A standard form for scattered

 linearized polynomials and properties of the related translation planesCorrado Zanella

Department of Management and Engineering

Università degli Studi di Padova

Scattered polynomials

Scattered polynomials

Definition.

A scattered polynomial in $\mathbb{F}_{q^{n}}[x]$ is an \mathbb{F}_{q}-linearized polynomial $f(x)=\sum_{i} a_{i} x^{q^{i}}$ such that

$$
\frac{f(y)}{y}=\frac{f(z)}{z}, y, z \in \mathbb{F}_{q^{n}}^{*} \Rightarrow\langle y\rangle_{\mathbb{F}_{q}}=\langle z\rangle_{\mathbb{F}_{q}} .
$$

Scattered polynomials

Definition.

A scattered polynomial in $\mathbb{F}_{q^{n}}[x]$ is an \mathbb{F}_{q}-linearized polynomial $f(x)=\sum_{i} a_{i} x^{q^{i}}$ such that

$$
\frac{f(y)}{y}=\frac{f(z)}{z}, y, z \in \mathbb{F}_{q^{n}}^{*} \Rightarrow\langle y\rangle_{\mathbb{F}_{q}}=\langle z\rangle_{\mathbb{F}_{q}} .
$$

Let $f(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered. Then

Scattered polynomials

Definition.

A scattered polynomial in $\mathbb{F}_{q^{n}}[x]$ is an $\mathbb{F}_{q^{-}}$-linearized polynomial $f(x)=\sum_{i} a_{i} x^{q^{i}}$ such that

$$
\frac{f(y)}{y}=\frac{f(z)}{z}, y, z \in \mathbb{F}_{q^{n}}^{*} \Rightarrow\langle y\rangle_{\mathbb{F}_{q}}=\langle z\rangle_{\mathbb{F}_{q}} .
$$

Let $f(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered. Then

- $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$ is a scattered $\mathbb{F}_{q^{-}}$-subspace of $\mathbb{F}_{q^{n}}^{2}$ with respect to the Desarguesian spread $\mathcal{D}=\left\{\langle v\rangle_{\mathbb{F}_{q^{n}}}: v \in \mathbb{F}_{q^{n}}^{2}, v \neq 0\right\}$; that is, $\operatorname{dim}_{\mathbb{F}_{q}}\left(U_{f} \cap\langle v\rangle_{\mathbb{F}_{q^{n}}}\right) \leq 1$ for any $v \in \mathbb{F}_{q^{n}}^{2}$.

Scattered polynomials

Definition.

A scattered polynomial in $\mathbb{F}_{q^{n}}[x]$ is an $\mathbb{F}_{q^{-}}$-linearized polynomial $f(x)=\sum_{i} a_{i} x^{q^{i}}$ such that

$$
\frac{f(y)}{y}=\frac{f(z)}{z}, y, z \in \mathbb{F}_{q^{n}}^{*} \Rightarrow\langle y\rangle_{\mathbb{F}_{q}}=\langle z\rangle_{\mathbb{F}_{q}} .
$$

Let $f(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered. Then

- $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$ is a scattered $\mathbb{F}_{q^{-}}$-subspace of $\mathbb{F}_{q^{n}}^{2}$ with respect to the Desarguesian spread $\mathcal{D}=\left\{\langle v\rangle_{\mathbb{F}_{q^{n}}}: v \in \mathbb{F}_{q^{n}}^{2}, v \neq 0\right\}$; that is, $\operatorname{dim}_{\mathbb{F}_{q}}\left(U_{f} \cap\langle v\rangle_{\mathbb{F}_{q^{n}}}\right) \leq 1$ for any $v \in \mathbb{F}_{q^{n}}^{2}$.
- $L_{f}=\left\{\langle(y, f(y))\rangle_{\mathbb{F}_{q^{n}}}: y \in \mathbb{F}_{q^{n}}^{*}\right\}$ is a scattered linear set of rank n in $\operatorname{PG}\left(1, q^{n}\right)$; $\left|L_{f}\right|=\left(q^{n}-1\right) /(q-1)$.

Scattered polynomials

Definition.

A scattered polynomial in $\mathbb{F}_{q^{n}}[x]$ is an \mathbb{F}_{q}-linearized polynomial $f(x)=\sum_{i} a_{i} x^{q^{i}}$ such that

$$
\frac{f(y)}{y}=\frac{f(z)}{z}, y, z \in \mathbb{F}_{q^{n}}^{*} \Rightarrow\langle y\rangle_{\mathbb{F}_{q}}=\langle z\rangle_{\mathbb{F}_{q}} .
$$

Let $f(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered. Then

- $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$ is a scattered $\mathbb{F}_{q^{-}}$-subspace of $\mathbb{F}_{q^{n}}^{2}$ with respect to the Desarguesian spread $\mathcal{D}=\left\{\langle v\rangle_{\mathbb{F}_{q^{n}}}: v \in \mathbb{F}_{q^{n}}^{2}, v \neq 0\right\}$; that is, $\operatorname{dim}_{\mathbb{F}_{q}}\left(U_{f} \cap\langle v\rangle_{\mathbb{F}_{q^{n}}}\right) \leq 1$ for any $v \in \mathbb{F}_{q^{n}}^{2}$.
- $L_{f}=\left\{\langle(y, f(y))\rangle_{\mathbb{F}_{q^{n}}}: y \in \mathbb{F}_{q^{n}}^{*}\right\}$ is a scattered linear set of rank n in PG $\left(1, q^{n}\right)$; $\left|L_{f}\right|=\left(q^{n}-1\right) /(q-1)$.

Definition.

If U_{f} and U_{g} belong to the same orbit under the action of $\mathrm{GL}\left(2, q^{n}\right)$ [resp. $\left.\Gamma \mathrm{L}\left(2, q^{n}\right)\right]$, then f and g are GL-equivalent [resp. [L-equivalent].

Scattered polynomials

Definition.

A scattered polynomial in $\mathbb{F}_{q^{n}}[x]$ is an \mathbb{F}_{q}-linearized polynomial $f(x)=\sum_{i} a_{i} x^{q^{i}}$ such that

$$
\frac{f(y)}{y}=\frac{f(z)}{z}, y, z \in \mathbb{F}_{q^{n}}^{*} \Rightarrow\langle y\rangle_{\mathbb{F}_{q}}=\langle z\rangle_{\mathbb{F}_{q}} .
$$

Let $f(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered. Then

- $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$ is a scattered $\mathbb{F}_{q^{-}}$-subspace of $\mathbb{F}_{q^{n}}^{2}$ with respect to the Desarguesian spread $\mathcal{D}=\left\{\langle v\rangle_{\mathbb{F}_{q^{n}}}: v \in \mathbb{F}_{q^{n}}^{2}, v \neq 0\right\}$; that is, $\operatorname{dim}_{\mathbb{F}_{q}}\left(U_{f} \cap\langle v\rangle_{\mathbb{F}_{q^{n}}}\right) \leq 1$ for any $v \in \mathbb{F}_{q^{n}}^{2}$.
- $L_{f}=\left\{\langle(y, f(y))\rangle_{\mathbb{F}_{q^{n}}}: y \in \mathbb{F}_{q^{n}}^{*}\right\}$ is a scattered linear set of rank n in $\operatorname{PG}\left(1, q^{n}\right)$; $\left|L_{f}\right|=\left(q^{n}-1\right) /(q-1)$.

