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Interest in Random Codes (Hamming Metric)

For fixed rate and growing length a random code (linear or
non-linear) gets arbitrarily close to channel capacity for BSC and
BEC (Shannon ’48, Elias ’55).
Analogous result for list-decoding capacity for BSC
(Guruswami-Haastad-Kapparty ’10)
For fixed length/rate, but growing field size, a random linear code
is MDS (folklore).

For LRCs the locality is not a generic property, but the optimality
w.r.t. Hamming distance is. (Neri-H. ’19)
In code-based cryptography we need to estimate the minimum
distance of a random linear code.
→ Random linear codes achieve Gilbert-Varshamov bound w.h.p.
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Interest in Random Codes (Other Metrics)

There exist many non-Gabidulin MRD codes, for growing field
extension degree. (Neri-H.-Randrianarisoa-Rosenthal ’17)
Nonlinear and Fq-linear MRD codes are sparse for growing field
size. (Gluesing-Luerssen-Byrne, Gruica-Ravagnani ’20-’22)
Random linear codes in Lee and restricted error metric achieve
GV bound for growing field size.
(Weger-Battaglioni-Santini-H.-Persichetti ’21)
Random linear sum-rank-metric codes are MSRD w.r.t. field
extension degree. (Ott-Puchinger-Bossert ’21)
Random good constant dimension codes (e.g. spreads) are sparse.
(Gruica-Ravagnani ’21)
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Our Results

General bounds on density of (linear, sub-linear, non-linear) codes
in translation-invariant metric vector spaces.
Asymptotic behavior in all parameters (length, field size, linearity
degree).
GV-bound achievement in general.
Singleton-type bound achievement in Hamming, rank, sum-rank,
injection/subspace metric. (Some new, some re-established.)
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Relation to Finite Geometry I

Hamming metric:
dH(u, v) := |{i | ui 6= vi}|

MDS←→ dH(C) = n− logq(|C|) + 1

Theorem
Linear MDS codes in Fnqm correspond to n-arcs over Fqm.
(Additive or) Fq-linear MDS codes in Fnqm correspond to n-arcs of
(m− 1)-spaces.

For linear codes the columns of the generator matrix form the
n-arc.
For additive codes we extend columns row-wise over Fq and view
them as (m− 1)-spaces.
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Relation to Finite Geometry II
Rank metric on Fnqm :

dR(u, v) := dimq〈u1 − v1, . . . , un − vn〉

MRD←→ logq(|C|) = max(m,n)(min(m,n)− dR(C) + 1)

Theorem
MRD codes in Fnqn of maximal rank distance d = n are spreadsets.

MRD codes in Fnqn (containing the zero and identity matrix) with
minimum distance n correspond to finite quasifields Q with
K ≤ KerQ and dimq Q = n.
Additive MRD codes in Fnqn (containing the identity matrix) with
minimum distance n correspond to finite semifields S with
K ≤ KerS and dimq S = n.
Fq-linear MRD codes in Fnqn (containing the identity matrix) with
minimum distance n correspond to finite division algebras D over
Fq where Fq ≤ Z(D) and dimqD = n.
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Relation to Finite Geometry III

Subspace/injection metric on Gq(k, n):

dS(U, V ) := k − dim(U ∩ V )

Theorem
A subspace code in C ⊆ Gq(k, n) is a set of subspaces where the
elements intersect pairwise in dimension at most k − dS(C).
If dS(C) = k then these codes are spreads or partial spreads.
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Graph Theory Tools1

Construct bipartite graph B = (V,W, E), where
I V =

{
{x, y} ⊆ Fn

q : x 6= y, D(x, y) ≤ d− 1
}
,

I W is the collection of codes C ⊆ Fn
q with |C| = S, and

I ({x, y}, C) ∈ E if and only if {x, y} ⊆ C.

|V| = 1
2q

n
(
vDq (Fnq , d− 1)− 1

)
, |W| =

(
qn

S

)
,

|{C ∈ W : ({x, y}, C) ∈ E}| =
(
qn − 2
S − 2

)
.

Hence B is a left-regular graph of degree
(qn−2
S−2

)
. The isolated

vertices are the codes of minimum distance d.
→ Bounds for number of such is known.

1From A. Gruica and A. Ravagnani, Common complements of linear subspaces and the sparseness of
MRD codes, SIAM Journal on Applied Algebra and Geometry 6 (2022).
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Density of Non-Linear Codes
Metric space (Fnq , D), volume of ball vDq (...), density δDq (...)

