\operatorname{gcd}(m, n)=1$ $\mathcal{F}_{n, m}:=$ plane curve in $\operatorname{PG}(2, q)$ with affine equation:

$$
\frac{\left(X^{q^{n}}-X\right)\left(Y^{q^{m}}-Y\right)-\left(Y^{q^{n}}-Y\right)\left(X^{q^{m}}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}=0
$$

$\mathcal{F}_{3,1}$, named DGZ (Dickson-Guralnick-Zieve) curve,
$\mathcal{F}_{3,2}$, the dual DGZ curve.
$<\mathcal{F}_{3,1}^{q+1}, \mathcal{F}_{3,2}^{q}>$ is a $\operatorname{PGL}(3, q)$-fixed pencil.

Case $G=P G L(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Example (Borges 2009) $m, n:=$ positive integers, $\operatorname{gcd}(m, n)=1$ $\mathcal{F}_{n, m}:=$ plane curve in $\operatorname{PG}(2, q)$ with affine equation:

$$
\frac{\left(X^{q^{n}}-X\right)\left(Y^{q^{m}}-Y\right)-\left(Y^{q^{n}}-Y\right)\left(X^{q^{m}}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}=0
$$

$\mathcal{F}_{3,1}$, named DGZ (Dickson-Guralnick-Zieve) curve,
$\mathcal{F}_{3,2}$, the dual DGZ curve.
$<\mathcal{F}_{3,1}^{q+1}, \mathcal{F}_{3,2}^{q}>$ is a $\operatorname{PGL}(3, q)$-fixed pencil.

$$
d(P G L(3, q))=q^{3}-q^{2}, d(P G L(3, q))+\varepsilon(P G L(3, q))=q^{3}-q
$$

Case $G=P G L(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Example (Borges 2009) $m, n:=$ positive integers, $\operatorname{gcd}(m, n)=1$ $\mathcal{F}_{n, m}:=$ plane curve in $\operatorname{PG}(2, q)$ with affine equation:

$$
\frac{\left(X^{q^{n}}-X\right)\left(Y^{q^{m}}-Y\right)-\left(Y^{q^{n}}-Y\right)\left(X^{q^{m}}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}=0
$$

$\mathcal{F}_{3,1}$, named DGZ (Dickson-Guralnick-Zieve) curve, $\mathcal{F}_{3,2}$, the dual DGZ curve.
$<\mathcal{F}_{3,1}^{q+1}, \mathcal{F}_{3,2}^{q}>$ is a $\operatorname{PGL}(3, q)$-fixed pencil.

$$
d(P G L(3, q))=q^{3}-q^{2}, d(P G L(3, q))+\varepsilon(P G L(3, q))=q^{3}-q
$$

the DGZ curve is the unique $\operatorname{PGL}(3, q)$-invariant irreducible plane curve of degree $q^{3}-q^{2}$

Case $G=P G L(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Example (Borges 2009) $m, n:=$ positive integers, $\operatorname{gcd}(m, n)=1$ $\mathcal{F}_{n, m}:=$ plane curve in $\operatorname{PG}(2, q)$ with affine equation:

$$
\frac{\left(X^{q^{n}}-X\right)\left(Y^{q^{m}}-Y\right)-\left(Y^{q^{n}}-Y\right)\left(X^{q^{m}}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}=0
$$

$\mathcal{F}_{3,1}$, named DGZ (Dickson-Guralnick-Zieve) curve, $\mathcal{F}_{3,2}$, the dual DGZ curve.
$<\mathcal{F}_{3,1}^{q+1}, \mathcal{F}_{3,2}^{q}>$ is a $\operatorname{PGL}(3, q)$-fixed pencil.

$$
d(P G L(3, q))=q^{3}-q^{2}, d(P G L(3, q))+\varepsilon(P G L(3, q))=q^{3}-q
$$

the DGZ curve is the unique $P G L(3, q)$-invariant irreducible plane curve of degree $q^{3}-q^{2}$ the dual DGZ curve is an example for $d(\operatorname{PGL}(3, q))+\varepsilon(\operatorname{PGL}(3, q))=q^{3}-q$.

Case $G=P G L(3, q),|G|=\left(q^{2}+q+1\right) q^{3}(q+1)(q-1)^{2}$

Example (Borges 2009) $m, n:=$ positive integers, $\operatorname{gcd}(m, n)=1$ $\mathcal{F}_{n, m}:=$ plane curve in $\operatorname{PG}(2, q)$ with affine equation:

$$
\frac{\left(X^{q^{n}}-X\right)\left(Y^{q^{m}}-Y\right)-\left(Y^{q^{n}}-Y\right)\left(X^{q^{m}}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}=0
$$

$\mathcal{F}_{3,1}$, named DGZ (Dickson-Guralnick-Zieve) curve, $\mathcal{F}_{3,2}$, the dual DGZ curve.
$<\mathcal{F}_{3,1}^{q+1}, \mathcal{F}_{3,2}^{q}>$ is a $\operatorname{PGL}(3, q)$-fixed pencil.

$$
d(P G L(3, q))=q^{3}-q^{2}, d(P G L(3, q))+\varepsilon(P G L(3, q))=q^{3}-q
$$

the DGZ curve is the unique $\operatorname{PGL}(3, q)$-invariant irreducible plane curve of degree $q^{3}-q^{2}$
the dual DGZ curve is an example for $d(\operatorname{PGL}(3, q))+\varepsilon(\operatorname{PGL}(3, q))=q^{3}-q$.
For $q \equiv 1(\bmod 3), \operatorname{PSL}(3, q)$ is a maximal subgroup of $\operatorname{PGL}(3, q)$ of index 3 , but the same results hold.

Case $G=\operatorname{AGL}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

Plane algebraic curves with many symmetries, and complete (k,

Case $G=\operatorname{AGL}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$\operatorname{AGL}(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ preserving the line of infinity.

Case $G=\operatorname{AGL}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$A G L(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ preserving the line of infinity.
an $\operatorname{AGL}(2, q)$-invariant pencil is:

$$
\frac{\left(X^{q^{3}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{3}}-Y\right)\left(X^{q}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}-\lambda=0
$$

Case $G=\operatorname{AGL}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$\operatorname{AGL}(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ preserving the line of infinity.
an $\operatorname{AGL}(2, q)$-invariant pencil is:

$$
\begin{gathered}
\frac{\left(X^{q^{3}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{3}}-Y\right)\left(X^{q}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y q^{2}-Y\right)\left(X^{q}-X\right)}-\lambda=0 . \\
d(A G L(2, q))=q^{3}-q^{2}, d(A G L(2, q))+\varepsilon(A G L(2, q))=q^{3}-q .
\end{gathered}
$$

Case $G=\operatorname{AGL}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$\operatorname{AGL}(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ preserving the line of infinity.
an $\operatorname{AGL}(2, q)$-invariant pencil is:

$$
\begin{gathered}
\frac{\left(X^{q^{3}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{3}}-Y\right)\left(X^{q}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y q^{2}-Y\right)\left(X^{q}-X\right)}-\lambda=0 . \\
d(A G L(2, q))=q^{3}-q^{2}, d(A G L(2, q))+\varepsilon(A G L(2, q))=q^{3}-q .
\end{gathered}
$$

the DGZ curve is the unique $\operatorname{AGL}(2, q)$-invariant irreducible plane curve of degree $q^{3}-q^{2}$

Case $G=A G L(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$\operatorname{AGL}(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ preserving the line of infinity.
an $\operatorname{AGL}(2, q)$-invariant pencil is:

$$
\begin{gathered}
\frac{\left(X^{q^{3}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{3}}-Y\right)\left(X^{q}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y q^{q^{2}}-Y\right)\left(X^{q}-X\right)}-\lambda=0 . \\
d(A G L(2, q))=q^{3}-q^{2}, d(A G L(2, q))+\varepsilon(A G L(2, q))=q^{3}-q .
\end{gathered}
$$

the DGZ curve is the unique $\operatorname{AGL}(2, q)$-invariant irreducible plane curve of degree $q^{3}-q^{2}$ the dual DGZ curve is an example for $d(\operatorname{AGL}(2, q))+\varepsilon(\operatorname{AGL}(2, q))=q^{3}-q$.