Definition.

If U_{f} and U_{g} belong to the same orbit under the action of $\mathrm{GL}\left(2, q^{n}\right)$ [resp. $\left.\Gamma \mathrm{L}\left(2, q^{n}\right)\right]$, then f and g are GL-equivalent [resp. [L-equivalent].

EXAMPLE.

$f(x)=x^{q}$ and $g(x)=a x+x^{q}$ are GL-equivalent scattered polynomials for any $a \in \mathbb{F}_{q^{n}}$.

Known scattered polynomials in $\mathbb{F}_{q^{n}}[x]$

- $f(x)=x^{q^{s}},(s, n)=1$ (pseudoregulus type) (Blokhuis-Lavrauw 2000)

Known scattered polynomials in $\mathbb{F}_{q^{n}}[x]$

- $f(x)=x^{q^{s}},(s, n)=1$ (pseudoregulus type) (Blokhuis-Lavrauw 2000)

■ $f(x)=x^{q^{s}}+\delta x^{q^{n-s}}, n \geq 4,(s, n)=1, \mathrm{~N}_{q^{n} / q}(\delta) \neq 0,1$ (Lunardon-Polverino 2001; Sheekey 2016)

Known scattered polynomials in $\mathbb{F}_{q^{n}}[x]$

- $f(x)=x^{q^{s}},(s, n)=1$ (pseudoregulus type) (Blokhuis-Lavrauw 2000)

■ $f(x)=x^{q^{s}}+\delta x^{q^{n-s}}, n \geq 4,(s, n)=1, \mathrm{~N}_{q^{n} / q}(\delta) \neq 0,1$ (Lunardon-Polverino 2001; Sheekey 2016)

- $f(x)=\delta x^{q^{s}}+x^{q^{s+n / 2}}, n \in\{6,8\},(s, n / 2)=1$, some δ and q (Csajbók-Marino-Polverino-Z. 2018)

Known scattered polynomials in $\mathbb{F}_{q^{n}}[x]$

- $f(x)=x^{q^{s}},(s, n)=1$ (pseudoregulus type) (Blokhuis-Lavrauw 2000)

■ $f(x)=x^{q^{s}}+\delta x^{q^{n-s}}, n \geq 4,(s, n)=1, \mathrm{~N}_{q^{n} / q}(\delta) \neq 0,1$ (Lunardon-Polverino 2001; Sheekey 2016)

- $f(x)=\delta x^{q^{s}}+x^{q^{s+n / 2}}, n \in\{6,8\},(s, n / 2)=1$, some δ and q (Csajbók-Marino-Polverino-Z. 2018)
- $f(x)=x^{q}+x^{q^{3}}+\delta x^{q^{5}}, n=6, \delta^{2}+\delta=1, q$ odd (Csajbók, Marino, Montanucci, Zullo 2018, 2020)

Known scattered polynomials in $\mathbb{F}_{q^{n}}[x]$

- $f(x)=x^{q^{s}},(s, n)=1$ (pseudoregulus type) (Blokhuis-Lavrauw 2000)
- $f(x)=x^{q^{s}}+\delta x^{q^{n-s}}, n \geq 4,(s, n)=1, \mathrm{~N}_{q^{n} / q}(\delta) \neq 0,1$ (Lunardon-Polverino 2001; Sheekey 2016)
- $f(x)=\delta x^{q^{s}}+x^{q^{s+n / 2}}, n \in\{6,8\},(s, n / 2)=1$, some δ and q (Csajbók-Marino-Polverino-Z. 2018)
■ $f(x)=x^{q}+x^{q^{3}}+\delta x^{q^{5}}, n=6, \delta^{2}+\delta=1, q$ odd (Csajbók, Marino, Montanucci, Zullo 2018, 2020)
■ $f(x)=x^{q^{s}}+x^{q^{s(t-1)}}+h^{1+q^{s}} x^{q^{s(t+1)}}+h^{1-q^{s(2 t-1)}} x^{q^{s(2 t-1)}}, n=2 t, t \geq 3,(s, n)=1, q$ odd, $\mathrm{N}_{q^{n} / q^{t}}(h)=-1$ (Bartoli, Longobardi, Marino, Neri, Santonastaso, Z., Zhou, Zullo 2020-202x)

Translation planes related to scattered polynomials

Translation planes related to scattered polynomials

Ingredients:

Translation planes related to scattered polynomials

Ingredients:

- $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$

Translation planes related to scattered polynomials

Ingredients:

- $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$
- $L_{f}=\left\{\langle(y, f(y))\rangle_{\mathbb{F}_{q^{n}}}: y \in \mathbb{F}_{q^{n}}^{*}\right\}$

Translation planes related to scattered polynomials

Ingredients:

- $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$
- $L_{f}=\left\{\langle(y, f(y))\rangle_{\mathbb{F}_{q^{n}}}: y \in \mathbb{F}_{q^{n}}^{*}\right\}$ a subset of the Desarguesian spread
- $\mathcal{D}=\left\{\langle v\rangle_{\mathbb{F}_{q^{n}}}: v \in \mathbb{F}_{q^{n}}^{2}, v \neq 0\right\}$

Translation planes related to scattered polynomials

Ingredients:
■ $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$
■ $L_{f}=\left\{\langle(y, f(y))\rangle_{\mathbb{F}_{q^{n}}}: y \in \mathbb{F}_{q^{n}}^{*}\right\}$ a subset of the Desarguesian spread
■ $\mathcal{D}=\left\{\langle v\rangle_{\mathbb{F}_{q^{n}}}: v \in \mathbb{F}_{q^{n}}^{2}, v \neq 0\right\}$
If $f(x) \in \mathbb{F}_{q^{n}}[x]$ is scattered, then any two distinct subspaces $h U_{f}, k U_{f}, h, k \in$ $\mathbb{F}_{q^{n}}^{*}$, intersect trivially (for: $\left.h(y, f(y))=k(z, f(z)) \Rightarrow \frac{f(y)}{y}=\frac{f(z)}{z}\right)$. So, $\mathcal{B}_{f}=\left(\mathcal{D} \backslash L_{f}\right) \cup\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$ is a spread of $\mathbb{F}_{q^{n}}^{2}$ in n-dimensional $\mathbb{F}_{q^{-}}$ subspaces.

Translation planes related to scattered
 polynomials

Ingredients:
■ $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$
■ $L_{f}=\left\{\langle(y, f(y))\rangle_{\mathbb{F}_{q^{n}}}: y \in \mathbb{F}_{q^{n}}^{*}\right\}$ a subset of the Desarguesian spread
■ $\mathcal{D}=\left\{\langle v\rangle_{\mathbb{F}_{q^{n}}}: v \in \mathbb{F}_{q^{n}}^{2}, v \neq 0\right\}$

If $f(x) \in \mathbb{F}_{q^{n}}[x]$ is scattered, then any two distinct subspaces $h U_{f}, k U_{f}, h, k \in$ $\mathbb{F}_{q^{n}}^{*}$, intersect trivially (for: $\left.h(y, f(y))=k(z, f(z)) \Rightarrow \frac{f(y)}{y}=\frac{f(z)}{z}\right)$. So, $\mathcal{B}_{f}=\left(\mathcal{D} \backslash L_{f}\right) \cup\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$ is a spread of $\mathbb{F}_{q^{n}}^{2}$ in n-dimensional $\mathbb{F}_{q^{-}}$ subspaces.

