A standard form for scattered linearized polynomials and properties of the related translation planes

Corrado Zanella

Department of Management and Engineering

joint work with Giovanni Longobardi

Università degli Studi di Padova

DEFINITION.

A scattered polynomial in $\mathbb{F}_{q^n}[x]$ is an \mathbb{F}_q -linearized polynomial $f(x) = \sum_i a_i x^{q^i}$ such that $\frac{f(y)}{y} = \frac{f(z)}{z}, \ y, z \in \mathbb{F}_{q^n}^* \Rightarrow \langle y \rangle_{\mathbb{F}_q} = \langle z \rangle_{\mathbb{F}_q}.$

DEFINITION.

A scattered polynomial in
$$\mathbb{F}_{q^n}[\mathbf{x}]$$
 is an \mathbb{F}_q -linearized polynomial $f(\mathbf{x}) = \sum_i a_i \mathbf{x}^{q'}$ such that

$$\frac{f(\mathbf{y})}{\mathbf{y}} = \frac{f(\mathbf{z})}{\mathbf{z}}, \ \mathbf{y}, \mathbf{z} \in \mathbb{F}_{q^n}^* \Rightarrow \ \langle \mathbf{y} \rangle_{\mathbb{F}_q} = \langle \mathbf{z} \rangle_{\mathbb{F}_q}.$$

Let $f(x) \in \mathbb{F}_{q^n}[x]$ be scattered. Then

DEFINITION.

A scattered polynomial in $\mathbb{F}_{q^n}[\mathbf{x}]$ is an \mathbb{F}_q -linearized polynomial $f(\mathbf{x}) = \sum_i a_i \mathbf{x}^{q'}$ such that $\frac{f(\mathbf{y})}{\mathbf{y}} = \frac{f(\mathbf{z})}{\mathbf{z}}, \ \mathbf{y}, \mathbf{z} \in \mathbb{F}_{q^n}^* \Rightarrow \ \langle \mathbf{y} \rangle_{\mathbb{F}_q} = \langle \mathbf{z} \rangle_{\mathbb{F}_q}.$

Let $f(x) \in \mathbb{F}_{q^n}[x]$ be scattered. Then

• $U_f = \{(y, f(y)) : y \in \mathbb{F}_{q^n}\}$ is a scattered \mathbb{F}_q -subspace of $\mathbb{F}_{q^n}^2$ with respect to the Desarguesian spread $\mathcal{D} = \{\langle v \rangle_{\mathbb{F}_{q^n}} : v \in \mathbb{F}_{q^n}^2, v \neq 0\}$; that is, $\dim_{\mathbb{F}_q}(U_f \cap \langle v \rangle_{\mathbb{F}_{q^n}}) \leq 1$ for any $v \in \mathbb{F}_{q^n}^2$.

DEFINITION.

A scattered polynomial in $\mathbb{F}_{q^n}[\mathbf{x}]$ is an \mathbb{F}_q -linearized polynomial $f(\mathbf{x}) = \sum_i a_i \mathbf{x}^{q'}$ such that $\frac{f(\mathbf{y})}{\mathbf{y}} = \frac{f(\mathbf{z})}{\mathbf{z}}, \ \mathbf{y}, \mathbf{z} \in \mathbb{F}_{q^n}^* \Rightarrow \ \langle \mathbf{y} \rangle_{\mathbb{F}_q} = \langle \mathbf{z} \rangle_{\mathbb{F}_q}.$

Let $f(x) \in \mathbb{F}_{q^n}[x]$ be scattered. Then

- $U_f = \{(y, f(y)) : y \in \mathbb{F}_{q^n}\}$ is a scattered \mathbb{F}_q -subspace of $\mathbb{F}_{q^n}^2$ with respect to the Desarguesian spread $\mathcal{D} = \{\langle v \rangle_{\mathbb{F}_{q^n}} : v \in \mathbb{F}_{q^n}^2, v \neq 0\}$; that is, $\dim_{\mathbb{F}_q}(U_f \cap \langle v \rangle_{\mathbb{F}_{q^n}}) \leq 1$ for any $v \in \mathbb{F}_{q^n}^2$.
- $L_f = \{\langle (y, f(y)) \rangle_{\mathbb{F}_{q^n}} : y \in \mathbb{F}_{q^n}^* \}$ is a scattered linear set of rank *n* in PG(1, *qⁿ*); $|L_f| = (q^n - 1)/(q - 1).$

DEFINITION.

A scattered polynomial in $\mathbb{F}_{q^n}[\mathbf{x}]$ is an \mathbb{F}_q -linearized polynomial $f(\mathbf{x}) = \sum_i a_i \mathbf{x}^{q'}$ such that $\frac{f(\mathbf{y})}{\mathbf{y}} = \frac{f(\mathbf{z})}{\mathbf{z}}, \ \mathbf{y}, \mathbf{z} \in \mathbb{F}_{q^n}^* \Rightarrow \ \langle \mathbf{y} \rangle_{\mathbb{F}_q} = \langle \mathbf{z} \rangle_{\mathbb{F}_q}.$

Let $f(x) \in \mathbb{F}_{q^n}[x]$ be scattered. Then

- $U_f = \{(y, f(y)) : y \in \mathbb{F}_{q^n}\}$ is a scattered \mathbb{F}_q -subspace of $\mathbb{F}_{q^n}^2$ with respect to the Desarguesian spread $\mathcal{D} = \{\langle v \rangle_{\mathbb{F}_{q^n}} : v \in \mathbb{F}_{q^n}^2, v \neq 0\}$; that is, $\dim_{\mathbb{F}_q}(U_f \cap \langle v \rangle_{\mathbb{F}_{q^n}}) \leq 1$ for any $v \in \mathbb{F}_{q^n}^2$.
- $L_f = \{\langle (y, f(y)) \rangle_{\mathbb{F}_{q^n}} : y \in \mathbb{F}_{q^n}^* \}$ is a scattered linear set of rank *n* in PG(1, *qⁿ*); $|L_f| = (q^n - 1)/(q - 1).$

DEFINITION.

If U_f and U_g belong to the same orbit under the action of $GL(2, q^n)$ [resp. $\Gamma L(2, q^n)$], then f and g are GL-equivalent [resp. ΓL -equivalent].

DEFINITION.