Case $G=A G L(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$\operatorname{AGL}(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ preserving the line of infinity.
an $\operatorname{AGL}(2, q)$-invariant pencil is:

$$
\begin{gathered}
\frac{\left(X^{q^{3}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{3}}-Y\right)\left(X^{q}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y q^{q^{2}}-Y\right)\left(X^{q}-X\right)}-\lambda=0 . \\
d(A G L(2, q))=q^{3}-q^{2}, d(A G L(2, q))+\varepsilon(A G L(2, q))=q^{3}-q .
\end{gathered}
$$

the DGZ curve is the unique $\operatorname{AGL}(2, q)$-invariant irreducible plane curve of degree $q^{3}-q^{2}$
the dual DGZ curve is an example for
$d(A G L(2, q))+\varepsilon(A G L(2, q))=q^{3}-q$.
All $A G L(2, q)$-invariant irreducible curves of degree $q^{3}-q^{2}$ belong, up to projectivity, to the above pencil

Case $G=\overline{\operatorname{AGL}}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

Plane algebraic curves with many symmetries, and complete (k,

Case $G=\overline{\operatorname{AGL}}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$\overline{\operatorname{AGL}}(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ fixing a point.

Case $G=\overline{\operatorname{AGL}}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$\overline{\operatorname{AGL}}(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ fixing a point. an $\overline{\operatorname{AGL}}(2, q)$-invariant pencil is:

$$
\begin{aligned}
& \frac{\left(X^{q^{3}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{3}}-Y\right)\left(X^{q}-X\right)}{\left(X q^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}- \\
& \lambda \frac{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}{\left(Y^{q}-Y\right)^{q+1}}=0 .
\end{aligned}
$$

Moreover,

$$
d(\overline{A G L}(2, q))=q^{3}-q^{2}, d(\overline{A G L}(2, q))+\varepsilon(\overline{\operatorname{AGL}}(2, q))=q^{3}-q .
$$

Case $G=\overline{\operatorname{AGL}}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$\overline{\operatorname{AGL}}(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ fixing a point. an $\overline{\operatorname{AGL}}(2, q)$-invariant pencil is:

$$
\begin{aligned}
& \frac{\left(X^{q^{3}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{3}}-Y\right)\left(X^{q}-X\right)}{\left(X{ }^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y q^{q^{2}}-Y\right)\left(X^{q}-X\right)}- \\
& \lambda \frac{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}{\left(Y^{q}-Y\right)^{q+1}}=0 .
\end{aligned}
$$

Moreover,

$$
d(\overline{A G L}(2, q))=q^{3}-q^{2}, d(\overline{A G L}(2, q))+\varepsilon(\overline{A G L}(2, q))=q^{3}-q .
$$

the DGZ curve is the unique $\overline{A G L}(2, q)$-invariant irreducible plane curve of degree $q^{3}-q^{2}$

Case $G=\overline{\operatorname{AGL}}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$\overline{\operatorname{AGL}}(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ fixing a point. an $\overline{\operatorname{AGL}}(2, q)$-invariant pencil is:

$$
\begin{aligned}
& \frac{\left(X^{q^{3}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{3}}-Y\right)\left(X^{q}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}- \\
& \lambda \frac{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}{\left(Y^{q}-Y\right)^{q+1}}=0 .
\end{aligned}
$$

Moreover,

$$
d(\overline{\operatorname{AGL}}(2, q))=q^{3}-q^{2}, d(\overline{\operatorname{AGL}}(2, q))+\varepsilon(\overline{\operatorname{AGL}}(2, q))=q^{3}-q .
$$

the DGZ curve is the unique $\overline{A G L}(2, q)$-invariant irreducible plane curve of degree $q^{3}-q^{2}$
the dual DGZ curve is an example for $\varepsilon(\overline{\operatorname{AGL}}(2, q))=q^{3}-q$.

Case $G=\overline{\operatorname{AGL}}(2, q),|G|=q^{2}(q-1)\left(q^{3}-q\right)$

$\overline{\operatorname{AGL}}(2, q)$ is viewed as the subgroup of $\operatorname{PGL}(3, q)$ fixing a point. an $\overline{\operatorname{AGL}}(2, q)$-invariant pencil is:

$$
\begin{aligned}
& \frac{\left(X^{q^{3}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{3}}-Y\right)\left(X^{q}-X\right)}{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}- \\
& \lambda \frac{\left(X^{q^{2}}-X\right)\left(Y^{q}-Y\right)-\left(Y^{q^{2}}-Y\right)\left(X^{q}-X\right)}{\left(Y^{q}-Y\right)^{q+1}}=0 .
\end{aligned}
$$

Moreover,

$$
d(\overline{A G L}(2, q))=q^{3}-q^{2}, d(\overline{A G L}(2, q))+\varepsilon(\overline{\operatorname{AGL}}(2, q))=q^{3}-q .
$$

the DGZ curve is the unique $\overline{A G L}(2, q)$-invariant irreducible plane curve of degree $q^{3}-q^{2}$
the dual DGZ curve is an example for $\varepsilon(\overline{\operatorname{AGL}}(2, q))=q^{3}-q$.
All $\overline{A G L}(2, q)$-invariant irreducible curves of degree $q^{3}-q$ belong, up to projectivity, to the pencil with $\lambda \neq 1$.

Case $G=P G U(3, n), q=n^{2}$,

$$
|G|=\left(n^{3}+1\right) n^{3}\left(n^{2}-1\right)=\left(q^{3 / 2}+1\right) q^{3 / 2}(q-1)
$$

Case $G=\operatorname{PGU}(3, n), q=n^{2}$,

$$
|G|=\left(n^{3}+1\right) n^{3}\left(n^{2}-1\right)=\left(q^{3 / 2}+1\right) q^{3 / 2}(q-1)
$$

well known example the Hermitian curve \mathcal{H}_{n} of affine equation

$$
\begin{gathered}
Y^{n}+Y-X^{n+1}=0 \\
d(P G U(3, n))=n+1, d(P G U(3, n))+\varepsilon(P G U(3, n))=n^{3}+1
\end{gathered}
$$

$$
\begin{aligned}
& \text { Case } G=\operatorname{PGU}(3, n), q=n^{2}, \\
& |G|=\left(n^{3}+1\right) n^{3}\left(n^{2}-1\right)=\left(q^{3 / 2}+1\right) q^{3 / 2}(q-1)
\end{aligned}
$$

well known example the Hermitian curve \mathcal{H}_{n} of affine equation

$$
Y^{n}+Y-X^{n+1}=0
$$

$d(P G U(3, n))=n+1, d(P G U(3, n))+\varepsilon(P G U(3, n))=n^{3}+1$,
\mathcal{H}_{n} is the unique $\operatorname{PGU}(3, n)$-invariant irreducible plane curve of degree $n+1$.

$$
\begin{aligned}
& \text { Case } G=\operatorname{PGU}(3, n), q=n^{2}, \\
& |G|=\left(n^{3}+1\right) n^{3}\left(n^{2}-1\right)=\left(q^{3 / 2}+1\right) q^{3 / 2}(q-1)
\end{aligned}
$$

well known example the Hermitian curve \mathcal{H}_{n} of affine equation

$$
\begin{gathered}
Y^{n}+Y-X^{n+1}=0 \\
d(P G U(3, n))=n+1, d(P G U(3, n))+\varepsilon(P G U(3, n))=n^{3}+1
\end{gathered}
$$