Definition.

\mathcal{A}_{f} is the affine translation plane whose

Translation planes related to scattered
 polynomials

Ingredients:

- $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$
- $L_{f}=\left\{\langle(y, f(y))\rangle_{\mathbb{F}_{q^{n}}}: y \in \mathbb{F}_{q^{n}}^{*}\right\}$ a subset of the Desarguesian spread

■ $\mathcal{D}=\left\{\langle v\rangle_{\mathbb{F}_{q^{n}}}: v \in \mathbb{F}_{q^{n}}^{2}, v \neq 0\right\}$
If $f(x) \in \mathbb{F}_{q^{n}}[x]$ is scattered, then any two distinct subspaces $h U_{f}, k U_{f}, h, k \in$ $\mathbb{F}_{q^{n}}^{*}$, intersect trivially (for: $\left.h(y, f(y))=k(z, f(z)) \Rightarrow \frac{f(y)}{y}=\frac{f(z)}{z}\right)$. So, $\mathcal{B}_{f}=\left(\mathcal{D} \backslash L_{f}\right) \cup\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$ is a spread of $\mathbb{F}_{q^{n}}^{2}$ in n-dimensional $\mathbb{F}_{q^{-}}$ subspaces.

Definition.

\mathcal{A}_{f} is the affine translation plane whose

- point set is $\mathbb{F}_{q^{n}}^{2}$

Translation planes related to scattered
 polynomials

Ingredients:

- $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$

■ $L_{f}=\left\{\langle(y, f(y))\rangle_{\mathbb{F}_{q^{n}}}: y \in \mathbb{F}_{q^{n}}^{*}\right\}$ a subset of the Desarguesian spread
■ $\mathcal{D}=\left\{\langle v\rangle_{\mathbb{F}_{q^{n}}}: v \in \mathbb{F}_{q^{n}}^{2}, v \neq 0\right\}$

If $f(x) \in \mathbb{F}_{q^{n}}[x]$ is scattered, then any two distinct subspaces $h U_{f}, k U_{f}, h, k \in$ $\mathbb{F}_{q^{n}}^{*}$, intersect trivially (for: $\left.h(y, f(y))=k(z, f(z)) \Rightarrow \frac{f(y)}{y}=\frac{f(z)}{z}\right)$. So, $\mathcal{B}_{f}=\left(\mathcal{D} \backslash L_{f}\right) \cup\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$ is a spread of $\mathbb{F}_{q^{n}}^{2}$ in n-dimensional $\mathbb{F}_{q^{-}}$ subspaces.

Definition.

\mathcal{A}_{f} is the affine translation plane whose

- point set is $\mathbb{F}_{q^{n}}^{2}$
- lines are $v+U, v \in \mathbb{F}_{q^{n}}^{2}, U \in \mathcal{B}_{f}$

Translation planes related to scattered
 polynomials

Ingredients:

- $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$

■ $L_{f}=\left\{\langle(y, f(y))\rangle_{\mathbb{F}_{q^{n}}}: y \in \mathbb{F}_{q^{n}}^{*}\right\}$ a subset of the Desarguesian spread
■ $\mathcal{D}=\left\{\langle v\rangle_{\mathbb{F}_{q^{n}}}: v \in \mathbb{F}_{q^{n}}^{2}, v \neq 0\right\}$

If $f(x) \in \mathbb{F}_{q^{n}}[x]$ is scattered, then any two distinct subspaces $h U_{f}, k U_{f}, h, k \in$ $\mathbb{F}_{q^{n}}^{*}$, intersect trivially (for: $\left.h(y, f(y))=k(z, f(z)) \Rightarrow \frac{f(y)}{y}=\frac{f(z)}{z}\right)$. So, $\mathcal{B}_{f}=\left(\mathcal{D} \backslash L_{f}\right) \cup\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$ is a spread of $\mathbb{F}_{q^{n}}^{2}$ in n-dimensional $\mathbb{F}_{q^{-}}$ subspaces.

Definition.

\mathcal{A}_{f} is the affine translation plane whose

- point set is $\mathbb{F}_{q^{n}}^{2}$
- lines are $v+U, v \in \mathbb{F}_{q^{n}}^{2}, U \in \mathcal{B}_{f}$

The elements of \mathcal{B}_{f} are lines through the origin, and will also be considered as points of the line at infinity $L_{\infty}=\left(L_{\infty}\right)_{f}$.

L_{∞} and PG(1, $\left.q^{n}\right)$ share some points

L_{∞} and PG(1, $\left.q^{n}\right)$ share some points

L_{∞} and PG(1, $\left.q^{n}\right)$ share some points

$\operatorname{PG}\left(1, q^{n}\right)$ is a spread \mathcal{D} of $\mathbb{F}_{q^{n}}^{2}$ containing L_{f}

L_{∞} and PG(1, $\left.q^{n}\right)$ share some points

$\operatorname{PG}\left(1, q^{n}\right)$ is a spread \mathcal{D} of $\mathbb{F}_{q^{n}}^{2}$ containing L_{f}

L_{∞} and PG(1, $\left.q^{n}\right)$ share some points

$\operatorname{PG}\left(1, q^{n}\right)$ is a spread \mathcal{D} of $\mathbb{F}_{q^{n}}^{2}$ containing L_{f}

$\left(L_{\infty}\right)_{f}$ is a spread $\mathcal{B}_{f}=\left(\mathcal{D} \backslash L_{f}\right) \cup\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$ of $\mathbb{F}_{q^{n}}^{2}$ obtained from \mathcal{D} by replacing L_{f}

Equivalence of translation planes

Always: $q>3$.

Equivalence of translation planes

Always: $q>3$.
Theorem (Casarino-Longobardi-Z. 2022).
Let $f(x), g(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered, and let $\Psi: \mathcal{A}_{f} \rightarrow \mathcal{A}_{g}$ be a collineation. Then

Equivalence of translation planes

Always: $q>3$.

Theorem (Casarino-Longobardi-Z. 2022).

Let $f(x), g(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered, and let $\Psi: \mathcal{A}_{f} \rightarrow \mathcal{A}_{g}$ be a collineation. Then
$1 \Psi: x \mapsto v+\varphi(x)$ with $v \in \mathbb{F}_{q^{n}}^{2}, \varphi \in \Gamma L\left(2, q^{n}\right)$;

Equivalence of translation planes

Always: $q>3$.

Theorem (Casarino-Longobardi-Z. 2022).

Let $f(x), g(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered, and let $\Psi: \mathcal{A}_{f} \rightarrow \mathcal{A}_{g}$ be a collineation. Then
$1 \Psi: x \mapsto v+\varphi(x)$ with $v \in \mathbb{F}_{q^{n}}^{2}, \varphi \in \Gamma L\left(2, q^{n}\right)$;
2φ stabilizes the partial spreads $\mathcal{D} \backslash L_{f}$ and $\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$.

Equivalence of translation planes

Always: $q>3$.

Theorem (Casarino-Longobardi-Z. 2022).

