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Scattered polynomials

Definition.

A scattered polynomial in Fqn [x] is an Fq-linearized polynomial f (x) =
∑

i aix
qi
such that

f (y)
y = f (z)

z , y, z ∈ F∗
qn ⇒ ⟨y⟩Fq = ⟨z⟩Fq .

Let f (x) ∈ Fqn [x] be scattered. Then

Uf = {(y, f (y)) : y ∈ Fqn} is a scattered Fq-subspace of F2

qn with respect to the

Desarguesian spread D = {⟨v⟩Fqn : v ∈ F2

qn , v ̸= 0}; that is, dimFq (Uf ∩ ⟨v⟩Fqn ) ≤ 1

for any v ∈ F2

qn .

Lf = {⟨(y, f (y))⟩Fqn : y ∈ F∗
qn} is a scattered linear set of rank n in PG(1, qn);

|Lf | = (qn − 1)/(q − 1).

Definition.

If Uf and Ug belong to the same orbit under the action of GL(2, qn) [resp. ΓL(2, qn)], then f
and g are GL-equivalent [resp. ΓL-equivalent].

Example.

f (x) = xq and g(x) = ax + xq are GL-equivalent scattered polynomials for any a ∈ Fqn .
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Known scattered polynomials in Fqn[x]

f (x) = xq
s
, (s, n) = 1 (pseudoregulus type) (Blokhuis-Lavrauw 2000)

f (x) = xq
s
+ δxq

n−s
, n ≥ 4, (s, n) = 1, Nqn/q(δ) ̸= 0, 1 (Lunardon-Polverino 2001;

Sheekey 2016)

f (x) = δxq
s
+ xq

s+n/2
, n ∈ {6, 8}, (s, n/2) = 1, some δ and q

(Csajbók-Marino-Polverino-Z. 2018)

f (x) = xq + xq
3

+ δxq
5

, n = 6, δ2 + δ = 1, q odd (Csajbók, Marino, Montanucci,

Zullo 2018, 2020)

f (x) = xq
s
+ xq

s(t−1)
+ h1+qs xq

s(t+1)
+ h1−qs(2t−1)

xq
s(2t−1)

, n = 2t , t ≥ 3, (s, n) = 1, q
odd, Nqn/qt (h) = −1 (Bartoli, Longobardi, Marino, Neri, Santonastaso, Z., Zhou, Zullo

2020-202x)
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Translation planes related to scattered

polynomials

Ingredients:

Uf = {(y, f (y)) : y ∈ Fqn}
Lf = {⟨(y, f (y))⟩Fqn : y ∈ F∗

qn} a subset of the Desarguesian spread

D = {⟨v⟩Fqn : v ∈ F2

qn , v ̸= 0}

If f (x) ∈ Fqn [x] is scattered, then any two distinct subspaces hUf , kUf , h, k ∈
F∗
qn , intersect trivially

(
for: h(y, f (y)) = k(z, f (z)) ⇒ f (y)

y = f (z)
z

)
.

So, Bf =
(
D \ Lf

)
∪ {hUf : h ∈ F∗

qn} is a spread of F2

qn in n-dimensional Fq-

subspaces.

Definition.

Af is the affine translation plane whose

point set is F2

qn

lines are v + U, v ∈ F2

qn , U ∈ Bf

The elements of Bf are lines through the origin, and will also be considered as

points of the line at infinity L∞ = (L∞)f .

4 of 16
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L∞ and PG(1, qn) share some points

PG(1, qn) is a spread D of F2

qn containing Lf

(L∞)f is a spread Bf =
(
D \ Lf

)
∪ {hUf : h ∈ F∗

qn} of F2

qn obtained from D by replacing Lf
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Equivalence of translation planes

Always: q > 3.

Theorem (Casarino-Longobardi-Z. 2022).

Let f (x), g(x) ∈ Fqn [x] be scattered, and let Ψ : Af → Ag be a collineation. Then

1 Ψ : x 7→ v + φ(x) with v ∈ F2

qn , φ ∈ ΓL(2, qn);

2 φ stabilizes the partial spreads D \ Lf and {hUf : h ∈ F∗
qn}.

The converse holds.

Corollary 1.

Af
∼= Ag iff f (x) and g(x) are ΓL-equivalent.

Corollary 2.

Any linear set Lf of ΓL-class c (Csajbók-Marino-Polverino 2018) gives rise to c pairwise
nonisomorphic translation planes.
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André planes

Definition.

Let α : F∗
q → {0, 1, . . . , n− 1} be any mapping, and

Bm,α = {(x,mxq
α
(
Nqn/q(m)

)
) : x ∈ F∗

qn}, m ∈ F∗
qn .

Then Bα = {Bm,α : m ∈ F∗
qn} ∪ {⟨(1, 0)⟩Fqn , ⟨(0, 1)⟩Fqn } is a spread of F2

qn , and the related

translation plane is an André plane.