\mathcal{H}_{n} is the unique $\operatorname{PGU}(3, n)$-invariant irreducible plane curve of degree $n+1$.
Theorem All PGU(3,n)-invariant irreducible plane curves of degree $d<n q(q-1)=n^{3}\left(n^{2}-1\right)$ other than the Hermitian curve have degree $n^{3}+1$ and belongs to the $\operatorname{PGU}(3, n)$-fixed pencil

$$
\begin{aligned}
& \text { Case } G=\operatorname{PGU}(3, n), q=n^{2}, \\
& |G|=\left(n^{3}+1\right) n^{3}\left(n^{2}-1\right)=\left(q^{3 / 2}+1\right) q^{3 / 2}(q-1)
\end{aligned}
$$

well known example the Hermitian curve \mathcal{H}_{n} of affine equation

$$
\begin{gathered}
Y^{n}+Y-X^{n+1}=0 \\
d(P G U(3, n))=n+1, d(P G U(3, n))+\varepsilon(P G U(3, n))=n^{3}+1
\end{gathered}
$$

\mathcal{H}_{n} is the unique $\operatorname{PGU}(3, n)$-invariant irreducible plane curve of degree $n+1$.
Theorem All PGU(3,n)-invariant irreducible plane curves of degree $d<n q(q-1)=n^{3}\left(n^{2}-1\right)$ other than the Hermitian curve have degree $n^{3}+1$ and belongs to the $\operatorname{PGU}(3, n)$-fixed pencil

$$
Y^{n^{3}}+Y-X^{n^{3}+1}-\lambda\left(Y^{n}+Y-X^{n+1}\right)^{q-n+1}=0
$$

Case $G=P G U(3, n), q=n^{2}$,
 $$
|G|=\left(n^{3}+1\right) n^{3}\left(n^{2}-1\right)=\left(q^{3 / 2}+1\right) q^{3 / 2}(q-1)
$$

well known example the Hermitian curve \mathcal{H}_{n} of affine equation

$$
\begin{gathered}
Y^{n}+Y-X^{n+1}=0 \\
d(P G U(3, n))=n+1, d(P G U(3, n))+\varepsilon(P G U(3, n))=n^{3}+1
\end{gathered}
$$

\mathcal{H}_{n} is the unique $\operatorname{PGU}(3, n)$-invariant irreducible plane curve of degree $n+1$.
Theorem All PGU(3,n)-invariant irreducible plane curves of degree $d<n q(q-1)=n^{3}\left(n^{2}-1\right)$ other than the Hermitian curve have degree $n^{3}+1$ and belongs to the $\operatorname{PGU}(3, n)$-fixed pencil

$$
Y^{n^{3}}+Y-X^{n^{3}+1}-\lambda\left(Y^{n}+Y-X^{n+1}\right)^{q-n+1}=0
$$

For $\lambda=1$, the curve splits into $n^{3}+1$ lines.

Case $G=\Delta_{q}$ preserves a triangle in $P G(2, q)$, $|G|=6(q-1)^{2}$

Case $G=\Delta_{q}$ preserves a triangle in $P G(2, q)$, $|G|=6(q-1)^{2}$

Remark $\Delta_{q}=\left(C_{q-1} \times C_{q-1}\right) \rtimes S_{3}$

$$
d\left(\Delta_{q}\right)=q-1, d\left(\Delta_{q}\right)+\varepsilon\left(\Delta_{q}\right)=2 q-2,
$$

Plane algebraic curves with many symmetries, and complete (k,

Case $G=\Delta_{q}$ preserves a triangle in $\operatorname{PG}(2, q)$, $|G|=6(q-1)^{2}$

Remark $\Delta_{q}=\left(C_{q-1} \times C_{q-1}\right) \rtimes S_{3}$

$$
d\left(\Delta_{q}\right)=q-1, d\left(\Delta_{q}\right)+\varepsilon\left(\Delta_{q}\right)=2 q-2
$$

unique Δ_{q}-invariant irreducible plane curve of degree $q-1$ is the Fermat curve of homogeneous equation.

Case $G=\Delta_{q}$ preserves a triangle in $\operatorname{PG}(2, q)$, $|G|=6(q-1)^{2}$

Remark $\Delta_{q}=\left(C_{q-1} \times C_{q-1}\right) \rtimes S_{3}$

$$
d\left(\Delta_{q}\right)=q-1, d\left(\Delta_{q}\right)+\varepsilon\left(\Delta_{q}\right)=2 q-2
$$

unique Δ_{q}-invariant irreducible plane curve of degree $q-1$ is the Fermat curve of homogeneous equation.

$$
X^{q-1}+Y^{q-1}+Z^{q-1}=0
$$

Case $G=\Delta_{q}$ preserves a triangle in $\operatorname{PG}(2, q)$, $|G|=6(q-1)^{2}$

Remark $\Delta_{q}=\left(C_{q-1} \times C_{q-1}\right) \rtimes S_{3}$

$$
d\left(\Delta_{q}\right)=q-1, d\left(\Delta_{q}\right)+\varepsilon\left(\Delta_{q}\right)=2 q-2
$$

unique Δ_{q}-invariant irreducible plane curve of degree $q-1$ is the Fermat curve of homogeneous equation.

$$
X^{q-1}+Y^{q-1}+Z^{q-1}=0
$$

All Δ_{q}-invariant curves with $d\left(\Delta_{q}\right)+\varepsilon\left(\Delta_{q}\right)=2 q-2$ belong to the pencil
$\left.\lambda\left(X^{q-1}+Y^{q-1}+Z^{q-1}\right)^{2}+(X Y)^{q-1}+(Y Z)^{q-1}+(Z X)^{q-1}\right)=0$.

Case $G=N S_{q}$ preserves a triangle in $P G\left(2, q^{3}\right) \backslash P G(2, q),|G|=3\left(q^{2}+q+1\right)$

Case $G=N S_{q}$ preserves a triangle in

 $P G\left(2, q^{3}\right) \backslash P G(2, q),|G|=3\left(q^{2}+q+1\right)$$N S_{q}:=$ normalizer of the Singer subgroup of $P G(2, q)$ $N S_{q}=C_{q^{2}+q+1} \rtimes C_{3}$.
Remark

Case $G=N S_{q}$ preserves a triangle in $P G\left(2, q^{3}\right) \backslash P G(2, q),|G|=3\left(q^{2}+q+1\right)$
$N S_{q}:=$ normalizer of the Singer subgroup of $P G(2, q)$
$N S_{q}=C_{q^{2}+q+1} \rtimes C_{3}$.
Remark
All irreducible plane curves of degree $d \leq 2 q+2$ invariant by the Singer subgroup are known, (Cossidente, Siciliano, Pellikaan).

$$
d\left(N S_{q}\right)=q+2, d\left(N S_{q}\right)+\varepsilon\left(N S_{q}\right)=2 q+1
$$

Case $G=N S_{q}$ preserves a triangle in $P G\left(2, q^{3}\right) \backslash P G(2, q),|G|=3\left(q^{2}+q+1\right)$
$N S_{q}:=$ normalizer of the Singer subgroup of $P G(2, q)$
$N S_{q}=C_{q^{2}+q+1} \rtimes C_{3}$.
Remark
All irreducible plane curves of degree $d \leq 2 q+2$ invariant by the Singer subgroup are known, (Cossidente, Siciliano, Pellikaan).

$$
d\left(N S_{q}\right)=q+2, d\left(N S_{q}\right)+\varepsilon\left(N S_{q}\right)=2 q+1
$$

the Pellikaan curve of homogenous equation

$$
X^{q+1} Y+Y^{q+1} Z+Z^{q+1} X=0
$$

is the unique $N S_{q}$-invariant curve of degree $q+2$.