Let $f(x), g(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered, and let $\Psi: \mathcal{A}_{f} \rightarrow \mathcal{A}_{g}$ be a collineation. Then
$1 \Psi: x \mapsto v+\varphi(x)$ with $v \in \mathbb{F}_{q^{n}}^{2}, \varphi \in \Gamma L\left(2, q^{n}\right)$;
2φ stabilizes the partial spreads $\mathcal{D} \backslash L_{f}$ and $\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$.
The converse holds.

Equivalence of translation planes

Always: $q>3$.

Theorem (Casarino-Longobardi-Z. 2022).

Let $f(x), g(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered, and let $\Psi: \mathcal{A}_{f} \rightarrow \mathcal{A}_{g}$ be a collineation. Then
$1 \Psi: x \mapsto v+\varphi(x)$ with $v \in \mathbb{F}_{q^{n}}^{2}, \varphi \in \Gamma L\left(2, q^{n}\right)$;
2φ stabilizes the partial spreads $\mathcal{D} \backslash L_{f}$ and $\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$.
The converse holds.

Corollary 1.

$\mathcal{A}_{f} \cong \mathcal{A}_{g}$ iff $f(x)$ and $g(x)$ are 「L-equivalent.

Equivalence of translation planes

Always: $q>3$.

Theorem (Casarino-Longobardi-Z. 2022).

Let $f(x), g(x) \in \mathbb{F}_{q^{n}}[x]$ be scattered, and let $\Psi: \mathcal{A}_{f} \rightarrow \mathcal{A}_{g}$ be a collineation. Then
$1 \Psi: x \mapsto v+\varphi(x)$ with $v \in \mathbb{F}_{q^{n}}^{2}, \varphi \in \Gamma L\left(2, q^{n}\right)$;
2φ stabilizes the partial spreads $\mathcal{D} \backslash L_{f}$ and $\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$.
The converse holds.

Corollary 1.

$\mathcal{A}_{f} \cong \mathcal{A}_{g}$ iff $f(x)$ and $g(x)$ are ГL-equivalent.

Corollary 2.

Any linear set L_{f} of ГL-class c (Csajbók-Marino-Polverino 2018) gives rise to c pairwise nonisomorphic translation planes.

André planes

André planes

Definition.

Let $\alpha: \mathbb{F}_{q}^{*} \rightarrow\{0,1, \ldots, n-1\}$ be any mapping, and

$$
B_{m, \alpha}=\left\{\left(x, m x^{\alpha}{ }^{\alpha\left(N_{q^{n}} / q^{(m)}\right)}\right): x \in \mathbb{F}_{q^{n}}^{*}\right\}, \quad m \in \mathbb{F}_{q^{n}}^{*}
$$

Then $\mathcal{B}_{\alpha}=\left\{B_{m, \alpha}: m \in \mathbb{F}_{q^{n}}^{*}\right\} \cup\left\{\langle(1,0)\rangle_{\mathbb{F}_{q^{n}}},\langle(0,1)\rangle_{\mathbb{F}_{q^{n}}}\right\}$ is a spread of $\mathbb{F}_{q^{n}}^{2}$, and the related translation plane is an André plane.

André planes

Definition.

Let $\alpha: \mathbb{F}_{q}^{*} \rightarrow\{0,1, \ldots, n-1\}$ be any mapping, and

$$
B_{m, \alpha}=\left\{\left(x, m x^{\alpha}{ }^{\alpha\left(N_{q^{n}} / q^{(m)}\right)}\right): x \in \mathbb{F}_{q^{n}}^{*}\right\}, \quad m \in \mathbb{F}_{q^{n}}^{*}
$$

Then $\mathcal{B}_{\alpha}=\left\{B_{m, \alpha}: m \in \mathbb{F}_{q^{n}}^{*}\right\} \cup\left\{\langle(1,0)\rangle_{\mathbb{F}_{q^{n}}},\langle(0,1)\rangle_{\mathbb{F}_{q^{n}}}\right\}$ is a spread of $\mathbb{F}_{q^{n}}^{2}$, and the related translation plane is an André plane.

Recall: $\mathcal{B}_{f}=\left(\mathcal{D} \backslash L_{f}\right) \cup\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$

André planes

Definition.

Let $\alpha: \mathbb{F}_{q}^{*} \rightarrow\{0,1, \ldots, n-1\}$ be any mapping, and

$$
B_{m, \alpha}=\left\{\left(x, m x^{q^{\alpha}}{ }^{\left(N_{q^{n}} / q^{(m)}\right)}\right): x \in \mathbb{F}_{q^{n}}^{*}\right\}, \quad m \in \mathbb{F}_{q^{n}}^{*}
$$

Then $\mathcal{B}_{\alpha}=\left\{B_{m, \alpha}: m \in \mathbb{F}_{q^{n}}^{*}\right\} \cup\left\{\langle(1,0)\rangle_{\mathbb{F}_{q^{n}}},\langle(0,1)\rangle_{\mathbb{F}_{q^{n}}}\right\}$ is a spread of $\mathbb{F}_{q^{n}}^{2}$, and the related translation plane is an André plane.

Recall: $\mathcal{B}_{f}=\left(\mathcal{D} \backslash L_{f}\right) \cup\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$

EXAMPLE.

If $f(x)=x^{q^{s}}$, then $\mathcal{B}_{f}=\mathcal{B}_{\alpha}$ where

$$
\alpha(\nu)=\left\{\begin{array}{lc}
s & \text { if } \nu=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

hence \mathcal{A}_{f} is an André plane (Lunardon-Polverino 2001).

André planes

Definition.

Let $\alpha: \mathbb{F}_{q}^{*} \rightarrow\{0,1, \ldots, n-1\}$ be any mapping, and

$$
B_{m, \alpha}=\left\{\left(x, m x^{q^{\alpha}\left(N_{q^{n}} / q^{(m)}\right)}\right): x \in \mathbb{F}_{q^{n}}^{*}\right\}, \quad m \in \mathbb{F}_{q^{n}}^{*}
$$

Then $\mathcal{B}_{\alpha}=\left\{B_{m, \alpha}: m \in \mathbb{F}_{q^{n}}^{*}\right\} \cup\left\{\langle(1,0)\rangle_{\mathbb{F}_{q^{n}}},\langle(0,1)\rangle_{\mathbb{F}_{q^{n}}}\right\}$ is a spread of $\mathbb{F}_{q^{n}}^{2}$, and the related translation plane is an André plane.

Recall: $\mathcal{B}_{f}=\left(\mathcal{D} \backslash L_{f}\right) \cup\left\{h U_{f}: h \in \mathbb{F}_{q^{n}}^{*}\right\}$

EXAMPLE.

If $f(x)=x^{q^{s}}$, then $\mathcal{B}_{f}=\mathcal{B}_{\alpha}$ where

$$
\alpha(\nu)=\left\{\begin{array}{lc}
s & \text { if } \nu=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

hence \mathcal{A}_{f} is an André plane (Lunardon-Polverino 2001).

Question.

For which $f(x)$ is \mathcal{A}_{f} an André plane, or a generalized André plane?