Recall: Bf =
(
D \ Lf

)
∪ {hUf : h ∈ F∗

qn}

Example.

If f (x) = xq
s
, then Bf = Bα where

α(ν) =

{
s if ν = 1,
0 otherwise,

henceAf is an André plane (Lunardon-Polverino 2001).

Question.

For which f (x) is Af an André plane, or a generalized André plane?
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A pattern for scattered polynomials

Many (but not all) scattered polynomials, e.g.

(1) xq
s
+ δxq

n−s
, n even

(2) δxq
s
+ xq

s+n/2
, n ∈ {6, 8}

(3) xq + xq
3

+ δxq
5

, n = 6

(4) xq + xq
t−1

+ h1+qxq
t+1

+ h1−q2t−1

xq
2t−1

, n = 2t, t even

are of type F (xq
s
) where F (x) is Fqr -linear for some 1 < r | n, and (s, r) = 1:

(1) F (x) = x + δxq
n−2s

, r = 2

(2) F (x) = δx + xq
n/2

, r = n/2
(3) F (x) = x + xq

2

+ δxq
4

, r = 2, s = 1

(4) F (x) = x + xq
t−2

+ h1+qxq
t
+ h1−q2t−1

xq
2t−2

, r = 2, s = 1

We call a polynomial in standard form any polynomial of this type.
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2t−1

, n = 2t, t even

are of type F (xq
s
) where F (x) is Fqr -linear for some 1 < r | n, and (s, r) = 1:

(1) F (x) = x + δxq
n−2s

, r = 2

(2) F (x) = δx + xq
n/2

, r = n/2
(3) F (x) = x + xq

2

+ δxq
4

, r = 2, s = 1

(4) F (x) = x + xq
t−2

+ h1+qxq
t
+ h1−q2t−1

xq
2t−2

, r = 2, s = 1

We call a polynomial in standard form any polynomial of this type.
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A pattern for scattered polynomials

Definition (Longobardi-Z. 202x).

Let f (x) =
∑

i aix
qi ∈ Fqn [x] be scattered and

∆f = {(i − j) mod n : aiaj ̸= 0} ∪ {n}.

Let r = rf = gcd∆f . If r > 1, then f (x) is in standard form.

If f (x) = F (xq
s
) is in standard form, then f (x) =

∑
k bkx

qs+kr
where r > 1,

(s, r) = 1.

The stabilizer of Uf = {(y, f (y)) : y ∈ Fqn} is

Gf = GL(2, qn){Uf } (i.e. setwise stabilizer).

|Gf | ≥ q − 1 since diag(α, α) ∈ Gf for all α ∈ F∗
q .

If |Gf | = q − 1, then Gf is trivial.

If f (x) =
∑

k bkx
qs+kr

= F (xq
s
) is in standard form, then

{diag(α, αqs ) : α ∈ F∗
qr } ⊆ Gf .

Indeed, f (αy) = αqsF (yq
s
) = αqs f (y) ∀y ∈ Fqn .
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A pattern for scattered polynomials

Definition (Sheekey 2016).

The rank distance code associated with f (x) is the following subspace of EndFq (Fqn ):

Cf = ⟨x, f (x)⟩Fqn

Definition.

The right idealizer of Cf is
IR(Cf ) = {φ ∈ EndFq (Fqn ) : g ◦ φ ∈ Cf , ∀g ∈ Cf }.

Theorem.

IR(Cf ) is a field isomorphic to Fqt , t | n, and t = n if and only if f (x) is of pseudoregulus type.

Proof. As regards the case t = n, Csajbók-Marino-Polverino-Zhou (2020) prove that if an

MRD code C has both right and left idealizers isomorphic to Fqn , then it is equivalent to

⟨xqti : i = 0, 1, . . . , k − 1⟩Fqn
and if C = Cf this is equivalent to ⟨x, xq

s ⟩Fqn .

Theorem (Longobardi-Marino-Trombetti-Zhou 202x).

IR(Cf ) and Gf ∪ {0} are isomorphic fields. (R.: Gf , setwise stabilizer of Uf in GL(2, qn).)
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Simultaneous diagonalization

Theorem (Longobardi-Z. 202x).

All elements of Gf are simultaneously diagonalizable.

Proof. Use the complete description by Beard (1972) and Willett (1973) of all subrings of

FN×N
q which are fields.

Corollary.

If f (x) =
∑

k bkx
qs+kr

is in standard form, then

Gf={diag(α, αqs ) : α ∈ F∗
qr }.

If f (x) is in standard form, then Gf only depends on s and r , i.e. on the shape of

f (x).
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Simultaneous diagonalization

The elements of Gf are simultaneously diagonalizable⇝ Fqn -basis v1, v2 of F2

qn , eigenvectors

of any φ ∈ Gf ⇝ for |Gf | > q − 1, two “transversal points” V1 = ⟨v1⟩Fqn , V2 = ⟨v2⟩Fqn are

projectively defined by f .