Case $G=N S_{q}$ preserves a triangle in $P G\left(2, q^{3}\right) \backslash P G(2, q),|G|=3\left(q^{2}+q+1\right)$
$N S_{q}:=$ normalizer of the Singer subgroup of $\operatorname{PG}(2, q)$
$N S_{q}=C_{q^{2}+q+1} \rtimes C_{3}$.
Remark
All irreducible plane curves of degree $d \leq 2 q+2$ invariant by the Singer subgroup are known, (Cossidente, Siciliano, Pellikaan).

$$
d\left(N S_{q}\right)=q+2, d\left(N S_{q}\right)+\varepsilon\left(N S_{q}\right)=2 q+1
$$

the Pellikaan curve of homogenous equation

$$
X^{q+1} Y+Y^{q+1} Z+Z^{q+1} X=0
$$

is the unique $N S_{q}$-invariant curve of degree $q+2$.
Example of an $N S_{q}$-invariant curve of degree $2 q+1$:

$$
X^{q+1} Y^{q}+Y^{q+1} Z^{q}+Z^{q+1} X^{q}=0
$$

Case $G=N S_{q}$ preserves a triangle in $P G\left(2, q^{3}\right) \backslash P G(2, q),|G|=3\left(q^{2}+q+1\right)$
$N S_{q}:=$ normalizer of the Singer subgroup of $\operatorname{PG}(2, q)$
$N S_{q}=C_{q^{2}+q+1} \rtimes C_{3}$.
Remark
All irreducible plane curves of degree $d \leq 2 q+2$ invariant by the Singer subgroup are known, (Cossidente, Siciliano, Pellikaan).

$$
d\left(N S_{q}\right)=q+2, d\left(N S_{q}\right)+\varepsilon\left(N S_{q}\right)=2 q+1
$$

the Pellikaan curve of homogenous equation

$$
X^{q+1} Y+Y^{q+1} Z+Z^{q+1} X=0
$$

is the unique $N S_{q}$-invariant curve of degree $q+2$.
Example of an $N S_{q}$-invariant curve of degree $2 q+1$:

$$
X^{q+1} Y^{q}+Y^{q+1} Z^{q}+Z^{q+1} X^{q}=0
$$

Case q odd, $G=P G L(2, q)$ preserves an irreducible conic in $\operatorname{PG}(2, q),|G|=q^{3}-q$

Case q odd, $G=P G L(2, q)$ preserves an irreducible conic in $\operatorname{PG}(2, q),|G|=q^{3}-q$

Apart from the unique $P G L(2, q)$-invariant conic \mathcal{C}^{2}, those of minimum degree $q+1$ belong to the $P G L(2, q)$-fixed pencil

$$
\begin{equation*}
Y^{q+1}-\left(X^{q} Z+X Z^{q}\right)-\lambda\left(Y^{2}-2 X Z\right)^{(q+1) / 2}=0 \tag{1}
\end{equation*}
$$

Case q odd, $G=P G L(2, q)$ preserves an irreducible conic in $P G(2, q),|G|=q^{3}-q$

Apart from the unique $P G L(2, q)$-invariant conic \mathcal{C}^{2}, those of minimum degree $q+1$ belong to the $P G L(2, q)$-fixed pencil

$$
\begin{equation*}
Y^{q+1}-\left(X^{q} Z+X Z^{q}\right)-\lambda\left(Y^{2}-2 X Z\right)^{(q+1) / 2}=0 \tag{1}
\end{equation*}
$$

Therefore,

$$
d(P G L(2, q))=2, d(P G L(2, q))+\varepsilon(P G L(2, q))=q+1
$$

Case q odd, $G=P G L(2, q)$ preserves an irreducible conic in $P G(2, q),|G|=q^{3}-q$

Apart from the unique $P G L(2, q)$-invariant conic \mathcal{C}^{2}, those of minimum degree $q+1$ belong to the $P G L(2, q)$-fixed pencil

$$
\begin{equation*}
Y^{q+1}-\left(X^{q} Z+X Z^{q}\right)-\lambda\left(Y^{2}-2 X Z\right)^{(q+1) / 2}=0 \tag{1}
\end{equation*}
$$

Therefore,

$$
d(P G L(2, q))=2, d(P G L(2, q))+\varepsilon(P G L(2, q))=q+1
$$

\mathcal{C}_{1} is completely reducible, product of the tangents to \mathcal{C}^{2} at its points in $P G(2, q)$;

Case q odd, $G=P G L(2, q)$ preserves an irreducible conic in $P G(2, q),|G|=q^{3}-q$

Apart from the unique $P G L(2, q)$-invariant conic \mathcal{C}^{2}, those of minimum degree $q+1$ belong to the $P G L(2, q)$-fixed pencil

$$
\begin{equation*}
Y^{q+1}-\left(X^{q} Z+X Z^{q}\right)-\lambda\left(Y^{2}-2 X Z\right)^{(q+1) / 2}=0 \tag{1}
\end{equation*}
$$

Therefore,

$$
d(P G L(2, q))=2, d(P G L(2, q))+\varepsilon(P G L(2, q))=q+1
$$

\mathcal{C}_{1} is completely reducible, product of the tangents to \mathcal{C}^{2} at its points in $P G(2, q)$;
\mathcal{C}_{-1} is rational and has interesting combinatorial properties:

Case q odd, $G=P G L(2, q)$ preserves an irreducible conic in $P G(2, q),|G|=q^{3}-q$

Apart from the unique $P G L(2, q)$-invariant conic \mathcal{C}^{2}, those of minimum degree $q+1$ belong to the $\operatorname{PGL}(2, q)$-fixed pencil

$$
\begin{equation*}
Y^{q+1}-\left(X^{q} Z+X Z^{q}\right)-\lambda\left(Y^{2}-2 X Z\right)^{(q+1) / 2}=0 \tag{1}
\end{equation*}
$$

Therefore,

$$
d(P G L(2, q))=2, d(P G L(2, q))+\varepsilon(P G L(2, q))=q+1
$$

\mathcal{C}_{1} is completely reducible, product of the tangents to \mathcal{C}^{2} at its points in $P G(2, q)$;
\mathcal{C}_{-1} is rational and has interesting combinatorial properties: the $q+1$ points of \mathcal{C}^{2} in $\operatorname{PG}(2, q)$ are simple points of \mathcal{C}, the $\frac{1}{2} q(q-1)$ internal points to \mathcal{C}^{2} are double points of \mathcal{C}.

Plane (k, n)-arcs from algebraic curves

Plane algebraic curves with many symmetries, and complete (k, i

Plane (k, n)-arcs from algebraic curves

Natural candidate for a plane (k, n)-arc is the set of the points of a plane algebraic curve of degree n.

Plane (k, n)-arcs from algebraic curves

Natural candidate for a plane (k, n)-arc is the set of the points of a plane algebraic curve of degree n. Well known example of such a (k, n)-arc is the Hermitian unital.

Plane (k, n)-arcs from algebraic curves

Natural candidate for a plane (k, n)-arc is the set of the points of a plane algebraic curve of degree n. Well known example of such a (k, n)-arc is the Hermitian unital. $\mathcal{C}:=$ plane algebraic curve (naturally defined) of $P G\left(2, q^{m}\right)$ and viewed as a curve in $P G\left(2, q^{r m}\right), r \geq 1$.

Natural candidate for a plane (k, n)-arc is the set of the points of a plane algebraic curve of degree n. Well known example of such a (k, n)-arc is the Hermitian unital. $\mathcal{C}:=$ plane algebraic curve (naturally defined) of $P G\left(2, q^{m}\right)$ and viewed as a curve in $P G\left(2, q^{r m}\right), r \geq 1$.
(k, n)-arc arising from \mathcal{C} in $\operatorname{PG}\left(2, q^{r m}\right)$:= set of all points of \mathcal{C} in $P G\left(2, q^{r m}\right)$.