A scattered polynomial in $\mathbb{F}_{q^n}[\mathbf{x}]$ is an \mathbb{F}_q -linearized polynomial $f(\mathbf{x}) = \sum_i a_i \mathbf{x}^{q'}$ such that $\frac{f(\mathbf{y})}{\mathbf{y}} = \frac{f(\mathbf{z})}{\mathbf{z}}, \ \mathbf{y}, \mathbf{z} \in \mathbb{F}_{q^n}^* \Rightarrow \ \langle \mathbf{y} \rangle_{\mathbb{F}_q} = \langle \mathbf{z} \rangle_{\mathbb{F}_q}.$

Let $f(x) \in \mathbb{F}_{q^n}[x]$ be scattered. Then

- $U_f = \{(y, f(y)) : y \in \mathbb{F}_{q^n}\}$ is a scattered \mathbb{F}_q -subspace of $\mathbb{F}_{q^n}^2$ with respect to the Desarguesian spread $\mathcal{D} = \{\langle v \rangle_{\mathbb{F}_{q^n}} : v \in \mathbb{F}_{q^n}^2, v \neq 0\}$; that is, $\dim_{\mathbb{F}_q}(U_f \cap \langle v \rangle_{\mathbb{F}_{q^n}}) \leq 1$ for any $v \in \mathbb{F}_{q^n}^2$.
- $L_f = \{\langle (y, f(y)) \rangle_{\mathbb{F}_{q^n}} : y \in \mathbb{F}_{q^n}^* \}$ is a scattered linear set of rank *n* in PG(1, *qⁿ*); $|L_f| = (q^n - 1)/(q - 1).$

DEFINITION.

If U_f and U_g belong to the same orbit under the action of $GL(2, q^n)$ [resp. $\Gamma L(2, q^n)$], then f and g are GL-equivalent [resp. ΓL -equivalent].

EXAMPLE.

 $f(x) = x^q$ and $g(x) = ax + x^q$ are GL-equivalent scattered polynomials for any $a \in \mathbb{F}_{q^n}$.

Università degli Studi di Padova

• $f(x) = x^{q^s}$, (s, n) = 1 (pseudoregulus type) (Blokhuis-Lavrauw 2000)

Universi Decli St Di Padov

- $f(x) = x^{q^s}$, (s, n) = 1 (pseudoregulus type) (Blokhuis-Lavrauw 2000)
- $f(x) = x^{q^s} + \delta x^{q^{n-s}}, n \ge 4, (s, n) = 1, N_{q^n/q}(\delta) \neq 0, 1$ (Lunardon-Polverino 2001; Sheekey 2016)

- $f(x) = x^{q^s}$, (s, n) = 1 (pseudoregulus type) (Blokhuis-Lavrauw 2000)
- $f(x) = xq^{q} + \delta xq^{n-s}$, $n \ge 4$, (s, n) = 1, $N_{q^n/q}(\delta) \ne 0$, 1 (Lunardon-Polverino 2001; Sheekey 2016)
- $f(x) = \delta x^{q^{\delta}} + x^{q^{\delta+n/2}}, n \in \{6, 8\}, (s, n/2) = 1$, some δ and q (Csajbók-Marino-Polverino-Z. 2018)

Università degli Studi di Padova

- $f(x) = x^{q^s}$, (s, n) = 1 (pseudoregulus type) (Blokhuis-Lavrauw 2000)
- $f(x) = xq^{q} + \delta xq^{n-s}$, $n \ge 4$, (s, n) = 1, $N_{q^n/q}(\delta) \ne 0$, 1 (Lunardon-Polverino 2001; Sheekey 2016)
- $f(x) = \delta x^{q^{\delta}} + x^{q^{s+n/2}}, n \in \{6, 8\}, (s, n/2) = 1$, some δ and q (Csajbók-Marino-Polverino-Z. 2018)
- $f(x) = x^q + x^{q^3} + \delta x^{q^5}$, n = 6, $\delta^2 + \delta = 1$, q odd (Csajbók, Marino, Montanucci, Zullo 2018, 2020)

- $f(x) = x^{q^s}$, (s, n) = 1 (pseudoregulus type) (Blokhuis-Lavrauw 2000)
- $f(x) = x^{q^s} + \delta x^{q^{n-s}}, n \ge 4, (s, n) = 1, N_{q^n/q}(\delta) \ne 0, 1$ (Lunardon-Polverino 2001; Sheekey 2016)
- $f(x) = \delta x^{q^{\delta}} + x^{q^{s+n/2}}$, $n \in \{6, 8\}$, (s, n/2) = 1, some δ and q (Csajbók-Marino-Polverino-Z. 2018)
- $f(x) = x^q + x^{q^3} + \delta x^{q^5}$, n = 6, $\delta^2 + \delta = 1$, q odd (Csajbók, Marino, Montanucci, Zullo 2018, 2020)
- $f(x) = x^{q^s} + x^{q^{s(t-1)}} + h^{1+q^s} x^{q^{s(t+1)}} + h^{1-q^{s(2t-1)}} x^{q^{s(2t-1)}}$, $n = 2t, t \ge 3$, (s, n) = 1, qodd, $N_{q^n/q^t}(h) = -1$ (Bartoli, Longobardi, Marino, Neri, Santonastaso, Z., Zhou, Zullo 2020-202x)

4 of 16

Ingredients:

Università

DL PADOVA

Ingredients:

$$U_f = \{(y, f(y)) \colon y \in \mathbb{F}_{q^n}\}$$

Università

DL PADOVA

Ingredients:

- $U_f = \{(y, f(y)) \colon y \in \mathbb{F}_{q^n}\}$
- $L_f = \{ \langle (y, f(y)) \rangle_{\mathbb{F}_{q^n}} \colon y \in \mathbb{F}_{q^n}^* \}$

Università

DI PADOV

$$U_f = \{(y, f(y)) \colon y \in \mathbb{F}_{q^n}\}$$

- $L_f = \{\langle (y, f(y)) \rangle_{\mathbb{F}_{q^n}} : y \in \mathbb{F}_{q^n}^* \}$ a subset of the Desarguesian spread
- $\quad \blacksquare \ \mathcal{D} = \{ \langle v \rangle_{\mathbb{F}_{q^n}} \colon v \in \mathbb{F}_{q^n}^2, \, v \neq 0 \}$

UNIVERSIT?

Ingredients:

•
$$U_f = \{(y, f(y)) \colon y \in \mathbb{F}_{q^n}\}$$

• $L_f = \{\langle (y, f(y)) \rangle_{\mathbb{F}_{q^n}} : y \in \mathbb{F}_{q^n}^* \}$ a subset of the Desarguesian spread

$$\quad \blacksquare \quad \mathcal{D} = \{ \langle v \rangle_{\mathbb{F}_{q^n}} \colon v \in \mathbb{F}_{q^n}^2, \, v \neq 0 \}$$

F

If $f(x) \in \mathbb{F}_{q^n}[x]$ is scattered, then any two distinct subspaces hU_f , kU_f , $h, k \in \mathbb{F}_{q^n}^*$, intersect trivially (for: $h(y, f(y)) = k(z, f(z)) \Rightarrow \frac{f(y)}{y} = \frac{f(z)}{z}$). So, $\mathcal{B}_f = (\mathcal{D} \setminus L_f) \cup \{hU_f : h \in \mathbb{F}_{q^n}^*\}$ is a spread of $\mathbb{F}_{q^n}^2$ in *n*-dimensional \mathbb{F}_q -subspaces.