A pattern for scattered polynomials

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.
(1) $x^{q^{s}}+\delta x^{q^{n-s}}, \quad n$ even

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.
(1) $x^{q^{s}}+\delta x^{q^{n-s}}, \quad n$ even
(2) $\delta x^{q^{s}}+x^{q^{s+n / 2}}, \quad n \in\{6,8\}$

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.
(1) $x^{q^{s}}+\delta x^{q^{n-s}}, \quad n$ even
(2) $\delta x^{q^{s}}+x^{q^{s+n / 2}}, \quad n \in\{6,8\}$
(3) $x^{q}+x^{q^{3}}+\delta x^{q^{5}}, \quad n=6$

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.
(1) $x^{q^{s}}+\delta x^{q^{n-s}}, \quad n$ even
(2) $\delta x^{q^{s}}+x^{q^{s+n / 2}}, \quad n \in\{6,8\}$
(3) $x^{q}+x^{q^{3}}+\delta x^{q^{5}}, \quad n=6$
(4) $x^{q}+x^{q^{t-1}}+h^{1+q} x^{q^{t+1}}+h^{1-q^{2 t-1}} x^{q^{2 t-1}}, \quad n=2 t, t$ even

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.
(1) $x^{q^{s}}+\delta x^{q^{n-s}}, \quad n$ even
(2) $\delta x^{q^{s}}+x^{q^{s+n / 2}}, \quad n \in\{6,8\}$
(3) $x^{q}+x^{q^{3}}+\delta x^{q^{5}}, \quad n=6$
(4) $x^{q}+x^{q^{t-1}}+h^{1+q} \chi^{q^{t+1}}+h^{1-q^{2 t-1}} x^{q^{2 t-1}}, \quad n=2 t, t$ even
are of type $F\left(x^{q^{s}}\right)$ where $F(x)$ is $\mathbb{F}_{q^{r}}$-linear for some $1<r \mid n$, and $(s, r)=1$:

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.
(1) $x^{q^{s}}+\delta x^{q^{n-s}}, \quad n$ even
(2) $\delta x^{q^{s}}+x^{q^{s+n / 2}}, \quad n \in\{6,8\}$
(3) $x^{q}+x^{q^{3}}+\delta x^{q^{5}}, \quad n=6$
(4) $x^{q}+x^{q^{t-1}}+h^{1+q} x^{q^{t+1}}+h^{1-q^{2 t-1}} x^{q^{2 t-1}}, \quad n=2 t, t$ even
are of type $F\left(x^{q^{s}}\right)$ where $F(x)$ is $\mathbb{F}_{q^{r}}$-linear for some $1<r \mid n$, and $(s, r)=1$:
(1) $F(x)=x+\delta x^{q^{n-2 s}}, \quad r=2$

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.
(1) $x^{q^{s}}+\delta x^{q^{n-s}}, \quad n$ even
(2) $\delta x^{q^{s}}+x^{q^{s+n / 2}}, \quad n \in\{6,8\}$
(3) $x^{q}+x^{q^{3}}+\delta x^{q^{5}}, \quad n=6$
(4) $x^{q}+x^{q^{t-1}}+h^{1+q} x^{q^{t+1}}+h^{1-q^{2 t-1}} x^{q^{2 t-1}}, \quad n=2 t, t$ even
are of type $F\left(x^{q^{s}}\right)$ where $F(x)$ is $\mathbb{F}_{q^{r}}$-linear for some $1<r \mid n$, and $(s, r)=1$:
(1) $F(x)=x+\delta x^{q^{n-2 s}}, \quad r=2$
(2) $F(x)=\delta x+x^{q^{n / 2}}, \quad r=n / 2$

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.
(1) $x^{q^{s}}+\delta x^{q^{n-s}}, \quad n$ even
(2) $\delta x^{q^{s}}+x^{q^{s+n / 2}}, \quad n \in\{6,8\}$
(3) $x^{q}+x^{q^{3}}+\delta x^{q^{5}}, \quad n=6$
(4) $x^{q}+x^{q^{t-1}}+h^{1+q_{X}} q^{t+1}+h^{1-q^{2 t-1}} x^{q^{2 t-1}}, \quad n=2 t, t$ even
are of type $F\left(x^{q^{s}}\right)$ where $F(x)$ is $\mathbb{F}_{q^{r}}$-linear for some $1<r \mid n$, and $(s, r)=1$:
(1) $F(x)=x+\delta x^{q^{n-2 s}}, \quad r=2$
(2) $F(x)=\delta x+x^{q^{n / 2}}, \quad r=n / 2$
(3) $F(x)=x+x^{q^{2}}+\delta x^{q^{4}}, \quad r=2, s=1$

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.
(1) $x^{q^{s}}+\delta x^{q^{n-s}}, \quad n$ even
(2) $\delta x^{q^{s}}+x^{q^{s+n / 2}}, \quad n \in\{6,8\}$
(3) $x^{q}+x^{q^{3}}+\delta x^{q^{5}}, \quad n=6$
(4) $x^{q}+x^{q^{t-1}}+h^{1+q_{X}} q^{t+1}+h^{1-q^{2 t-1}} x^{q^{2 t-1}}, \quad n=2 t, t$ even
are of type $F\left(x^{q^{s}}\right)$ where $F(x)$ is $\mathbb{F}_{q^{r}}$-linear for some $1<r \mid n$, and $(s, r)=1$:
(1) $F(x)=x+\delta x^{q^{n-2 s}}, \quad r=2$
(2) $F(x)=\delta x+x^{q^{n / 2}}, \quad r=n / 2$
(3) $F(x)=x+x^{q^{2}}+\delta x^{q^{4}}, \quad r=2, s=1$
(4) $F(x)=x+x^{q^{t-2}}+h^{1+q_{X} q^{t}}+h^{1-q^{2 t-1}} x^{q^{2 t-2}}, \quad r=2, s=1$

A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.
(1) $x^{q^{s}}+\delta x^{q^{n-s}}, \quad n$ even
(2) $\delta x^{q^{s}}+x^{q^{s+n / 2}}, \quad n \in\{6,8\}$
(3) $x^{q}+x^{q^{3}}+\delta x^{q^{5}}, \quad n=6$
(4) $x^{q}+x^{q^{t-1}}+h^{1+q_{X}} q^{t+1}+h^{1-q^{2 t-1}} x^{q^{2 t-1}}, \quad n=2 t, t$ even
are of type $F\left(x^{q^{s}}\right)$ where $F(x)$ is $\mathbb{F}_{q^{r}}$-linear for some $1<r \mid n$, and $(s, r)=1$:
(1) $F(x)=x+\delta x^{q^{n-2 s}}, \quad r=2$
(2) $F(x)=\delta x+x^{q^{n / 2}}, \quad r=n / 2$
(3) $F(x)=x+x^{q^{2}}+\delta x^{q^{4}}, \quad r=2, s=1$
(4) $F(x)=x+x^{q^{t-2}}+h^{1+q_{X} q^{t}}+h^{1-q^{2 t-1}} x^{q^{2 t-2}}, \quad r=2, s=1$

We call a polynomial in standard form any polynomial of this type.

A pattern for scattered polynomials

A pattern for scattered polynomials

Definition (Longobardi-Z. 202x).
Let $f(x)=\sum_{i} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{n}}[x]$ be scattered and

$$
\Delta_{f}=\left\{(i-j) \quad \bmod n: a_{i} a_{j} \neq 0\right\} \cup\{n\} .
$$

Let $r=r_{f}=\operatorname{gcd} \Delta_{f}$. If $r>1$, then $f(x)$ is in standard form.