Natural candidate for a plane (k, n)-arc is the set of the points of a plane algebraic curve of degree n. Well known example of such a (k, n)-arc is the Hermitian unital. $\mathcal{C}:=$ plane algebraic curve (naturally defined) of $P G\left(2, q^{m}\right)$ and viewed as a curve in $P G\left(2, q^{r m}\right), r \geq 1$.
(k, n)-arc arising from \mathcal{C} in $\operatorname{PG}\left(2, q^{r m}\right)$:= set of all points of \mathcal{C} in $P G\left(2, q^{r m}\right)$.
Remark For r big enough, $k \approx q^{r m}$, i.e. the (k, n)-arc is small.

Natural candidate for a plane (k, n)-arc is the set of the points of a plane algebraic curve of degree n. Well known example of such a (k, n)-arc is the Hermitian unital. $\mathcal{C}:=$ plane algebraic curve (naturally defined) of $P G\left(2, q^{m}\right)$ and viewed as a curve in $P G\left(2, q^{r m}\right), r \geq 1$.
(k, n)-arc arising from \mathcal{C} in $\operatorname{PG}\left(2, q^{r m}\right)$:= set of all points of \mathcal{C} in $P G\left(2, q^{r m}\right)$.
Remark For r big enough, $k \approx q^{r m}$, i.e. the (k, n)-arc is small. Remark Complete (k, n)-arcs in $P G\left(2, q^{r m}\right) \Leftrightarrow$ non-extendible $[k, n, k-n]_{q^{r m}}$ Almost-MDS codes.

Natural candidate for a plane (k, n)-arc is the set of the points of a plane algebraic curve of degree n. Well known example of such a (k, n)-arc is the Hermitian unital. $\mathcal{C}:=$ plane algebraic curve (naturally defined) of $P G\left(2, q^{m}\right)$ and viewed as a curve in $P G\left(2, q^{r m}\right), r \geq 1$.
(k, n)-arc arising from \mathcal{C} in $\operatorname{PG}\left(2, q^{r m}\right)$:= set of all points of \mathcal{C} in $P G\left(2, q^{r m}\right)$.
Remark For r big enough, $k \approx q^{r m}$, i.e. the (k, n)-arc is small. Remark Complete (k, n)-arcs in $P G\left(2, q^{r m}\right) \Leftrightarrow$ non-extendible $[k, n, k-n]_{q^{r m}}$ Almost-MDS codes.
Examples of complete (k, n)-arcs (from Frobenius non-classical curves) due to Giulietti, Pambianco, Ughi and Torres (2008).

Plane (k, n)-arcs from algebraic curves

Natural candidate for a plane (k, n)-arc is the set of the points of a plane algebraic curve of degree n.
Well known example of such a (k, n)-arc is the Hermitian unital. $\mathcal{C}:=$ plane algebraic curve (naturally defined) of $P G\left(2, q^{m}\right)$ and viewed as a curve in $P G\left(2, q^{r m}\right), r \geq 1$.
(k, n)-arc arising from \mathcal{C} in $\operatorname{PG}\left(2, q^{r m}\right)$:= set of all points of \mathcal{C} in $P G\left(2, q^{r m}\right)$.
Remark For r big enough, $k \approx q^{r m}$, i.e. the (k, n)-arc is small. Remark Complete (k, n)-arcs in $P G\left(2, q^{r m}\right) \Leftrightarrow$ non-extendible $[k, n, k-n]_{q^{r m}}$ Almost-MDS codes.
Examples of complete (k, n)-arcs (from Frobenius non-classical curves) due to Giulietti, Pambianco, Ughi and Torres (2008). Their work was the first important step towards an algebraic theory of complete (k, n)-arcs, based on Galois theory (and results of van der Waerden (1933) and Abhyankar (1992))

The approach from Galois theory

Plane algebraic curves with many symmetries, and complete (k, i

The approach from Galois theory

Basic idea is in the papers of Guralnick, Zieve, Möller (2010) (and some others) on permutation polynomials

The approach from Galois theory

Basic idea is in the papers of Guralnick, Zieve, Möller (2010) (and some others) on permutation polynomials
Adaption for (k, n)-arcs is due to Bartoli and Micheli (2021).

The approach from Galois theory

Basic idea is in the papers of Guralnick, Zieve, Möller (2010) (and some others) on permutation polynomials Adaption for (k, n)-arcs is due to Bartoli and Micheli (2021). Complete (k, n)-arcs in $P G\left(2, q^{r m}\right)$ with $r \gg n$ from rational and hyperelliptic curves defined over $\mathbb{F}_{q^{m}}$ (Bartoli-Micheli 2021)

The approach from Galois theory

Basic idea is in the papers of Guralnick, Zieve, Möller (2010) (and some others) on permutation polynomials Adaption for (k, n)-arcs is due to Bartoli and Micheli (2021). Complete (k, n)-arcs in $P G\left(2, q^{r m}\right)$ with $r \gg n$ from rational and hyperelliptic curves defined over $\mathbb{F}_{q^{m}}$ (Bartoli-Micheli 2021) Problem Construction of complete (k, n)-arcs in $P G\left(2, q^{r m}\right)$ for almost all r (using other curves defined over $\mathbb{F}_{q^{m}}$)

The approach from Galois theory

Basic idea is in the papers of Guralnick, Zieve, Möller (2010) (and some others) on permutation polynomials Adaption for (k, n)-arcs is due to Bartoli and Micheli (2021). Complete (k, n)-arcs in $P G\left(2, q^{r m}\right)$ with $r \gg n$ from rational and hyperelliptic curves defined over $\mathbb{F}_{q^{m}}$ (Bartoli-Micheli 2021)
Problem Construction of complete (k, n)-arcs in $P G\left(2, q^{r m}\right)$ for almost all r (using other curves defined over $\mathbb{F}_{q^{m}}$)
Question Among the curves arising from maximal subgroups we have come across, which provide a solution for the above Problem?

The approach from Galois theory

Basic idea is in the papers of Guralnick, Zieve, Möller (2010) (and some others) on permutation polynomials Adaption for (k, n)-arcs is due to Bartoli and Micheli (2021). Complete (k, n)-arcs in $P G\left(2, q^{r m}\right)$ with $r \gg n$ from rational and hyperelliptic curves defined over $\mathbb{F}_{q^{m}}$ (Bartoli-Micheli 2021)
Problem Construction of complete (k, n)-arcs in PG(2, $q^{r m}$) for almost all r (using other curves defined over $\mathbb{F}_{q^{m}}$)
Question Among the curves arising from maximal subgroups we have come across, which provide a solution for the above Problem? So far we have solved positively this problem for the Hermitian curve and for the $\operatorname{PGL}(2, q)$-invariant curve \mathcal{C}_{-1}.

$$
Y^{q+1}-\left(X^{q}+X\right)+\left(Y^{2}-2 X\right)^{(q+1) / 2}=0
$$

The approach from Galois theory

Basic idea is in the papers of Guralnick, Zieve, Möller (2010) (and some others) on permutation polynomials Adaption for (k, n)-arcs is due to Bartoli and Micheli (2021). Complete (k, n)-arcs in $P G\left(2, q^{r m}\right)$ with $r \gg n$ from rational and hyperelliptic curves defined over $\mathbb{F}_{q^{m}}$ (Bartoli-Micheli 2021)
Problem Construction of complete (k, n)-arcs in PG(2, $\left.q^{r m}\right)$ for almost all r (using other curves defined over $\mathbb{F}_{q^{m}}$)
Question Among the curves arising from maximal subgroups we have come across, which provide a solution for the above Problem? So far we have solved positively this problem for the Hermitian curve and for the $\operatorname{PGL}(2, q)$-invariant curve \mathcal{C}_{-1}.

$$
Y^{q+1}-\left(X^{q}+X\right)+\left(Y^{2}-2 X\right)^{(q+1) / 2}=0
$$

The other cases are open.