Ingredients:

•
$$U_f = \{(y, f(y)) \colon y \in \mathbb{F}_{q^n}\}$$

• $L_f = \{\langle (y, f(y)) \rangle_{\mathbb{F}_{q^n}} : y \in \mathbb{F}_{q^n}^* \}$ a subset of the Desarguesian spread

$$\quad \blacksquare \quad \mathcal{D} = \{ \langle v \rangle_{\mathbb{F}_{q^n}} \colon v \in \mathbb{F}_{q^n}^2, \, v \neq 0 \}$$

F

If
$$f(x) \in \mathbb{F}_{q^n}[x]$$
 is scattered, then any two distinct subspaces hU_f , kU_f , $h, k \in \mathbb{F}_{q^n}^*$, intersect trivially (for: $h(y, f(y)) = k(z, f(z)) \Rightarrow \frac{f(y)}{y} = \frac{f(z)}{z}$).
So, $\mathcal{B}_f = (\mathcal{D} \setminus L_f) \cup \{hU_f : h \in \mathbb{F}_{q^n}^*\}$ is a spread of $\mathbb{F}_{q^n}^2$ in *n*-dimensional $\mathbb{F}_{q^n}^-$ subspaces.

DEFINITION.

 \mathcal{A}_f is the affine translation plane whose

UNIVERSIT?

DI PADOV

Ingredients:

$$U_f = \{(y, f(y)) \colon y \in \mathbb{F}_{q^n}\}$$

• $L_f = \{\langle (y, f(y)) \rangle_{\mathbb{F}_{q^n}} : y \in \mathbb{F}_{q^n}^* \}$ a subset of the Desarguesian spread

$$D = \{ \langle v \rangle_{\mathbb{F}_{q^n}} \colon v \in \mathbb{F}_{q^n}^2, \, v \neq 0 \}$$

If $f(x) \in \mathbb{F}_{q^n}[x]$ is scattered, then any two distinct subspaces hU_f , kU_f , $h, k \in \mathbb{F}_{q^n}^*$, intersect trivially (for: $h(y, f(y)) = k(z, f(z)) \Rightarrow \frac{f(y)}{y} = \frac{f(z)}{z}$). So, $\mathcal{B}_f = (\mathcal{D} \setminus L_f) \cup \{hU_f : h \in \mathbb{F}_{q^n}^*\}$ is a spread of $\mathbb{F}_{q^n}^2$ in *n*-dimensional \mathbb{F}_{q^n} subspaces.

DEFINITION.

 \mathcal{A}_f is the affine translation plane whose

• point set is
$$\mathbb{F}_{q^n}^2$$

Ingredients:

$$U_f = \{(y, f(y)) \colon y \in \mathbb{F}_{q^n}\}$$

• $L_f = \{\langle (y, f(y)) \rangle_{\mathbb{F}_{q^n}} : y \in \mathbb{F}_{q^n}^* \}$ a subset of the Desarguesian spread

$$D = \{ \langle v \rangle_{\mathbb{F}_{q^n}} \colon v \in \mathbb{F}_{q^n}^2, \, v \neq 0 \}$$

If $f(x) \in \mathbb{F}_{q^n}[x]$ is scattered, then any two distinct subspaces hU_f , kU_f , $h, k \in \mathbb{F}_{q^n}^*$, intersect trivially (for: $h(y, f(y)) = k(z, f(z)) \Rightarrow \frac{f(y)}{y} = \frac{f(z)}{z}$). So, $\mathcal{B}_f = (\mathcal{D} \setminus L_f) \cup \{hU_f : h \in \mathbb{F}_{q^n}^*\}$ is a spread of $\mathbb{F}_{q^n}^2$ in *n*-dimensional \mathbb{F}_{q^n} subspaces.

DEFINITION.

- \mathcal{A}_f is the affine translation plane whose
 - point set is $\mathbb{F}_{q^n}^2$
 - I lines are v + U, $v \in \mathbb{F}_{q^n}^2$, $U \in \mathcal{B}_f$

Ingredients:

•
$$U_f = \{(y, f(y)) \colon y \in \mathbb{F}_{q^n}\}$$

• $L_f = \{\langle (y, f(y)) \rangle_{\mathbb{F}_{q^n}} : y \in \mathbb{F}_{q^n}^* \}$ a subset of the Desarguesian spread

$$D = \{ \langle v \rangle_{\mathbb{F}_{q^n}} \colon v \in \mathbb{F}_{q^n}^2, \, v \neq 0 \}$$

If $f(x) \in \mathbb{F}_{q^n}[x]$ is scattered, then any two distinct subspaces $hU_f, kU_f, h, k \in \mathbb{F}_{q^n}^*$, intersect trivially (for: $h(y, f(y)) = k(z, f(z)) \Rightarrow \frac{f(y)}{y} = \frac{f(z)}{z}$). So, $\mathcal{B}_f = (\mathcal{D} \setminus L_f) \cup \{hU_f : h \in \mathbb{F}_{q^n}^*\}$ is a spread of $\mathbb{F}_{q^n}^2$ in *n*-dimensional \mathbb{F}_{q^n} subspaces.

DEFINITION.

- \mathcal{A}_f is the affine translation plane whose
 - point set is $\mathbb{F}_{q^n}^2$

lines are
$$v + U$$
, $v \in \mathbb{F}_{q^n}^2$, $U \in \mathcal{B}_f$

The elements of \mathcal{B}_f are lines through the origin, and will also be considered as points of the *line at infinity* $L_{\infty} = (L_{\infty})_f$. 4 of 16

 $PG(1, q^n)$ is a spread \mathcal{D} of $\mathbb{F}^2_{q^n}$ containing L_f

UNIVERSITÀ

DEGLI STUDI DI PADOVA

 $PG(1, q^n)$ is a spread \mathcal{D} of $\mathbb{F}_{q^n}^2$ containing L_f

UNIVERSITÀ

DEGLI STUDI DI PADOVA

UNIVERSIT?

dl Padova

 $(L_{\infty})_f$ is a spread $\mathcal{B}_f = (\mathcal{D} \setminus L_f) \cup \{hU_f \colon h \in \mathbb{F}_{q^n}^*\}$ of $\mathbb{F}_{q^n}^2$ obtained from \mathcal{D} by replacing L_f 5 of 16

Equivalence of translation planes

Always: q > 3.

Equivalence of translation planes

Always: q > 3.