Theorem
The density of codes in Fnq with minimum distance d among all codes
of cardinality S is bounded by

1−
(vDq (Fnq , d− 1)− 1)S(S − 1)

2 (qn − 1) ≤ δDq (Fnq , S, 0, d),

δDq (Fnq , S, 0, d) ≤ 1−
(vDq (Fnq , d− 1)− 1)S(S − 1)

2Θ(qn − 1) ,

where
Θ = 1 + (2vDq (Fnq ,d−1)−4)(qn−3)+( 1

2 q
n(vDq (Fnq ,d−1)−1)−2vDq (Fnq ,d−1)+3)(S−3)

(S−2)−1(qn−2)(qn−3) .
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Density of (Sub-)Linear Codes
Theorem
The density of Fq`-linear codes in Fnqm (m = s`) of cardinality S with
minimum distance d is bounded by

1 −
(vDq (Fnqm , d− 1) − 1)

[
ns− 1
k − 1

]
q`

(q` − 1)
[
ns

k

]
q`

≤ δDq (Fnqm , q`k, `, d)

δDq (Fnqm , q`k, `, d) ≤ 1 −
(vDq (Fnqm , d− 1) − 1)

[
ns− 1
k − 1

]
q`

Θ̄(q` − 1)
[
ns

k

]
q`

,

where Θ̄ = 1 +
[
ns− 1
k − 1

]−1

q`

(
vDq (Fnqm , d− 1) − 1

q` − 1 − 1
)[

ns− 2
k − 2

]
q`

.
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Asymptotic Density of Non-Linear Codes
an ∈ o(fn) ⇐⇒ lim an/fn = 0 , an ∈ ω(fn) ⇐⇒ lim fn/an = 0

Theorem

lim δDq (Fnq , Sq, 0, d) =
{

1 if vDq (Fnq , d− 1) ∈ o(qnS−2
q )

0 if vDq (Fnq , d− 1) ∈ ω(qnS−2
q )

as q or n→ +∞.

GV-bound:
S[n,q,d] ≥

qn

vDq (Fnq , d− 1)

Corollary
Non-linear codes achieving the Gilbert-Varshamov bound are
asymptotically sparse with respect to q or n.
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Asymptotic Density of (Sub-)Linear Codes II
Remember: m = s`

Theorem

lim
q→+∞

δDq (Fnqm , q`k, `, d) =
{

1 if vDq (Fnqm , d− 1) ∈ o(q`(ns+1−k)),
0 if vDq (Fnqm , d− 1) ∈ ω(q`(ns+1−k)),

as q, n, s or `→ +∞.

Corollary
1 (Sub-)linear codes achieving the Gilbert-Varshamov bound are

asymptotically dense with respect to q or `.
2 The asymptotic density of (sub-)linear codes achieving the

Gilbert-Varshamov bound is upper bounded by q`/(q` + 1), with
respect to n or s.
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Hamming Metric

Singleton bound (MDS):

k ≤ n− d+ 1

Volume of balls:

vH
q (Fnqm , r) =

r∑
i=0

(
n

i

)
(qm − 1)i ∼


(n
r

)
qrm as q → +∞(n

r

)
qrm as m→ +∞(n

r

)
(qm − 1)r as n→ +∞
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Bounds for nonlinear codes and (q, n) = (2, 10), (2, 20), (3, 10), (5, 10)
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Bounds for sublinear codes and (q,m, n, l) = (2, 1, 15, 1), (2, 3, 15, 1)
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Hamming Metric Asymptotics

vH
q (Fnqm , r) =

r∑
i=0

(
n

i

)
(qm − 1)i ∼


(n
r

)
qrm as q → +∞(n

r

)
qrm as m→ +∞(n

r

)
(qm − 1)r as n→ +∞

Theorem
Non-linear MDS codes are sparse:

lim
q,n→+∞

δHq (Fnq , qn−d+1, 0, d) = 0

Dense sub-linear MDS codes:

lim
q,`→+∞

δHq (Fnqm , qm(n−d+1), `, d) = 1

Sparse sub-linear MDS codes (s = m/`):

lim
n,s→+∞

δHq (Fnqm , qm(n−d+1), `, d) = 0
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Non- and sublinear MDS codes for q = 2, n = 15; and m = `
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Quantum-MDS codes for m = 2, ` = 1 and n = 5, 15

=⇒ Existence of Fq-linear MDS codes that are not Fq2-linear!
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Probability of Arcs

Theorem
1 The probability that n randomly chosen points in PG(k − 1, q)

form an n-arc goes to 1 for growing q.
2 The probability that n randomly chosen points in PG(k − 1, q)

form an n-arc goes to 0 for growing n.
3 The probability that n randomly chosen (m− 1)-spaces in
PG(mk − 1, q) form an n-arc of (m− 1)-spaces goes to 1 for
growing q.