The approach from Galois theory

Basic idea is in the papers of Guralnick, Zieve, Möller (2010) (and some others) on permutation polynomials Adaption for (k, n)-arcs is due to Bartoli and Micheli (2021). Complete (k, n)-arcs in $P G\left(2, q^{r m}\right)$ with $r \gg n$ from rational and hyperelliptic curves defined over $\mathbb{F}_{q^{m}}$ (Bartoli-Micheli 2021)
Problem Construction of complete (k, n)-arcs in $P G\left(2, q^{r m}\right)$ for almost all r (using other curves defined over $\mathbb{F}_{q^{m}}$)
Question Among the curves arising from maximal subgroups we have come across, which provide a solution for the above Problem?
So far we have solved positively this problem for the Hermitian curve and for the $\operatorname{PGL}(2, q)$-invariant curve \mathcal{C}_{-1}.

$$
Y^{q+1}-\left(X^{q}+X\right)+\left(Y^{2}-2 X\right)^{(q+1) / 2}=0
$$

The other cases are open.
Here we deal with the Hermitian curve. Our method also applies to \mathcal{C}_{-1} (proofs are even simpler).

The case of the Hermitian curve

Plane algebraic curves with many symmetries, and complete (k, i

The case of the Hermitian curve

$r \geq 3$ integer

Plane algebraic curves with many symmetries, and complete (k,
$r \geq 3$ integer
$\mathcal{H}_{q}:=$ Hermitian curve of degree $q+1$, regarded as a curve in $P G\left(2, q^{2 r}\right)$
$r \geq 3$ integer
$\mathcal{H}_{q}:=$ Hermitian curve of degree $q+1$, regarded as a curve in
$P G\left(2, q^{2 r}\right)$
$\Omega:=$ set of all points of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right)$, i.e. $\Omega=\mathcal{H}_{q}\left(\mathbb{F}_{q^{2 r}}\right)$
$r \geq 3$ integer
$\mathcal{H}_{q}:=$ Hermitian curve of degree $q+1$, regarded as a curve in $P G\left(2, q^{2 r}\right)$
$\Omega:=$ set of all points of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right)$, i.e. $\Omega=\mathcal{H}_{q}\left(\mathbb{F}_{q^{2 r}}\right)$ $k:=|\Omega|$ where $k=q^{2 r}+1 \pm q^{r+1}(q-1)$ according as r is odd or even
$r \geq 3$ integer
$\mathcal{H}_{q}:=$ Hermitian curve of degree $q+1$, regarded as a curve in $P G\left(2, q^{2 r}\right)$
$\Omega:=$ set of all points of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right)$, i.e. $\Omega=\mathcal{H}_{q}\left(\mathbb{F}_{q^{2 r}}\right)$ $k:=|\Omega|$ where $k=q^{2 r}+1 \pm q^{r+1}(q-1)$ according as r is odd or even
Ω is a small $(k, q+1)$-arc in $P G\left(2, q^{2 r}\right)$.
$r \geq 3$ integer
$\mathcal{H}_{q}:=$ Hermitian curve of degree $q+1$, regarded as a curve in $P G\left(2, q^{2 r}\right)$
$\Omega:=$ set of all points of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right)$, i.e. $\Omega=\mathcal{H}_{q}\left(\mathbb{F}_{q^{2 r}}\right)$ $k:=|\Omega|$ where $k=q^{2 r}+1 \pm q^{r+1}(q-1)$ according as r is odd or even
Ω is a small $(k, q+1)$-arc in $P G\left(2, q^{2 r}\right)$.
Theorem (K. Szőnyi, G.P. Nagy, 2022) Ω is complete for $r \geq 5$.

Sketch of the proof, set up

Plane algebraic curves with many symmetries, and complete ($k, 1$

Sketch of the proof, set up

$\mathcal{H}_{q}:=$ Hermitian curve of affine equation $Y^{q}+Y+X^{q+1}=0$

Plane algebraic curves with many symmetries, and complete (k, i

Sketch of the proof, set up

$$
\begin{aligned}
& \mathcal{H}_{q}:=\text { Hermitian curve of affine equation } Y^{q}+Y+X^{q+1}=0 \\
& P=P(a, b), a^{q+1}+b^{q}+b \neq 0, P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)
\end{aligned}
$$

Sketch of the proof, set up

$\mathcal{H}_{q}:=$ Hermitian curve of affine equation $Y^{q}+Y+X^{q+1}=0$
$P=P(a, b), a^{q+1}+b^{q}+b \neq 0, P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
$\ell_{t}:=$ the (non vertical) line through P with slope t, i.e. ℓ_{t} :
$Y=t(X-a)+b$

Sketch of the proof, set up

$\mathcal{H}_{q}:=$ Hermitian curve of affine equation $Y^{q}+Y+X^{q+1}=0$
$P=P(a, b), a^{q+1}+b^{q}+b \neq 0, P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
$\ell_{t}:=$ the (non vertical) line through P with slope t, i.e. ℓ_{t} :
$Y=t(X-a)+b$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b$

Sketch of the proof, set up

$\mathcal{H}_{q}:=$ Hermitian curve of affine equation $Y^{q}+Y+X^{q+1}=0$
$P=P(a, b), a^{q+1}+b^{q}+b \neq 0, P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
$\ell_{t}:=$ the (non vertical) line through P with slope t, i.e. ℓ_{t} :
$Y=t(X-a)+b$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b$
ℓ_{t} is a $(q+1)$-secant of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right) \Leftrightarrow F(X)$ has $q+1$
pairwise distinct roots in $\mathbb{F}_{q^{2 r}}$

Sketch of the proof, set up

$\mathcal{H}_{q}:=$ Hermitian curve of affine equation $Y^{q}+Y+X^{q+1}=0$
$P=P(a, b), a^{q+1}+b^{q}+b \neq 0, P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
$\ell_{t}:=$ the (non vertical) line through P with slope t, i.e. ℓ_{t} :
$Y=t(X-a)+b$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b$
ℓ_{t} is a $(q+1)$-secant of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right) \Leftrightarrow F(X)$ has $q+1$
pairwise distinct roots in $\mathbb{F}_{q^{2 r}}$
$K:=$ the rational field $\overline{\mathbb{F}}_{q^{2}}(t)$

Sketch of the proof, set up

$\mathcal{H}_{q}:=$ Hermitian curve of affine equation $Y^{q}+Y+X^{q+1}=0$
$P=P(a, b), a^{q+1}+b^{q}+b \neq 0, P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
$\ell_{t}:=$ the (non vertical) line through P with slope t, i.e. ℓ_{t} :
$Y=t(X-a)+b$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b$
ℓ_{t} is a $(q+1)$-secant of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right) \Leftrightarrow F(X)$ has $q+1$
pairwise distinct roots in $\mathbb{F}_{q^{2 r}}$
$K:=$ the rational field $\overline{\mathbb{F}}_{q^{2}}(t)$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b \in$
$\mathbb{F}_{q^{2 r}}(t)[X] \subset K[X]$.