THEOREM (CASARINO-LONGOBARDI-Z. 2022).

Let $f(x), g(x) \in \mathbb{F}_{q^n}[x]$ be scattered, and let $\Psi : \mathcal{A}_f \to \mathcal{A}_g$ be a collineation. Then

Equivalence of translation planes

Always: q > 3.

THEOREM (CASARINO-LONGOBARDI-Z. 2022).

Let $f(x), g(x) \in \mathbb{F}_{q^n}[x]$ be scattered, and let $\Psi : \mathcal{A}_f \to \mathcal{A}_g$ be a collineation. Then **1** $\Psi : x \mapsto v + \varphi(x)$ with $v \in \mathbb{F}_{q^n}^2, \varphi \in \mathsf{FL}(2, q^n)$;

THEOREM (CASARINO-LONGOBARDI-Z. 2022).

Let $f(x),g(x)\in \mathbb{F}_{q^n}[x]$ be scattered, and let $\Psi:\mathcal{A}_f
ightarrow \mathcal{A}_g$ be a collineation. Then

- **1** $\Psi: x \mapsto v + \varphi(x)$ with $v \in \mathbb{F}_{q^n}^2, \varphi \in \Gamma L(2, q^n);$
- **2** φ stabilizes the partial spreads $\mathcal{D} \setminus L_f$ and $\{hU_f : h \in \mathbb{F}_{q^n}^*\}$.

THEOREM (CASARINO-LONGOBARDI-Z. 2022).

Let $f(x), g(x) \in \mathbb{F}_{q^n}[x]$ be scattered, and let $\Psi: \mathcal{A}_f o \mathcal{A}_g$ be a collineation. Then

1 $\Psi: x \mapsto v + \varphi(x)$ with $v \in \mathbb{F}_{q^n}^2, \varphi \in \Gamma L(2, q^n);$

2 φ stabilizes the partial spreads $\mathcal{D} \setminus L_f$ and $\{hU_f : h \in \mathbb{F}_{q^n}^*\}$.

The converse holds.

THEOREM (CASARINO-LONGOBARDI-Z. 2022).

Let $f(x), g(x) \in \mathbb{F}_{q^n}[x]$ be scattered, and let $\Psi: \mathcal{A}_f o \mathcal{A}_g$ be a collineation. Then

1 $\Psi: x \mapsto v + \varphi(x)$ with $v \in \mathbb{F}_{q^n}^2, \varphi \in \Gamma L(2, q^n);$

$$\varphi$$
 stabilizes the partial spreads $\mathcal{D} \setminus L_f$ and $\{hU_f : h \in \mathbb{F}_{q^n}^*\}$.

The converse holds.

2

COROLLARY 1.

 $\mathcal{A}_f \cong \mathcal{A}_g$ iff f(x) and g(x) are Γ L-equivalent.

THEOREM (CASARINO-LONGOBARDI-Z. 2022).

Let $f(x),g(x)\in \mathbb{F}_{q^n}[x]$ be scattered, and let $\Psi:\mathcal{A}_f
ightarrow \mathcal{A}_g$ be a collineation. Then

1 $\Psi: x \mapsto v + \varphi(x)$ with $v \in \mathbb{F}_{q^n}^2, \varphi \in \Gamma L(2, q^n);$

$$\varphi$$
 stabilizes the partial spreads $\mathcal{D} \setminus L_f$ and $\{hU_f : h \in \mathbb{F}_{q^n}^*\}$.

The converse holds.

COROLLARY 1.

 $\mathcal{A}_f \cong \mathcal{A}_g$ iff f(x) and g(x) are Γ L-equivalent.

COROLLARY 2.

Any linear set L_f of Γ L-class c (Csajbók-Marino-Polverino 2018) gives rise to c pairwise nonisomorphic translation planes.

DEFINITION.

Let $\alpha : \mathbb{F}_q^* \to \{0, 1, \dots, n-1\}$ be any mapping, and $B_{m,\alpha} = \{(x, mx^{q^{\alpha} \binom{N_{q^n/q}(m)}{p}}) : x \in \mathbb{F}_{q^n}^*\}, \quad m \in \mathbb{F}_{q^n}^*.$ Then $\mathcal{B}_{\alpha} = \{B_{m,\alpha} : m \in \mathbb{F}_{q^n}^*\} \cup \{\langle (1, 0) \rangle_{\mathbb{F}_{q^n}}, \langle (0, 1) \rangle_{\mathbb{F}_{q^n}}\}$ is a spread of $\mathbb{F}_{q^n}^2$, and the related translation plane is an *André plane*.

DEFINITION.

Let $\alpha : \mathbb{F}_q^* \to \{0, 1, \dots, n-1\}$ be any mapping, and $B_{m,\alpha} = \{(x, mx^{q^{\alpha}{N_{q^n/q^{(m)}}}}) : x \in \mathbb{F}_{q^n}^*\}, \quad m \in \mathbb{F}_{q^n}^*.$ Then $\mathcal{B}_{\alpha} = \{B_{m,\alpha} : m \in \mathbb{F}_{q^n}^*\} \cup \{\langle (1, 0) \rangle_{\mathbb{F}_{q^n}}, \langle (0, 1) \rangle_{\mathbb{F}_{q^n}}\}$ is a spread of $\mathbb{F}_{q^n}^2$, and the related translation plane is an *André plane*.

Recall: $\mathcal{B}_f = (\mathcal{D} \setminus L_f) \cup \{hU_f : h \in \mathbb{F}_{q^n}^*\}$

DEFINITION.

Let $\alpha : \mathbb{F}_q^* \to \{0, 1, \dots, n-1\}$ be any mapping, and $B_{m,\alpha} = \{(x, mx^{q^{\alpha} \binom{N_{q^n/q}(m)}{p}}) : x \in \mathbb{F}_{q^n}^*\}, \quad m \in \mathbb{F}_{q^n}^*.$ Then $\mathcal{B}_{\alpha} = \{B_{m,\alpha} : m \in \mathbb{F}_{q^n}^*\} \cup \{\langle (1, 0) \rangle_{\mathbb{F}_{q^n}}, \langle (0, 1) \rangle_{\mathbb{F}_{q^n}}\}$ is a spread of $\mathbb{F}_{q^n}^2$, and the related translation plane is an *André plane*.

Recall:
$$\mathcal{B}_f = (\mathcal{D} \setminus L_f) \cup \{hU_f : h \in \mathbb{F}_{q^n}^*\}$$

EXAMPLE.

If $f(x) = x^{q^s}$, then $\mathcal{B}_f = \mathcal{B}_{\alpha}$ where $\alpha(\nu) = \begin{cases} s & \text{if } \nu = 1, \\ 0 & \text{otherwise,} \end{cases}$

hence \mathcal{A}_f is an André plane (Lunardon-Polverino 2001).