A pattern for scattered polynomials

Definition (Longobardi-Z. 202x).

Let $f(x)=\sum_{i} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{n}}[x]$ be scattered and

$$
\Delta_{f}=\left\{(i-j) \quad \bmod n: a_{i} a_{j} \neq 0\right\} \cup\{n\} .
$$

Let $r=r_{f}=\operatorname{gcd} \Delta_{f}$. If $r>1$, then $f(x)$ is in standard form.
0 영

$$
\text { If } f(x)=F\left(x^{q^{s}}\right) \text { is in standard form, then } f(x)=\sum_{k} b_{k} x^{q^{s+k r}} \text { where } r>1,
$$

$$
(s, r)=1
$$

A pattern for scattered polynomials

Definition (Longobardi-Z. 202x).

Let $f(x)=\sum_{i} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{n}}[x]$ be scattered and

$$
\Delta_{f}=\left\{(i-j) \quad \bmod n: a_{i} a_{j} \neq 0\right\} \cup\{n\} .
$$

Let $r=r_{f}=\operatorname{gcd} \Delta_{f}$. If $r>1$, then $f(x)$ is in standard form.

$$
\text { If } f(x)=F\left(x^{q^{s}}\right) \text { is in standard form, then } f(x)=\sum_{k} b_{k} x^{q^{s+k r}} \text { where } r>1,
$$

$$
(s, r)=1
$$

The stabilizer of $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$ is

$$
G_{f}=\mathrm{GL}\left(2, q^{n}\right)\left\{u_{f}\right\} \text { (i.e. setwise stabilizer). }
$$

A pattern for scattered polynomials

Definition (Longobardi-Z. 202x).

Let $f(x)=\sum_{i} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{n}}[x]$ be scattered and

$$
\Delta_{f}=\left\{(i-j) \quad \bmod n: a_{i} a_{j} \neq 0\right\} \cup\{n\} .
$$

Let $r=r_{f}=\operatorname{gcd} \Delta_{f}$. If $r>1$, then $f(x)$ is in standard form.

$$
\begin{aligned}
& \text { If } f(x)=F\left(x^{q^{s}}\right) \text { is in standard form, then } f(x)=\sum_{k} b_{k} x^{q^{s+k r}} \text { where } r>1 \text {, } \\
& (s, r)=1 \text {. }
\end{aligned}
$$

The stabilizer of $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$ is

$$
G_{f}=\mathrm{GL}\left(2, q^{n}\right)\left\{u_{f}\right\} \text { (i.e. setwise stabilizer) }
$$

$$
\left|G_{f}\right| \geq q-1 \text { since } \operatorname{diag}(\alpha, \alpha) \in G_{f} \text { for all } \alpha \in \mathbb{F}_{q}^{*} .
$$

A pattern for scattered polynomials

Definition (Longobardi-Z. 202x).

Let $f(x)=\sum_{i} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{n}}[x]$ be scattered and

$$
\Delta_{f}=\left\{(i-j) \quad \bmod n: a_{i} a_{j} \neq 0\right\} \cup\{n\} .
$$

Let $r=r_{f}=\operatorname{gcd} \Delta_{f}$. If $r>1$, then $f(x)$ is in standard form.

$$
\begin{aligned}
& \text { If } f(x)=F\left(x^{q^{s}}\right) \text { is in standard form, then } f(x)=\sum_{k} b_{k} x^{q^{s+k r}} \text { where } r>1 \text {, } \\
& (s, r)=1 \text {. }
\end{aligned}
$$

The stabilizer of $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$ is

$$
G_{f}=\mathrm{GL}\left(2, q^{n}\right)\left\{u_{f}\right\} \text { (i.e. setwise stabilizer) }
$$

$$
\begin{gathered}
\left|G_{f}\right| \geq q-1 \text { since } \operatorname{diag}(\alpha, \alpha) \in G_{f} \text { for all } \alpha \in \mathbb{F}_{q}^{*} . \\
\text { If }\left|G_{f}\right|=q-1, \text { then } G_{f} \text { is trivial. }
\end{gathered}
$$

A pattern for scattered polynomials

Definition (Longobardi-Z. 202x).

Let $f(x)=\sum_{i} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{n}}[x]$ be scattered and

$$
\Delta_{f}=\left\{(i-j) \quad \bmod n: a_{i} a_{j} \neq 0\right\} \cup\{n\}
$$

Let $r=r_{f}=\operatorname{gcd} \Delta_{f}$. If $r>1$, then $f(x)$ is in standard form.
0 If $f(x)=F\left(x^{q^{s}}\right)$ is in standard form, then $f(x)=\sum_{k} b_{k} x^{q^{s+k r}}$ where $r>1$,

$$
(s, r)=1
$$

The stabilizer of $U_{f}=\left\{(y, f(y)): y \in \mathbb{F}_{q^{n}}\right\}$ is

$$
G_{f}=\mathrm{GL}\left(2, q^{n}\right)\left\{u_{f}\right\} \text { (i.e. setwise stabilizer) }
$$

$$
\begin{gathered}
\left|G_{f}\right| \geq q-1 \text { since } \operatorname{diag}(\alpha, \alpha) \in G_{f} \text { for all } \alpha \in \mathbb{F}_{q}^{*} . \\
\text { If }\left|G_{f}\right|=q-1, \text { then } G_{f} \text { is trivial. }
\end{gathered}
$$

If $f(x)=\sum_{k} b_{k} x^{q^{s+k r}}=F\left(x^{q^{s}}\right)$ is in standard form, then

$$
\left\{\operatorname{diag}\left(\alpha, \alpha^{q^{s}}\right): \alpha \in \mathbb{F}_{q^{r}}^{*}\right\} \subseteq G_{f}
$$

Indeed, $f(\alpha y)=\alpha^{q^{s}} F\left(y^{q^{s}}\right)=\alpha^{q^{s}} f(y) \forall y \in \mathbb{F}_{q^{n}}$.

A pattern for scattered polynomials

A pattern for scattered polynomials

Definition (Sheekey 2016).

The rank distance code associated with $f(x)$ is the following subspace of $\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right)$:

$$
\mathcal{C}_{f}=\langle x, f(x)\rangle_{\mathbb{F}_{q^{n}}}
$$

A pattern for scattered polynomials

Definition (Sheekey 2016).

The rank distance code associated with $f(x)$ is the following subspace of $\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right)$:

$$
\mathcal{C}_{f}=\langle x, f(x)\rangle_{\mathbb{F}_{q^{n}}}
$$

Definition.

The right idealizer of \mathcal{C}_{f} is

$$
I_{R}\left(\mathcal{C}_{f}\right)=\left\{\varphi \in \operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right): g \circ \varphi \in \mathcal{C}_{f}, \forall g \in \mathcal{C}_{f}\right\}
$$

A pattern for scattered polynomials

Definition (Sheekey 2016).

The rank distance code associated with $f(x)$ is the following subspace of $\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right)$:

$$
\mathcal{C}_{f}=\langle x, f(x)\rangle_{\mathbb{F}_{q^{n}}}
$$

DEFINITION.

The right idealizer of \mathcal{C}_{f} is

$$
I_{R}\left(\mathcal{C}_{f}\right)=\left\{\varphi \in \operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right): g \circ \varphi \in \mathcal{C}_{f}, \forall g \in \mathcal{C}_{f}\right\}
$$

Theorem.