4 The probability that n randomly chosen (m− 1)-spaces in
PG(mk − 1, q) form an n-arc of (m− 1)-spaces goes to 0 for
growing n or m.
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Rank Metric

Singleton bound (MRD):

k ≤ max(m,n)(min(m,n)− d+ 1)

Volume of balls:

vrk
q (Fnqm , r) =

r∑
i=0

[
n
i

]
q

i−1∏
j=0

(qm − qj) ∼



qr(m+n−r) as q → +∞[
n
r

]
q

qrm as m→ +∞[
m
r

]
q

qrn as n→ +∞
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Bounds for nonlinear codes and (q,m, n) = (2, 4, 4), (2, 4, 10), (3, 4, 4), (3, 4, 10)
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Bounds for sublinear codes and (q,m, n, l) = (2, 4, 4, 1), (16, 4, 4, 1)
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Rank Metric Asymptotics
Theorem

Non-linear MRD codes are sparse:

lim
q,n,m→+∞

δrk
q (Fnqm , qmax{n,m}(min{n,m}−d+1), 0, d) = 0.

Sub-linear (quasi-)MRD codes depend on the linearity degree:
`s ≥ n:

lim
q→+∞

δrk
q (Fn

q`s , q
`s(n−d+1), `, d) =

{
1 if ` > (d− 1)(n− d+ 1),
0 if ` < (d− 1)(n− d+ 1).

`s < n:

lim
q→+∞

δrk
q (Fn

q`s , q
`k, `, d) =

{
1 if ` > (d− 1)(`s− d+ 1) + r,
0 if ` < (d− 1)(`s− d+ 1) + r.

where k := bn(`s− d+ 1)/`c and r := n(d− 1)− `dn(d− 1)/`e.
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Rank Metric Asymptotics II
Theorem

Density for growing linearity degree:

lim
`→+∞

δrk
q (Fnq`s , q

`s(n−d+1), `, d) = 1,

Bound for growing length:

lim sup
n→+∞

δrk
q (Fnq`s , q

`bn(`s−d+1)/`c, `, d) ≤ 1

1 +
[
m

d− 1

]
q

q−2`
< 1,

Bound for growing extension degree:

lim sup
s→+∞

δrk
q (Fnq`s , q

`s(n−d+1), `, d) ≤ q`

q` +
[

n
d− 1

]
q

< 1.
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Non- and sublinear MRD codes for q = 2, n = 4 and m = 4 (and n = 15)
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Probability of Spreadsets

Theorem
The probability that randomly chosen square matrices in Fn×nq

form a spreadset goes to 0 for growing growing q or n.
The probability that the Fq-linear span of randomly chosen square
matrices in Fn×nq form a spreadset goes to 0 for growing growing q
or n.
The probability that the Fqm-linear span of randomly chosen vectors
in Fnqn form a spreadset goes to 1 for growing growing q or n.

(→ connection to quasifields, semifields, division algebras)
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Sum-Rank Metric
Ambient space (n = tη):

C ⊆ (Fηqm)t

Singleton-type bound:

k ≤ max{m, η}(tmin{m, η} − d+ 1)

vsr,t
q (Fnqm , r) =

r∑
h=0

∑
u∈Uh

t∏
i=1

[
η

ui

]
q

ui−1∏
j=0

(qm − qj) ∼
(
t

z̃

)
q
z̃2
t
−z̃+r(m+η− r

t
)

as q → +∞, where z̃ ≡ r (mod t).