DEFINITION.

Let $\alpha : \mathbb{F}_q^* \to \{0, 1, \dots, n-1\}$ be any mapping, and $B_{m,\alpha} = \{(x, mx^{q^{\alpha} \binom{N_{q^n/q}(m)}{p}}) : x \in \mathbb{F}_{q^n}^*\}, \quad m \in \mathbb{F}_{q^n}^*.$ Then $\mathcal{B}_{\alpha} = \{B_{m,\alpha} : m \in \mathbb{F}_{q^n}^*\} \cup \{\langle (1, 0) \rangle_{\mathbb{F}_{q^n}}, \langle (0, 1) \rangle_{\mathbb{F}_{q^n}}\}$ is a spread of $\mathbb{F}_{q^n}^2$, and the related translation plane is an *André plane*.

Recall:
$$\mathcal{B}_f = (\mathcal{D} \setminus L_f) \cup \{hU_f : h \in \mathbb{F}_{q^n}^*\}$$

EXAMPLE.

If $f(x) = x^{q^s}$, then $\mathcal{B}_f = \mathcal{B}_\alpha$ where

$$lpha(
u) = \left\{ egin{array}{cc} s & ext{if }
u = 1, \ 0 & ext{otherwise,} \end{array}
ight.$$

hence \mathcal{A}_f is an André plane (Lunardon-Polverino 2001).

QUESTION.

For which f(x) is A_f an André plane, or a *generalized* André plane?

Many (but not all) scattered polynomials, e.g.

(1) $x^{q^s} + \delta x^{q^{n-s}}$, *n* even

(1)
$$x^{q^s} + \delta x^{q^{n-s}}$$
, *n* even
(2) $\delta x^{q^s} + x^{q^{s+n/2}}$, *n* $\in \{6, 8\}$

(1)
$$x^{q^{s}} + \delta x^{q^{n-s}}$$
, *n* even
(2) $\delta x^{q^{s}} + x^{q^{s+n/2}}$, $n \in \{6, 8\}$
(3) $x^{q} + x^{q^{3}} + \delta x^{q^{5}}$, $n = 6$

(1)
$$x^{q^{5}} + \delta x^{q^{n-s}}$$
, *n* even
(2) $\delta x^{q^{5}} + x^{q^{5+n/2}}$, $n \in \{6, 8\}$
(3) $x^{q} + x^{q^{3}} + \delta x^{q^{5}}$, $n = 6$
(4) $x^{q} + x^{q^{t-1}} + h^{1+q} x^{q^{t+1}} + h^{1-q^{2t-1}} x^{q^{2t-1}}$, $n = 2t$, *t* even

(1)
$$x^{q^{5}} + \delta x^{q^{n-s}}$$
, *n* even
(2) $\delta x^{q^{5}} + x^{q^{5+n/2}}$, $n \in \{6, 8\}$
(3) $x^{q} + x^{q^{3}} + \delta x^{q^{5}}$, $n = 6$
(4) $x^{q} + x^{q^{t-1}} + h^{1+q} x^{q^{t+1}} + h^{1-q^{2t-1}} x^{q^{2t-1}}$, $n = 2t$, *t* even

(1)
$$x^{q^{5}} + \delta x^{q^{n-s}}$$
, *n* even
(2) $\delta x^{q^{5}} + x^{q^{5+n/2}}$, *n* $\in \{6, 8\}$
(3) $x^{q} + x^{q^{3}} + \delta x^{q^{5}}$, *n* $= 6$
(4) $x^{q} + x^{q^{t-1}} + h^{1+q} x^{q^{t+1}} + h^{1-q^{2t-1}} x^{q^{2t-1}}$, *n* $= 2t$, *t* even

are of type $F(x^{q^s})$ where F(x) is \mathbb{F}_{q^r} -linear for some $1 < r \mid n$, and (s, r) = 1:

(1) $F(x) = x + \delta x^{q^{n-2s}}, \qquad r = 2$

(1)
$$x^{q^{5}} + \delta x^{q^{n-s}}$$
, *n* even
(2) $\delta x^{q^{5}} + x^{q^{5+n/2}}$, $n \in \{6, 8\}$
(3) $x^{q} + x^{q^{3}} + \delta x^{q^{5}}$, $n = 6$
(4) $x^{q} + x^{q^{t-1}} + h^{1+q} x^{q^{t+1}} + h^{1-q^{2t-1}} x^{q^{2t-1}}$, $n = 2t$, *t* even

(1)
$$F(x) = x + \delta x^{q^{n-2s}}, \quad r = 2$$

(2) $F(x) = \delta x + x^{q^{n/2}}, \quad r = n/2$

(1)
$$x^{q^{5}} + \delta x^{q^{n-s}}$$
, *n* even
(2) $\delta x^{q^{5}} + x^{q^{5+n/2}}$, $n \in \{6, 8\}$
(3) $x^{q} + x^{q^{3}} + \delta x^{q^{5}}$, $n = 6$
(4) $x^{q} + x^{q^{t-1}} + h^{1+q} x^{q^{t+1}} + h^{1-q^{2t-1}} x^{q^{2t-1}}$, $n = 2t$, *t* even

(1)
$$F(x) = x + \delta x^{q^{n-2s}}, \quad r = 2$$

(2) $F(x) = \delta x + x^{q^{n/2}}, \quad r = n/2$
(3) $F(x) = x + x^{q^2} + \delta x^{q^4}, \quad r = 2, \ s = 1$

(1)
$$x^{q^{5}} + \delta x^{q^{n-s}}$$
, *n* even
(2) $\delta x^{q^{5}} + x^{q^{5+n/2}}$, *n* $\in \{6, 8\}$
(3) $x^{q} + x^{q^{3}} + \delta x^{q^{5}}$, *n* $= 6$
(4) $x^{q} + x^{q^{t-1}} + h^{1+q} x^{q^{t+1}} + h^{1-q^{2t-1}} x^{q^{2t-1}}$, *n* $= 2t$, *t* even

(1)
$$F(x) = x + \delta x^{q^{n-2s}}, \quad r = 2$$

(2) $F(x) = \delta x + x^{q^{n/2}}, \quad r = n/2$
(3) $F(x) = x + x^{q^2} + \delta x^{q^4}, \quad r = 2, \ s = 1$
(4) $F(x) = x + x^{q^{t-2}} + h^{1+q} x^{q^t} + h^{1-q^{2t-1}} x^{q^{2t-2}}, \quad r = 2, \ s = 1$