$I_{R}\left(\mathcal{C}_{f}\right)$ is a field isomorphic to $\mathbb{F}_{q^{t}}, t \mid n$, and $t=n$ if and only if $f(x)$ is of pseudoregulus type.

A pattern for scattered polynomials

Definition (Sheekey 2016).

The rank distance code associated with $f(x)$ is the following subspace of End $\mathbb{F}_{q}\left(\mathbb{F}_{q^{n}}\right)$:

$$
\mathcal{C}_{f}=\langle x, f(x)\rangle_{\mathbb{F}_{q^{n}}}
$$

Definition.

The right idealizer of \mathcal{C}_{f} is

$$
I_{R}\left(\mathcal{C}_{f}\right)=\left\{\varphi \in \operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right): g \circ \varphi \in \mathcal{C}_{f}, \forall g \in \mathcal{C}_{f}\right\}
$$

Theorem.

$I_{R}\left(\mathcal{C}_{f}\right)$ is a field isomorphic to $\mathbb{F}_{q^{t}}, t \mid n$, and $t=n$ if and only if $f(x)$ is of pseudoregulus type.
Proof. As regards the case $t=n$, Csajbók-Marino-Polverino-Zhou (2020) prove that if an MRD code \mathcal{C} has both right and left idealizers isomorphic to $\mathbb{F}_{q^{n}}$, then it is equivalent to

$$
\left\langle x^{q^{t_{i}}}: i=0,1, \ldots, k-1\right\rangle_{\mathbb{F}_{q^{n}}}
$$

and if $\mathcal{C}=\mathcal{C}_{f}$ this is equivalent to $\left\langle\boldsymbol{x}, \boldsymbol{x}^{q^{s}}\right\rangle_{\mathbb{F}_{q^{n}}}$.

A pattern for scattered polynomials

Definition (Sheekey 2016).

The rank distance code associated with $f(x)$ is the following subspace of $\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right)$:

$$
\mathcal{C}_{f}=\langle x, f(x)\rangle_{\mathbb{F}_{q^{n}}}
$$

DEFINITION.

The right idealizer of \mathcal{C}_{f} is

$$
I_{R}\left(\mathcal{C}_{f}\right)=\left\{\varphi \in \operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right): g \circ \varphi \in \mathcal{C}_{f}, \forall g \in \mathcal{C}_{f}\right\}
$$

Theorem.

$I_{R}\left(\mathcal{C}_{f}\right)$ is a field isomorphic to $\mathbb{F}_{q^{t}}, t \mid n$, and $t=n$ if and only if $f(x)$ is of pseudoregulus type.
Proof. As regards the case $t=n$, Csajbók-Marino-Polverino-Zhou (2020) prove that if an MRD code \mathcal{C} has both right and left idealizers isomorphic to $\mathbb{F}_{q^{n}}$, then it is equivalent to

$$
\left\langle x^{q^{t_{i}}}: i=0,1, \ldots, k-1\right\rangle_{\mathbb{F}_{q^{n}}}
$$

and if $\mathcal{C}=\mathcal{C}_{f}$ this is equivalent to $\left\langle x, x^{q^{q}}\right\rangle_{\mathbb{F}_{q^{n}}}$.

THEOREM (Longobardi-Marino-Trombetti-Zhou 202x).

$I_{R}\left(\mathcal{C}_{f}\right)$ and $G_{f} \cup\{0\}$ are isomorphic fields. (R.: G_{f}, setwise stabilizer of U_{f} in $\operatorname{GL}\left(2, q^{n}\right)$.)

Simultaneous diagonalization

Simultaneous diagonalization

[^0]
Simultaneous diagonalization

Theorem (Longobardi-Z. 202x).

All elements of G_{f} are simultaneously diagonalizable.
Proof. Use the complete description by Beard (1972) and Willett (1973) of all subrings of $\mathbb{F}_{q}^{N \times N}$ which are fields.

Simultaneous diagonalization

THEOREM (Longobardi-Z. 202x).

All elements of G_{f} are simultaneously diagonalizable.
Proof. Use the complete description by Beard (1972) and Willett (1973) of all subrings of $\mathbb{F}_{q}^{N \times N}$ which are fields.

Corollary.
If $f(x)=\sum_{k} b_{k} x^{q+k r}$ is in standard form, then

$$
G_{f}=\left\{\operatorname{diag}\left(\alpha, \alpha q^{s}\right): \alpha \in \mathbb{F}_{q^{r}}^{*}\right\}
$$

Simultaneous diagonalization

Theorem (Longobardi-Z. 202x).

All elements of G_{f} are simultaneously diagonalizable.
Proof. Use the complete description by Beard (1972) and Willett (1973) of all subrings of $\mathbb{F}_{q}^{N \times N}$ which are fields.

Corollary.

If $f(x)=\sum_{k} b_{k} x^{q+k r}$ is in standard form, then

$$
G_{f}=\left\{\operatorname{diag}\left(\alpha, \alpha q^{s}\right): \alpha \in \mathbb{F}_{q^{r}}^{*}\right\}
$$

If $f(x)$ is in standard form, then G_{f} only depends on s and r, i.e. on the shape of $f(x)$.

Simultaneous diagonalization

Simultaneous diagonalization

The elements of G_{f} are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^{n}}$-basis v_{1}, v_{2} of $\mathbb{F}_{q_{n}}^{2}$, eigenvectors of any $\varphi \in G_{f}$

Simultaneous diagonalization

The elements of G_{f} are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^{n}}$-basis v_{1}, v_{2} of $\mathbb{F}_{q_{n}}^{2}$, eigenvectors of any $\varphi \in G_{f} \rightsquigarrow$ for $\left|G_{f}\right|>q-1$, two "transversal points" $V_{1}=\left\langle v_{1}\right\rangle_{\mathbb{F}_{q^{n}}}, V_{2}=\left\langle v_{2}\right\rangle_{\mathbb{F}_{q^{n}}}$ are projectively defined by f.

Simultaneous diagonalization

The elements of G_{f} are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^{n}}$-basis v_{1}, v_{2} of $\mathbb{F}_{q_{n}}^{2}$, eigenvectors of any $\varphi \in G_{f} \rightsquigarrow$ for $\left|G_{f}\right|>q-1$, two "transversal points" $V_{1}=\left\langle v_{1}\right\rangle_{\mathbb{F}_{q^{n}}}, V_{2}=\left\langle v_{2}\right\rangle_{\mathbb{F}_{q^{n}}}$ are projectively defined by f.

Simultaneous diagonalization

The elements of G_{f} are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^{n}}$-basis v_{1}, v_{2} of $\mathbb{F}_{q_{n}}^{2}$, eigenvectors of any $\varphi \in G_{f} \rightsquigarrow$ for $\left|G_{f}\right|>q-1$, two "transversal points" $V_{1}=\left\langle v_{1}\right\rangle_{\mathbb{F}_{q^{n}}}, V_{2}=\left\langle v_{2}\right\rangle_{\mathbb{F}_{q^{n}}}$ are projectively defined by f.

Proposition.

$$
V_{1}, V_{2} \notin L_{f}
$$

Proof. The orbits in $L_{f} \backslash\left\{V_{1}, V_{2}\right\}$ under G_{f} are of size $\left|G_{f}\right| /(q-1)$, obtain a contradiction.