Sketch of the proof, set up

$\mathcal{H}_{q}:=$ Hermitian curve of affine equation $Y^{q}+Y+X^{q+1}=0$
$P=P(a, b), a^{q+1}+b^{q}+b \neq 0, P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
$\ell_{t}:=$ the (non vertical) line through P with slope t, i.e. ℓ_{t} :
$Y=t(X-a)+b$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b$
ℓ_{t} is a $(q+1)$-secant of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right) \Leftrightarrow F(X)$ has $q+1$
pairwise distinct roots in $\mathbb{F}_{q^{2 r}}$
$K:=$ the rational field $\overline{\mathbb{F}}_{q^{2}}(t)$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b \in$
$\mathbb{F}_{q^{2 r}}(t)[X] \subset K[X]$.
$F(X)$ is irreducible

Sketch of the proof, set up

$\mathcal{H}_{q}:=$ Hermitian curve of affine equation $Y^{q}+Y+X^{q+1}=0$
$P=P(a, b), a^{q+1}+b^{q}+b \neq 0, P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
$\ell_{t}:=$ the (non vertical) line through P with slope t, i.e. ℓ_{t} :
$Y=t(X-a)+b$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b$
ℓ_{t} is a $(q+1)$-secant of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right) \Leftrightarrow F(X)$ has $q+1$
pairwise distinct roots in $\mathbb{F}_{q^{2 r}}$
$K:=$ the rational field $\overline{\mathbb{F}}_{q^{2}}(t)$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b \in$
$\mathbb{F}_{q^{2 r}}(t)[X] \subset K[X]$.
$F(X)$ is irreducible
$L:=K(u)$ with $F(u)=0$ the field extension $L: K$; it is not Galois

Sketch of the proof, set up

$\mathcal{H}_{q}:=$ Hermitian curve of affine equation $Y^{q}+Y+X^{q+1}=0$
$P=P(a, b), a^{q+1}+b^{q}+b \neq 0, P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
$\ell_{t}:=$ the (non vertical) line through P with slope t, i.e. ℓ_{t} :
$Y=t(X-a)+b$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b$
ℓ_{t} is a $(q+1)$-secant of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right) \Leftrightarrow F(X)$ has $q+1$
pairwise distinct roots in $\mathbb{F}_{q^{2 r}}$
$K:=$ the rational field $\overline{\mathbb{F}}_{q^{2}}(t)$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b \in$
$\mathbb{F}_{q^{2 r}}(t)[X] \subset K[X]$.
$F(X)$ is irreducible
$L:=K(u)$ with $F(u)=0$ the field extension $L: K$; it is not Galois $M:=$ Galois closure of $L: K$, i.e. M is the splitting field of $F(X)$ over K

Sketch of the proof, set up

$\mathcal{H}_{q}:=$ Hermitian curve of affine equation $Y^{q}+Y+X^{q+1}=0$
$P=P(a, b), a^{q+1}+b^{q}+b \neq 0, P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
$\ell_{t}:=$ the (non vertical) line through P with slope t, i.e. ℓ_{t} :
$Y=t(X-a)+b$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b$
ℓ_{t} is a $(q+1)$-secant of \mathcal{H}_{q} in $P G\left(2, q^{2 r}\right) \Leftrightarrow F(X)$ has $q+1$
pairwise distinct roots in $\mathbb{F}_{q^{2 r}}$
$K:=$ the rational field $\overline{\mathbb{F}}_{q^{2}}(t)$
$F(X)=X^{q+1}+X^{q}\left(a+t^{q}\right)+X\left(a^{q}+t\right)+a^{q+1}+b^{q}+b \in$
$\mathbb{F}_{q^{2 r}}(t)[X] \subset K[X]$.
$F(X)$ is irreducible
$L:=K(u)$ with $F(u)=0$ the field extension $L: K$; it is not Galois $M:=$ Galois closure of $L: K$, i.e. M is the splitting field of $F(X)$ over K
$G:=\operatorname{Gal}(M: K)$ Galois group, i.e. the geometric monodromy group of $F(X)$ over K

Sketch of the proof, results

Plane algebraic curves with many symmetries, and complete (k,

Sketch of the proof, results

$$
G \cong P G L(2, q)
$$

Sketch of the proof, results

$G \cong P G L(2, q)$ (tool is Abyhankar's twisted derivative)

Plane algebraic curves with many symmetries, and complete (k,

Sketch of the proof, results

$G \cong P G L(2, q)$ (tool is Abyhankar's twisted derivative)
M has as many as $(q+1)^{2}$ ramified places in the Galois extension $M: K\left(\right.$ depends on the geometry of $\left.\mathcal{H}_{q}\right)$
$G \cong P G L(2, q)$ (tool is Abyhankar's twisted derivative)
M has as many as $(q+1)^{2}$ ramified places in the Galois extension
$M: K\left(\right.$ depends on the geometry of $\left.\mathcal{H}_{q}\right)$
G has $q+1$ short orbits on the set of places of M
$G \cong P G L(2, q)$ (tool is Abyhankar's twisted derivative)
M has as many as $(q+1)^{2}$ ramified places in the Galois extension
$M: K\left(\right.$ depends on the geometry of $\left.\mathcal{H}_{q}\right)$
G has $q+1$ short orbits on the set of places of M
G acts on each short orbit as $\operatorname{PGL}(2, q)$ in its 3-transitive permutation representation (tool is van der Waerden's result)
$G \cong P G L(2, q)$ (tool is Abyhankar's twisted derivative)
M has as many as $(q+1)^{2}$ ramified places in the Galois extension
$M: K\left(\right.$ depends on the geometry of $\left.\mathcal{H}_{q}\right)$
G has $q+1$ short orbits on the set of places of M
G acts on each short orbit as $\operatorname{PGL}(2, q)$ in its 3-transitive permutation representation (tool is van der Waerden's result) The genus $\mathfrak{g}(M)$ of M is given by

$$
2 \mathfrak{g}(M)-2=q^{4}+q^{3}-4 q^{2}-3 q+1
$$

$G \cong P G L(2, q)$ (tool is Abyhankar's twisted derivative)
M has as many as $(q+1)^{2}$ ramified places in the Galois extension
$M: K\left(\right.$ depends on the geometry of $\left.\mathcal{H}_{q}\right)$
G has $q+1$ short orbits on the set of places of M
G acts on each short orbit as $\operatorname{PGL}(2, q)$ in its 3-transitive permutation representation (tool is van der Waerden's result) The genus $\mathfrak{g}(M)$ of M is given by

$$
2 \mathfrak{g}(M)-2=q^{4}+q^{3}-4 q^{2}-3 q+1
$$

(tool is Serre's ramification theory)
$G \cong P G L(2, q)$ (tool is Abyhankar's twisted derivative)
M has as many as $(q+1)^{2}$ ramified places in the Galois extension
$M: K\left(\right.$ depends on the geometry of $\left.\mathcal{H}_{q}\right)$
G has $q+1$ short orbits on the set of places of M
G acts on each short orbit as $\operatorname{PGL}(2, q)$ in its 3-transitive permutation representation (tool is van der Waerden's result) The genus $\mathfrak{g}(M)$ of M is given by

$$
2 \mathfrak{g}(M)-2=q^{4}+q^{3}-4 q^{2}-3 q+1
$$

(tool is Serre's ramification theory)

Conclusion of the proof

P is covered by at least one (non-vertical) $(q+1)$-secant $\Leftrightarrow M$ has at least one $\mathbb{F}_{q^{2 r}}$-rational place which is unramified in the Galois extension M : K

Conclusion of the proof

P is covered by at least one (non-vertical) $(q+1)$-secant $\Leftrightarrow M$ has at least one $\mathbb{F}_{q^{2 r}}$-rational place which is unramified in the Galois extension M : K
The Hasse-Weil lower bound \Rightarrow :

Conclusion of the proof

P is covered by at least one (non-vertical) $(q+1)$-secant $\Leftrightarrow M$ has at least one $\mathbb{F}_{q^{2 r}}$-rational place which is unramified in the Galois extension M : K
The Hasse-Weil lower bound \Rightarrow : such an unramified place exists whenever $q^{2 r}+1>q^{r+4}+q^{3+r}-4 q^{2+r}-3 q^{1+r}+3 q^{r}+q^{2}+2 q+1$