(1)
$$x^{q^{5}} + \delta x^{q^{n-s}}$$
, *n* even
(2) $\delta x^{q^{5}} + x^{q^{5+n/2}}$, $n \in \{6, 8\}$
(3) $x^{q} + x^{q^{3}} + \delta x^{q^{5}}$, $n = 6$
(4) $x^{q} + x^{q^{t-1}} + h^{1+q} x^{q^{t+1}} + h^{1-q^{2t-1}} x^{q^{2t-1}}$, $n = 2t$, *t* even

are of type $F(x^{q^s})$ where F(x) is \mathbb{F}_{q^r} -linear for some $1 < r \mid n$, and (s, r) = 1:

(1)
$$F(x) = x + \delta x^{q^{n-2s}}, \quad r = 2$$

(2) $F(x) = \delta x + x^{q^{n/2}}, \quad r = n/2$
(3) $F(x) = x + x^{q^2} + \delta x^{q^4}, \quad r = 2, \ s = 1$
(4) $F(x) = x + x^{q^{t-2}} + h^{1+q} x^{q^t} + h^{1-q^{2t-1}} x^{q^{2t-2}}, \quad r = 2, \ s = 1$

We call a polynomial in standard form any polynomial of this type.

9 of 16

DEFINITION (LONGOBARDI-Z. 202x).

Let $f(x) = \sum_{i} a_i x^{q^i} \in \mathbb{F}_{q^n}[x]$ be scattered and

 $\Delta_f = \{(i-j) \mod n \colon a_i a_j \neq 0\} \cup \{n\}.$

Let $r = r_f = \text{gcd } \Delta_f$. If r > 1, then f(x) is in *standard form*.

DEFINITION (LONGOBARDI-Z. 202x).

Let $f(x) = \sum_{i} a_i x^{q^i} \in \mathbb{F}_{q^n}[x]$ be scattered and

$$\Delta_f = \{(i-j) \mod n \colon a_i a_j \neq 0\} \cup \{n\}.$$

Let $r = r_f = \text{gcd } \Delta_f$. If r > 1, then f(x) is in *standard form*.

If
$$f(x) = F(x^{q^s})$$
 is in standard form, then $f(x) = \sum_k b_k x^{q^{s+kr}}$ where $r > 1$, $(s, r) = 1$.

DEFINITION (LONGOBARDI-Z. 202x).

Let $f(x) = \sum_{i} a_i x^{q^i} \in \mathbb{F}_{q^n}[x]$ be scattered and

$$\Delta_f = \{(i-j) \mod n \colon a_i a_j \neq 0\} \cup \{n\}.$$

Let $r = r_f = \text{gcd } \Delta_f$. If r > 1, then f(x) is in *standard form*.

If
$$f(x) = F(x^{q^s})$$
 is in standard form, then $f(x) = \sum_k b_k x^{q^{s+kr}}$ where $r > 1$, $(s, r) = 1$.

The stabilizer of $U_f = \{(y, f(y)) : y \in \mathbb{F}_{q^n}\}$ is $G_f = \mathsf{GL}(2, q^n)_{\{U_f\}}$ (i.e. setwise stabilizer).

DEFINITION (LONGOBARDI-Z. 202x).

Let $f(x) = \sum_{i} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{n}}[x]$ be scattered and

$$\Delta_f = \{(i-j) \mod n \colon a_i a_j \neq 0\} \cup \{n\}.$$

Let $r = r_f = \text{gcd } \Delta_f$. If r > 1, then f(x) is in *standard form*.

If
$$f(x) = F(x^{q^s})$$
 is in standard form, then $f(x) = \sum_k b_k x^{q^{s+kr}}$ where $r > 1$, $(s, r) = 1$.

The stabilizer of $U_f = \{(y, f(y)) : y \in \mathbb{F}_{q^n}\}$ is $G_f = GL(2, q^n)_{\{U_f\}}$ (i.e. setwise stabilizer).

 $|G_f| \ge q - 1$ since diag $(\alpha, \alpha) \in G_f$ for all $\alpha \in \mathbb{F}_q^*$.

DEFINITION (LONGOBARDI-Z. 202x).

Let $f(x) = \sum_{i} a_i x^{q^i} \in \mathbb{F}_{q^n}[x]$ be scattered and

$$\Delta_f = \{(i-j) \mod n \colon a_i a_j \neq 0\} \cup \{n\}.$$

Let $r = r_f = \text{gcd } \Delta_f$. If r > 1, then f(x) is in *standard form*.

If
$$f(x) = F(x^{q^s})$$
 is in standard form, then $f(x) = \sum_k b_k x^{q^{s+kr}}$ where $r > 1$, $(s, r) = 1$.

The stabilizer of $U_f = \{(y, f(y)) : y \in \mathbb{F}_{q^n}\}$ is $G_f = GL(2, q^n)_{\{U_f\}}$ (i.e. setwise stabilizer).

$$|G_f| \ge q-1$$
 since diag $(\alpha, \alpha) \in G_f$ for all $\alpha \in \mathbb{F}_q^*$.
If $|G_f| = q-1$, then G_f is trivial.

DEFINITION (LONGOBARDI-Z. 202x).

Let $f(x) = \sum_{i} a_i x^{q^i} \in \mathbb{F}_{q^n}[x]$ be scattered and

$$\Delta_f = \{(i-j) \mod n \colon a_i a_j \neq 0\} \cup \{n\}.$$

Let $r = r_f = \text{gcd } \Delta_f$. If r > 1, then f(x) is in *standard form*.

If
$$f(x) = F(x^{q^s})$$
 is in standard form, then $f(x) = \sum_k b_k x^{q^{s+kr}}$ where $r > 1$, $(s, r) = 1$.

The stabilizer of $U_f = \{(y, f(y)) : y \in \mathbb{F}_{q^n}\}$ is $G_f = \mathsf{GL}(2, q^n)_{\{U_f\}}$ (i.e. setwise stabilizer).

$$|G_f| \ge q - 1 \text{ since } \operatorname{diag}(\alpha, \alpha) \in G_f \text{ for all } \alpha \in \mathbb{F}_q^*.$$

If $|G_f| = q - 1$, then G_f is trivial.

If
$$f(x) = \sum_{k} b_k x^{q^{s+kr}} = F(x^{q^s})$$
 is in standard form, then
 $\{ \operatorname{diag}(\alpha, \alpha^{q^s}) \colon \alpha \in \mathbb{F}_{q^r}^* \} \subseteq G_f.$

Indeed, $f(\alpha y) = \alpha^{q^s} F(y^{q^s}) = \alpha^{q^s} f(y) \ \forall y \in \mathbb{F}_{q^n}$.

10 of 16

DEFINITION (SHEEKEY 2016).