PG(1, qn)
V1 V2

Lf

Proposition.

V1,V2 /∈ Lf

Proof. The orbits in Lf \ {V1,V2} under Gf are of size |Gf |/(q − 1), obtain a contradiction.

Proposition.

If f (x) is in standard form, then f (x) is nonsingular.

Open problem.

Do V1 and V2 depend only on the linear set Lf ?
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Simultaneous diagonalization

Theorem (Longobardi-Z. 202x).

If |Gf | > q − 1, then f (x) is GL-equivalent to a scattered polynomial g(x) in standard form.

Such g(x) is essentially unique, i.e. the only polynomials in standard form which are

GL-equivalent to f (x) are
ag(bx) and ag−1(bx) for a, b ∈ F∗

qn .

Example

For q ≡ 1 (mod 4), f (x) = xq + xq
2 − xq

4

+ xq
5 ∈ Fq6 [x] is scattered and GL-equivalent to

g(x) = (1− ρ)xq − xq
3

+ (1+ ρ)xq
5

where ρ2 = −1.
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Consequences on translation planes

An affine central collineation of an affine plane A fixes an affine line a (the axis) pointwise, as
well as all lines through a point C (the center) at infinity.

L∞

a

C

a ∩ L∞ is the co-center of the central collineation.

If A = Af , f (x) scattered, then any affine central collineation κ is of type

κ : x 7→ v + dφ(x), v ∈ F2

qn , d ∈ F∗
qn , φ ∈ Gf .

If |Gf | > q − 1, the center and the co-center are the transversal points of f .
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Consequences on translation planes

Theorem (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;

Longobardi-Z. 202x for the general case).

(i) If |Gf | = q − 1, thenAf admits no nontrivial central collineation.

(ii) If |Gf | > q − 1, then the central collineations fixing O are in two cyclic groups of

homologies of order (qr − 1)/(q − 1). In this case the intersection of the full

collineation group with GL(2, qn) is the direct product of one of those homology

groups for the kernel homology group of the associated Desarguesian plane (maps of

type (x, y) 7→ (dx, dy), d ∈ F∗
qn ).

Theorem (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;

Longobardi-Z. 202x for the general case).

If f (x) is a scattered polynomial not GL-equivalent to a polynomial of pseudoregulus type,

then Af is neither an André plane nor a generalized André plane.

15 of 16



Consequences on translation planes

Theorem (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;

Longobardi-Z. 202x for the general case).

(i) If |Gf | = q − 1, thenAf admits no nontrivial central collineation.

(ii) If |Gf | > q − 1, then the central collineations fixing O are in two cyclic groups of

homologies of order (qr − 1)/(q − 1). In this case the intersection of the full

collineation group with GL(2, qn) is the direct product of one of those homology

groups for the kernel homology group of the associated Desarguesian plane (maps of

type (x, y) 7→ (dx, dy), d ∈ F∗
qn ).

Theorem (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;

Longobardi-Z. 202x for the general case).

If f (x) is a scattered polynomial not GL-equivalent to a polynomial of pseudoregulus type,

then Af is neither an André plane nor a generalized André plane.

15 of 16



Consequences on translation planes

Theorem (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;

Longobardi-Z. 202x for the general case).

(i) If |Gf | = q − 1, thenAf admits no nontrivial central collineation.

(ii) If |Gf | > q − 1, then the central collineations fixing O are in two cyclic groups of

homologies of order (qr − 1)/(q − 1). In this case the intersection of the full

collineation group with GL(2, qn) is the direct product of one of those homology

groups for the kernel homology group of the associated Desarguesian plane (maps of

type (x, y) 7→ (dx, dy), d ∈ F∗
qn ).

Theorem (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;

Longobardi-Z. 202x for the general case).

If f (x) is a scattered polynomial not GL-equivalent to a polynomial of pseudoregulus type,

then Af is neither an André plane nor a generalized André plane.

15 of 16



Consequences on translation planes

Theorem (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;

Longobardi-Z. 202x for the general case).

(i) If |Gf | = q − 1, thenAf admits no nontrivial central collineation.

(ii) If |Gf | > q − 1, then the central collineations fixing O are in two cyclic groups of

homologies of order (qr − 1)/(q − 1). In this case the intersection of the full

collineation group with GL(2, qn) is the direct product of one of those homology

groups for the kernel homology group of the associated Desarguesian plane (maps of

type (x, y) 7→ (dx, dy), d ∈ F∗
qn ).

Theorem (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;

Longobardi-Z. 202x for the general case).

If f (x) is a scattered polynomial not GL-equivalent to a polynomial of pseudoregulus type,

then Af is neither an André plane nor a generalized André plane.

15 of 16



Thank

you!
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