Simultaneous diagonalization

The elements of G_{f} are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^{n}}$-basis v_{1}, v_{2} of $\mathbb{F}_{q_{n}}^{2}$, eigenvectors of any $\varphi \in G_{f} \rightsquigarrow$ for $\left|G_{f}\right|>q-1$, two "transversal points" $V_{1}=\left\langle v_{1}\right\rangle_{\mathbb{F}_{q^{n}}}, V_{2}=\left\langle v_{2}\right\rangle_{\mathbb{F}_{q^{n}}}$ are projectively defined by f.

Proposition.

$$
V_{1}, V_{2} \notin L_{f}
$$

Proof. The orbits in $L_{f} \backslash\left\{V_{1}, V_{2}\right\}$ under G_{f} are of size $\left|G_{f}\right| /(q-1)$, obtain a contradiction.

Proposition.

If $f(x)$ is in standard form, then $f(x)$ is nonsingular.

Simultaneous diagonalization

The elements of G_{f} are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^{n}}$-basis v_{1}, v_{2} of $\mathbb{F}_{q_{n}}^{2}$, eigenvectors of any $\varphi \in G_{f} \rightsquigarrow$ for $\left|G_{f}\right|>q-1$, two "transversal points" $V_{1}=\left\langle v_{1}\right\rangle_{\mathbb{F}_{q^{n}}}, V_{2}=\left\langle v_{2}\right\rangle_{\mathbb{F}_{q^{n}}}$ are projectively defined by f.

Proposition.

$$
V_{1}, V_{2} \notin L_{f}
$$

Proof. The orbits in $L_{f} \backslash\left\{V_{1}, V_{2}\right\}$ under G_{f} are of size $\left|G_{f}\right| /(q-1)$, obtain a contradiction.

Proposition.

If $f(x)$ is in standard form, then $f(x)$ is nonsingular.
Open problem.
Do V_{1} and V_{2} depend only on the linear set L_{f} ?

Simultaneous diagonalization

Simultaneous diagonalization

Theorem (Longobardi-Z. 202x).

If $\left|G_{f}\right|>q-1$, then $f(x)$ is GL-equivalent to a scattered polynomial $g(x)$ in standard form. Such $g(x)$ is essentially unique, i.e. the only polynomials in standard form which are GL-equivalent to $f(x)$ are

$$
a g(b x) \text { and } a g^{-1}(b x) \text { for } a, b \in \mathbb{F}_{q^{n}}^{*}
$$

Simultaneous diagonalization

THEOREM (Longobardi-Z. 202x).

If $\left|G_{f}\right|>q-1$, then $f(x)$ is GL-equivalent to a scattered polynomial $g(x)$ in standard form. Such $g(x)$ is essentially unique, i.e. the only polynomials in standard form which are
GL-equivalent to $f(x)$ are

$$
a g(b x) \text { and } a g^{-1}(b x) \text { for } a, b \in \mathbb{F}_{q^{n}}^{*}
$$

EXAMPLE

For $q \equiv 1(\bmod 4), f(x)=x^{q}+x^{q^{2}}-x^{q^{4}}+x^{q^{5}} \in \mathbb{F}_{q^{6}}[x]$ is scattered and GL-equivalent to

$$
g(x)=(1-\rho) x^{q}-x^{q^{3}}+(1+\rho) x^{q^{5}}
$$

where $\rho^{2}=-1$.

Consequences on translation planes

Consequences on translation planes

An affine central collineation of an affine plane \mathcal{A} fixes an affine line a (the axis) pointwise, as well as all lines through a point C (the center) at infinity.

Consequences on translation planes

An affine central collineation of an affine plane \mathcal{A} fixes an affine line a (the axis) pointwise, as well as all lines through a point C (the center) at infinity.

Consequences on translation planes

An affine central collineation of an affine plane \mathcal{A} fixes an affine line a (the axis) pointwise, as well as all lines through a point C (the center) at infinity.

$a \cap L_{\infty}$ is the co-center of the central collineation.

Consequences on translation planes

An affine central collineation of an affine plane \mathcal{A} fixes an affine line a (the axis) pointwise, as well as all lines through a point C (the center) at infinity.

$a \cap L_{\infty}$ is the co-center of the central collineation.
If $\mathcal{A}=\mathcal{A}_{f}, f(x)$ scattered, then any affine central collineation κ is of type

$$
\kappa: x \mapsto v+d \varphi(x), v \in \mathbb{F}_{q^{n}}^{2}, d \in \mathbb{F}_{q^{n}}^{*}, \varphi \in G_{f}
$$

Consequences on translation planes

An affine central collineation of an affine plane \mathcal{A} fixes an affine line a (the axis) pointwise, as well as all lines through a point C (the center) at infinity.

$a \cap L_{\infty}$ is the co-center of the central collineation.
If $\mathcal{A}=\mathcal{A}_{f}, f(x)$ scattered, then any affine central collineation κ is of type

$$
\kappa: x \mapsto v+d \varphi(x), v \in \mathbb{F}_{q^{n}}^{2}, d \in \mathbb{F}_{q^{n}}^{*}, \varphi \in G_{f}
$$

0 -5
If $\left|G_{f}\right|>q-1$, the center and the co-center are the transversal points of f.

Consequences on translation planes

Consequences on translation planes

ThEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;
Longobardi-Z. 202x for the general case).
(i) If $\left|G_{f}\right|=q-1$, then \mathcal{A}_{f} admits no nontrivial central collineation.

Consequences on translation planes

THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;
 Longobardi-Z. 202x for the general case).

(i) If $\left|G_{f}\right|=q-1$, then \mathcal{A}_{f} admits no nontrivial central collineation.
(ii) If $\left|G_{f}\right|>q-1$, then the central collineations fixing O are in two cyclic groups of homologies of order $\left(q^{r}-1\right) /(q-1)$. In this case the intersection of the full collineation group with $\mathrm{GL}\left(2, q^{n}\right)$ is the direct product of one of those homology groups for the kernel homology group of the associated Desarguesian plane (maps of type $\left.(x, y) \mapsto(d x, d y), d \in \mathbb{F}_{q^{n}}^{*}\right)$.

Conseauences tontransiation planes

THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;
Longobardi-Z. 202x for the general case).
(i) If $\left|G_{f}\right|=q-1$, then \mathcal{A}_{f} admits no nontrivial central collineation.
(ii) If $\left|G_{f}\right|>q-1$, then the central collineations fixing O are in two cyclic groups of homologies of order $\left(q^{r}-1\right) /(q-1)$. In this case the intersection of the full collineation group with $\mathrm{GL}\left(2, q^{n}\right)$ is the direct product of one of those homology groups for the kernel homology group of the associated Desarguesian plane (maps of type $\left.(x, y) \mapsto(d x, d y), d \in \mathbb{F}_{q^{n}}^{*}\right)$.

THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;
Longobardi-Z. 202x for the general case).
If $f(x)$ is a scattered polynomial not GL-equivalent to a polynomial of pseudoregulus type, then \mathcal{A}_{f} is neither an André plane nor a generalized André plane.

Thank
 you!

[^0]: THEOREM (Longobardi-Z. 202x).
 All elements of G_{f} are simultaneously diagonalizable.