The rank distance code associated with f(x) is the following subspace of $\operatorname{End}_{\mathbb{F}_q}(\mathbb{F}_{q^n})$: $\mathcal{C}_f = \langle x, f(x) \rangle_{\mathbb{F}_{q^n}}$

DEFINITION (SHEEKEY 2016).

The rank distance code associated with f(x) is the following subspace of $\operatorname{End}_{\mathbb{F}_q}(\mathbb{F}_{q^n})$: $\mathcal{C}_f = \langle x, f(x) \rangle_{\mathbb{F}_{q^n}}$

DEFINITION.

The right idealizer of C_f is

 $I_{R}(\mathcal{C}_{f}) = \{ \varphi \in \mathsf{End}_{\mathbb{F}_{q}}(\mathbb{F}_{q^{n}}) \colon g \circ \varphi \in \mathcal{C}_{f}, \, \forall g \in \mathcal{C}_{f} \}.$

DEFINITION (SHEEKEY 2016).

The rank distance code associated with f(x) is the following subspace of $\operatorname{End}_{\mathbb{F}_q}(\mathbb{F}_{q^n})$: $\mathcal{C}_f = \langle x, f(x) \rangle_{\mathbb{F}_{q^n}}$

DEFINITION.

The right idealizer of C_f is

 $I_R(\mathcal{C}_f) = \{ \varphi \in \mathsf{End}_{\mathbb{F}_q}(\mathbb{F}_{q^n}) \colon g \circ \varphi \in \mathcal{C}_f, \, \forall g \in \mathcal{C}_f \}.$

Theorem.

 $I_R(\mathcal{C}_f)$ is a field isomorphic to \mathbb{F}_{q^t} , $t \mid n$, and t = n if and only if f(x) is of pseudoregulus type.

DEFINITION (SHEEKEY 2016).

The rank distance code associated with f(x) is the following subspace of $\operatorname{End}_{\mathbb{F}_q}(\mathbb{F}_{q^n})$: $\mathcal{C}_f = \langle x, f(x) \rangle_{\mathbb{F}_{q^n}}$

DEFINITION.

The right idealizer of C_f is

 $I_{R}(\mathcal{C}_{f}) = \{ \varphi \in \mathsf{End}_{\mathbb{F}_{q}}(\mathbb{F}_{q^{n}}) \colon g \circ \varphi \in \mathcal{C}_{f}, \, \forall g \in \mathcal{C}_{f} \}.$

Theorem.

 $I_R(\mathcal{C}_f)$ is a field isomorphic to \mathbb{F}_{q^t} , $t \mid n$, and t = n if and only if f(x) is of pseudoregulus type.

Proof. As regards the case t = n, Csajbók-Marino-Polverino-Zhou (2020) prove that if an MRD code C has both right and left idealizers isomorphic to \mathbb{F}_{q^n} , then it is equivalent to

$$\langle x^{q^{t_i}}: i=0,1,\ldots,k-1 \rangle_{\mathbb{F}_{q^n}}$$

and if $\mathcal{C} = \mathcal{C}_f$ this is equivalent to $\langle x, x^{q^s} \rangle_{\mathbb{F}_{q^n}}$.

DEFINITION (SHEEKEY 2016).

The rank distance code associated with f(x) is the following subspace of $\operatorname{End}_{\mathbb{F}_q}(\mathbb{F}_{q^n})$: $\mathcal{C}_f = \langle x, f(x) \rangle_{\mathbb{F}_{q^n}}$

DEFINITION.

The right idealizer of C_f is

 $I_R(\mathcal{C}_f) = \{ \varphi \in \mathsf{End}_{\mathbb{F}_q}(\mathbb{F}_{q^n}) \colon g \circ \varphi \in \mathcal{C}_f, \, \forall g \in \mathcal{C}_f \}.$

Theorem.

 $I_R(\mathcal{C}_f)$ is a field isomorphic to \mathbb{F}_{q^t} , $t \mid n$, and t = n if and only if f(x) is of pseudoregulus type.

Proof. As regards the case t = n, Csajbók-Marino-Polverino-Zhou (2020) prove that if an MRD code C has both right and left idealizers isomorphic to \mathbb{F}_{q^n} , then it is equivalent to

$$\langle x^{q^{t_i}}: i=0,1,\ldots,k-1 \rangle_{\mathbb{F}_{q^n}}$$

and if $\mathcal{C} = \mathcal{C}_f$ this is equivalent to $\langle x, x^{q^s} \rangle_{\mathbb{F}_{q^n}}$.

THEOREM (Longobardi-Marino-Trombetti-Zhou 202x).

 $I_R(\mathcal{C}_f)$ and $G_f \cup \{0\}$ are isomorphic fields. (R.: G_f , setwise stabilizer of U_f in $\mathsf{GL}(2, q^n)$.)

Simultaneous diagonalization

All elements of G_f are simultaneously diagonalizable.

All elements of G_f are simultaneously diagonalizable.

Proof. Use the complete description by Beard (1972) and Willett (1973) of all subrings of $\mathbb{F}_q^{N \times N}$ which are fields.

All elements of G_f are simultaneously diagonalizable.

Proof. Use the complete description by Beard (1972) and Willett (1973) of all subrings of $\mathbb{F}_{a}^{N \times N}$ which are fields.

COROLLARY. If $f(x) = \sum_{k} b_k x^{q^{s+kr}}$ is in standard form, then $G_f = \{ \operatorname{diag}(\alpha, \alpha^{q^s}) \colon \alpha \in \mathbb{F}_{q^r}^* \}.$

All elements of G_f are simultaneously diagonalizable.

Proof. Use the complete description by Beard (1972) and Willett (1973) of all subrings of $\mathbb{F}_q^{N \times N}$ which are fields.

COROLLARY.

If $f(x) = \sum_k b_k x^{q^{s+kr}}$ is in standard form, then $G_f = \{ \text{diag}(\alpha, \alpha^{q^s}) \colon \alpha \in \mathbb{F}_{q^r}^* \}.$

If f(x) is in standard form, then G_f only depends on s and r, i.e. on the shape of f(x).

Simultaneous diagonalization

The elements of G_f are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^n}$ -basis v_1, v_2 of $\mathbb{F}_{q_n}^2$, eigenvectors of any $\varphi \in G_f$

The elements of G_f are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^n}$ -basis v_1, v_2 of $\mathbb{F}_{q^n}^2$, eigenvectors of any $\varphi \in G_f \rightsquigarrow$ for $|G_f| > q - 1$, two "transversal points" $V_1 = \langle v_1 \rangle_{\mathbb{F}_{q^n}}$, $V_2 = \langle v_2 \rangle_{\mathbb{F}_{q^n}}$ are projectively defined by f.