Theorem
Non-linear MSRD codes are sparse:

lim
q→+∞

δsr,t
q (Fnqm , qmax{m,η}(tmin{m,η}−d+1), 0, d) = 0
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Sum-Rank Metric II

Theorem
Let θ := (d− 1)

(
min{m, η} − d−1

t

)
+ z̃2

t − z̃.
If m ≥ η, then:

lim
q→+∞

δsr,tq (Fnqm , qm(n−d+1), `, d) =
{

1 if θ < `,

0 if θ > `

If η > m, then:

lim
q→+∞

δsr,tq (Fnqm , q`k, `, d) =
{

1 if θ − r < `,

0 if θ − r > `,

where k =
⌊
η(mt−d+1)

`

⌋
and r = `

(⌈
η(d−1)

`

⌉
− η(d−1)

`

)
.
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Sum-Rank Metric III

Corollary
Let m ≥ η and 2 ≤ d ≤ n be integers. We have

lim
q→+∞

δsr,tq (Fnqm , qm(n−d+1), 1, d) =

1 if η < 2√
t

0 if η > (t+2)2

4t .

2 4 6 8 10

2

3

4

t

η

2√
t

(t+2)2
4t
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Density of Codes in the Grassmannian
Metric space (Gq(k, n), D), volume of ball vDq (...), density δDq (...)

Theorem
The density of codes in Gq(k, n) with minimum distance d among all
codes of cardinality S is bounded by

1−
(vDq (Gq(k, n), d− 1)− 1)S(S − 1)

2(
[
n
k

]
q

− 1)
≤ δDq (Gq(k, n), S, d),

δDq (Gq(k, n), S, d) ≤ 1−
(vDq (Gq(k, n), d− 1)− 1)S(S − 1)

2Θ(
[
n
k

]
q

− 1)
,

Θ = 1 + 2 (vDq (d−1)−2)(S−2)
bin(n,k,q)−2 + ( 1

2 bin(n,k,q)(vDq (d−1)−1)−2vDq (d−1)+3)(S−2)(S−3)
(bin(n,k,q)−2)(bin(n,k,q)−3) .

29 / 35



Asymptotic Density
Theorem

lim
q,n→∞

δDq (Gq(k, n), Sq, d) =


1 if vDq (Gq(k, n), d− 1) ∈ o(

[
n

k

]
q

S−2
q )

0 if vDq (Gq(k, n), d− 1) ∈ ω(
[
n

k

]
q

S−2
q )

GV-bound:

S[n,k,q,d] ≥

[
n
k

]
q

vDq (Gq(k, n), d− 1)

Corollary
Non-linear codes achieving the Gilbert-Varshamov bound are
asymptotically sparse with respect to q or n.
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Codes with the Subspace/Injection Distance2

dI(U, V ) := k − dim(U ∩ V )

|vIq(Gq(k, n), d)| =
d∑
i=0

qi
2
[
k
i

]
q

[
n− k
i

]
q

Singleton-type bound:

|C[n,k,d]| ≤
[

n− d+ 1
max(k, n− k)

]
q

Theorem

lim
q,n→∞

δDq (Gq(k, n),
[

n− d+ 1
max(k, n− k)

]
q

, d) = 0

(→ GV-bound is lower than Singleton-type bound)
2A. Gruica and A. Ravagnani, The Typical Non-Linear Code over Large Alphabets, IEEE Information

Theory Workshop (ITW), 2021.
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Bounds for (q, k, n) = (2, 4, 8), (2, 4, 10)
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Geometric Interpretation

dI(U, V ) < d ⇐⇒ dim(U ∩ V ) > k − d

Theorem
Let d ≥ 2. A set of [

n
k

]
q

vIq(Gq(k, n), d− 1) ≤
[

n− d+ 1
max(k, n− k)

]
q

randomly chosen k-dimensional subspaces in Fnq contains a pair of
elements which intersect in dimension at least k − d+ 1, with
probability going to 1 for growing q or n.
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Geometric Interpretation II

dI(U, V ) < d ⇐⇒ dim(U ∩ V ) > k − d

Theorem
Let d ≥ 2. A set of 

[
n
k

]
q

vIq(Gq(k, n), d− 1)



1
2

randomly chosen k-dimensional subspaces in Fnq intersect pairwise in
dimension at most k− d, with probability going to 1 for growing q or n.
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Summary and Conclusions

General (asymptotic) bounds on densities in (Fnqm , D) and
(Gq(k, n), D), D translation-invariant.

Density/sparsity depends on relation of volume of balls to code
cardinality.
All non-linear codes we considered are sparse (GV- or Singleton-
achieving).
Fq`-linear codes always achieve GV-bound (with probability 1) for
growing q or ` = m/s.
For Singleton-type bound it depends on the metric and the
linearity degree.

Thank you for your attention!
Questions? – Comments?
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