Conclusion of the proof

P is covered by at least one (non-vertical) $(q+1)$-secant $\Leftrightarrow M$ has at least one $\mathbb{F}_{q^{2 r}}$-rational place which is unramified in the Galois extension M : K
The Hasse-Weil lower bound \Rightarrow : such an unramified place exists whenever $q^{2 r}+1>q^{r+4}+q^{3+r}-4 q^{2+r}-3 q^{1+r}+3 q^{r}+q^{2}+2 q+1$ in particular for $r \geq 5$

Conclusion of the proof

P is covered by at least one (non-vertical) $(q+1)$-secant $\Leftrightarrow M$ has at least one $\mathbb{F}_{q^{2 r}}$-rational place which is unramified in the Galois extension M : K
The Hasse-Weil lower bound \Rightarrow : such an unramified place exists whenever $q^{2 r}+1>q^{r+4}+q^{3+r}-4 q^{2+r}-3 q^{1+r}+3 q^{r}+q^{2}+2 q+1$
in particular for $r \geq 5$
If $r \geq 5$ then

Conclusion of the proof

P is covered by at least one (non-vertical) $(q+1)$-secant $\Leftrightarrow M$ has at least one $\mathbb{F}_{q^{2 r}}$-rational place which is unramified in the Galois extension M : K
The Hasse-Weil lower bound \Rightarrow : such an unramified place exists whenever $q^{2 r}+1>q^{r+4}+q^{3+r}-4 q^{2+r}-3 q^{1+r}+3 q^{r}+q^{2}+2 q+1$ in particular for $r \geq 5$
If $r \geq 5$ then the set of all points of \mathcal{H}_{q} in $\operatorname{PG}\left(2, q^{2 r}\right)$ is a complete $(k, q+1)$-arc.

Conclusion of the proof

P is covered by at least one (non-vertical) $(q+1)$-secant $\Leftrightarrow M$ has at least one $\mathbb{F}_{q^{2 r}}$-rational place which is unramified in the Galois extension M : K
The Hasse-Weil lower bound \Rightarrow : such an unramified place exists whenever $q^{2 r}+1>q^{r+4}+q^{3+r}-4 q^{2+r}-3 q^{1+r}+3 q^{r}+q^{2}+2 q+1$ in particular for $r \geq 5$
If $r \geq 5$ then the set of all points of \mathcal{H}_{q} in $\operatorname{PG}\left(2, q^{2 r}\right)$ is a complete ($k, q+1$)-arc.

Remark

Cases $r=3,4$ are open

Conclusion of the proof

P is covered by at least one (non-vertical) $(q+1)$-secant $\Leftrightarrow M$ has at least one $\mathbb{F}_{q^{2 r}}$-rational place which is unramified in the Galois extension M : K
The Hasse-Weil lower bound \Rightarrow : such an unramified place exists whenever $q^{2 r}+1>q^{r+4}+q^{3+r}-4 q^{2+r}-3 q^{1+r}+3 q^{r}+q^{2}+2 q+1$ in particular for $r \geq 5$
If $r \geq 5$ then the set of all points of \mathcal{H}_{q} in $\operatorname{PG}\left(2, q^{2 r}\right)$ is a complete ($k, q+1$)-arc.

Remark

Cases $r=3,4$ are open

The case $r=3$

Plane algebraic curves with many symmetries, and complete (k,

- What do we know on case $r=3$ for the Hermitian curve?

The case $r=3$

- What do we know on case $r=3$ for the Hermitian curve?

Let $P(a, b) \in \mathcal{H}_{q}$ and $P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$

The case $r=3$

- What do we know on case $r=3$ for the Hermitian curve?

Let $P(a, b) \in \mathcal{H}_{q}$ and $P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
Proposition Through $P(a, b)$, we have as many as
$2 q^{4}+q^{2}+q+1 q+1$-secants to \mathcal{H}_{q}.

- What do we know on case $r=3$ for the Hermitian curve?

Let $P(a, b) \in \mathcal{H}_{q}$ and $P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
Proposition Through $P(a, b)$, we have as many as
$2 q^{4}+q^{2}+q+1 q+1$-secants to \mathcal{H}_{q}.
Proof The above method is used with some variations.

- What do we know on case $r=3$ for the Hermitian curve?

Let $P(a, b) \in \mathcal{H}_{q}$ and $P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
Proposition Through $P(a, b)$, we have as many as
$2 q^{4}+q^{2}+q+1 q+1$-secants to \mathcal{H}_{q}.
Proof The above method is used with some variations.
The Galois group $G=G a l(M: K)$ has order $q(q-1)$ $(\cong A G L(1, q))$,

- What do we know on case $r=3$ for the Hermitian curve?

Let $P(a, b) \in \mathcal{H}_{q}$ and $P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
Proposition Through $P(a, b)$, we have as many as
$2 q^{4}+q^{2}+q+1 q+1$-secants to \mathcal{H}_{q}.
Proof The above method is used with some variations.
The Galois group $G=\operatorname{Gal}(M: K)$ has order $q(q-1)$
$(\cong A G L(1, q))$,
M is a maximal function field over \mathbb{F}_{q}^{6}.
Remark B. Csajbók gave an elementary proof for the Proposition (Norm functions + highly non trivial computation).

- What do we know on case $r=3$ for the Hermitian curve?

Let $P(a, b) \in \mathcal{H}_{q}$ and $P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
Proposition Through $P(a, b)$, we have as many as
$2 q^{4}+q^{2}+q+1 q+1$-secants to \mathcal{H}_{q}.
Proof The above method is used with some variations.
The Galois group $G=G a l(M: K)$ has order $q(q-1)$
$(\cong A G L(1, q))$,
M is a maximal function field over \mathbb{F}_{q}^{6}.
Remark B. Csajbók gave an elementary proof for the Proposition (Norm functions + highly non trivial computation).
Magma computation shows for $q=3$ that the above $(892,4)$-arc in $P G\left(2,3^{6}\right)$ is complete.

- What do we know on case $r=3$ for the Hermitian curve?

Let $P(a, b) \in \mathcal{H}_{q}$ and $P(a, b) \in P G\left(2, q^{2 r}\right) \backslash P G\left(2, q^{2}\right)$
Proposition Through $P(a, b)$, we have as many as
$2 q^{4}+q^{2}+q+1 q+1$-secants to \mathcal{H}_{q}.
Proof The above method is used with some variations.
The Galois group $G=G a l(M: K)$ has order $q(q-1)$
$(\cong A G L(1, q))$,
M is a maximal function field over \mathbb{F}_{q}^{6}.
Remark B. Csajbók gave an elementary proof for the Proposition (Norm functions + highly non trivial computation).
Magma computation shows for $q=3$ that the above $(892,4)$-arc in $P G\left(2,3^{6}\right)$ is complete.

Application to the Galois-inverse problems

Theorem

Let $K=\overline{\mathbb{F}}_{q^{2}}(t)$ and $L:=K(u)$ where $u^{q+1}+u^{q} t^{q}+u t-\left((t a-b)^{q}+t a-b\right)$. Then the (geometric) monodromy group of $L: K$ is isomorphic to $\operatorname{PGL}(2, q)$, and the Galois closure M of $L: K$ is
$M=\overline{\mathbb{F}}_{q^{2}}(t, u, v, w)$ where

$$
\left\{\begin{array}{l}
u^{q+1}+u^{q} t^{q}+u t-\left((t a-b)^{q}+t a-b\right) \\
v^{q}+\left(u+t^{q}\right) v^{q-1}+u^{q}+t=0 \\
v+u+t^{q}-\left(u+t^{q}\right) w^{q-1}=0
\end{array}\right.
$$