The elements of G_f are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^n}$ -basis v_1, v_2 of $\mathbb{F}_{q^n}^2$, eigenvectors of any $\varphi \in G_f \rightsquigarrow$ for $|G_f| > q - 1$, two "transversal points" $V_1 = \langle v_1 \rangle_{\mathbb{F}_{q^n}}$, $V_2 = \langle v_2 \rangle_{\mathbb{F}_{q^n}}$ are projectively defined by f.

The elements of G_f are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^n}$ -basis v_1, v_2 of $\mathbb{F}_{q_n}^2$, eigenvectors of any $\varphi \in G_f \rightsquigarrow$ for $|G_f| > q - 1$, two "transversal points" $V_1 = \langle v_1 \rangle_{\mathbb{F}_{q^n}}$, $V_2 = \langle v_2 \rangle_{\mathbb{F}_{q^n}}$ are projectively defined by f.

PROPOSITION.

 $V_1, V_2 \notin L_f$

Proof. The orbits in $L_f \setminus \{V_1, V_2\}$ under G_f are of size $|G_f|/(q-1)$, obtain a contradiction.

The elements of G_f are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^n}$ -basis v_1, v_2 of $\mathbb{F}_{q_n}^2$, eigenvectors of any $\varphi \in G_f \rightsquigarrow$ for $|G_f| > q - 1$, two "transversal points" $V_1 = \langle v_1 \rangle_{\mathbb{F}_{q^n}}$, $V_2 = \langle v_2 \rangle_{\mathbb{F}_{q^n}}$ are projectively defined by f.

PROPOSITION.

 $V_1, V_2 \notin L_f$

Proof. The orbits in $L_f \setminus \{V_1, V_2\}$ under G_f are of size $|G_f|/(q-1)$, obtain a contradiction.

PROPOSITION.

If f(x) is in standard form, then f(x) is nonsingular.

The elements of G_f are simultaneously diagonalizable $\rightsquigarrow \mathbb{F}_{q^n}$ -basis v_1, v_2 of $\mathbb{F}_{q_n}^2$, eigenvectors of any $\varphi \in G_f \rightsquigarrow$ for $|G_f| > q - 1$, two "transversal points" $V_1 = \langle v_1 \rangle_{\mathbb{F}_{q^n}}$, $V_2 = \langle v_2 \rangle_{\mathbb{F}_{q^n}}$ are projectively defined by f.

PROPOSITION.

 $V_1, V_2 \notin L_f$

Proof. The orbits in $L_f \setminus \{V_1, V_2\}$ under G_f are of size $|G_f|/(q-1)$, obtain a contradiction.

PROPOSITION.

If f(x) is in standard form, then f(x) is nonsingular.

Open problem.

Do V_1 and V_2 depend only on the linear set L_f ?

THEOREM (Longobardi-Z. 202x).

If $|G_f| > q - 1$, then f(x) is GL-equivalent to a scattered polynomial g(x) in standard form. Such g(x) is essentially unique, i.e. the only polynomials in standard form which are GL-equivalent to f(x) are

ag(bx) and $ag^{-1}(bx)$ for $a, b \in \mathbb{F}_{q^n}^*$.

THEOREM (Longobardi-Z. 202x).

If $|G_f| > q - 1$, then f(x) is GL-equivalent to a scattered polynomial g(x) in standard form. Such g(x) is essentially unique, i.e. the only polynomials in standard form which are GL-equivalent to f(x) are

ag(bx) and $ag^{-1}(bx)$ for $a, b \in \mathbb{F}_{q^n}^*$.

EXAMPLE

For $q \equiv 1 \pmod{4}$, $f(x) = x^q + x^{q^2} - x^{q^4} + x^{q^5} \in \mathbb{F}_{q^6}[x]$ is scattered and GL-equivalent to $g(x) = (1 - \rho)x^q - x^{q^3} + (1 + \rho)x^{q^5}$ where $\rho^2 = -1$.

Consequences on translation planes

An *affine central collineation* of an affine plane A fixes an affine line *a* (the *axis*) pointwise, as well as all lines through a point *C* (the *center*) at infinity.

An *affine central collineation* of an affine plane A fixes an affine line *a* (the *axis*) pointwise, as well as all lines through a point *C* (the *center*) at infinity.

An *affine central collineation* of an affine plane A fixes an affine line *a* (the *axis*) pointwise, as well as all lines through a point *C* (the *center*) at infinity.

 $a \cap L_{\infty}$ is the *co-center* of the central collineation.

 $a \cap L_{\infty}$ is the *co-center* of the central collineation.

If $\mathcal{A} = \mathcal{A}_f, f(x)$ scattered, then any affine central collineation κ is of type $\kappa : x \mapsto v + d\varphi(x), v \in \mathbb{F}_{q^n}^{2n}, d \in \mathbb{F}_{q^n}^{*n}, \varphi \in G_f.$

UNIVERSIT?

DI PADOVA

 $a \cap L_{\infty}$ is the *co-center* of the central collineation.

If $\mathcal{A} = \mathcal{A}_f, f(x)$ scattered, then any affine central collineation κ is of type $\kappa : x \mapsto v + d\varphi(x), v \in \mathbb{F}_{q^n}^2, d \in \mathbb{F}_{q^n}^*, \varphi \in G_f.$

If $|G_f| > q - 1$, the center and the co-center are the transversal points of f.

UNIVERSITY

Consequences on translation planes

THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials; Longobardi-Z. 202x for the general case).

(i) If $|G_f| = q - 1$, then A_f admits no nontrivial central collineation.

THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials; Longobardi-Z. 202x for the general case).

- (i) If $|G_f| = q 1$, then A_f admits no nontrivial central collineation.
- (ii) If |G_f| > q − 1, then the central collineations fixing O are in two cyclic groups of homologies of order (q^r − 1)/(q − 1). In this case the intersection of the full collineation group with GL(2, qⁿ) is the direct product of one of those homology groups for the *kernel homology group* of the associated Desarguesian plane (maps of type (x, y) → (dx, dy), d ∈ ℝ^{an}_{qⁿ}).

THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials; Longobardi-Z. 202x for the general case).

- (i) If $|G_f| = q 1$, then A_f admits no nontrivial central collineation.
- (ii) If |G_f| > q − 1, then the central collineations fixing *O* are in two cyclic groups of homologies of order (q^r − 1)/(q − 1). In this case the intersection of the full collineation group with GL(2, qⁿ) is the direct product of one of those homology groups for the *kernel homology group* of the associated Desarguesian plane (maps of type (x, y) → (dx, dy), d ∈ F^{*}_{qⁿ}).

THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials; Longobardi-Z. 202x for the general case).

If f(x) is a scattered polynomial not GL-equivalent to a polynomial of pseudoregulus type, then A_f is neither an André plane nor a generalized André plane.

Thank you!