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DEFINITION.
A scattered polynomial in F¢n[x] is an Fg-linearized polynomial f(x) = >, aix9 such that

M =8y eFh = (v, = (2,

Let f(x) € Fgn[x] be scattered. Then
m U ={(y,f(y)): y € Fgn} is a scattered Fg-subspace of an with respect to the
Desarguesian spread D = {<V>]Fqn 1V E ]Ff],,, v # 0}; that is, dimy, (Ur N (v)nrq,,) <1
forany v € Fén.
= {((y,f(y)))]pq,, Ly € ]FZ,,} is a scattered linear set of rank nin PG(1, ¢");
Ll = (¢" = 1)/(g = 1).

DEFINITION.

If U and Ug belong to the same orbit under the action of GL(2, ¢") [resp. FL(2, ¢")], then f
and g are GL-equivalent [resp. I'L-equivalent].

EXAMPLE.
f(x) = x9 and g(x) = ax + x9 are GL-equivalent scattered polynomials for any a € Fgn. .




Known scattered polynomials in [Fgn[x]

3of 16



Known scattered polynomials in [Fgn[x]

= f(x) =x7, (s, n) = 1(pseudoregulus type) (Blokhuis-Lavrauw 2000)

3of 16



Known scattered polynomials in [Fgn[x]

= f(x) =x7, (s, n) = 1(pseudoregulus type) (Blokhuis-Lavrauw 2000)

m f(x)=xT 4+6x9
Sheekey 2016)

s

,n>4,(s,n) =1, Nqn/q(é) # 0, 1 (Lunardon-Polverino 2001;

3of 16



Known scattered polynomials in Fga[x] 0 ¢

= f(x) =x7, (s, n) = 1(pseudoregulus type) (Blokhuis-Lavrauw 2000)

m f(x)=xT 4+6x9
Sheekey 2016)

m f(x)=6xT +x7 " ne{6,8},(s,n/2) = 1,some § and q
(Csajbok-Marino-Polverino-Z. 2018)

s

,n>4,(s,n) =1, Nqn/q(é) # 0, 1 (Lunardon-Polverino 2001;

s+n/2

3of 16



Known scattered polynomials in Fga[x] 0 ¢

= f(x) =x7, (s, n) = 1(pseudoregulus type) (Blokhuis-Lavrauw 2000)

m f(x)=xT 4+6x9
Sheekey 2016)

m f(x)=6xT +x7 " ne{6,8},(s,n/2) = 1,some § and q
(Csajbok-Marino-Polverino-Z. 2018)

s

,n>4,(s,n) =1, Nqn/q(é) # 0, 1 (Lunardon-Polverino 2001;

s+n/2

m f(x)=x9+ X7 + 5x‘75, n=6,6%+ 3 = 1, g odd (Csajbdk, Marino, Montanucci,
Zullo 2018, 2020)

3of 16



Known scattered polynomials in [Fgn[x]

= f(x) =x7, (s, n) = 1(pseudoregulus type) (Blokhuis-Lavrauw 2000)

m f(x)=xT 4+6x9
Sheekey 2016)

m f(x)=6xT +x7 " ne{6,8},(s,n/2) = 1,some § and q
(Csajbok-Marino-Polverino-Z. 2018)

s

,n>4,(s,n) =1, Nqn/q(é) # 0, 1 (Lunardon-Polverino 2001;

s+n/2

m f(x)=x9+ X7 + 5x‘75, n=6,6%+ 3 = 1, g odd (Csajbdk, Marino, Montanucci,
Zullo 2018, 2020)

- f(x) — n qu(t—l) ¥ h1+qsxq‘(t+1) AR ,n=2t1t>3 (s, n) =1,q
odd, Nqn/ql(h) = —1 (Bartoli, Longobardi, Marino, Neri, Santonastaso, Z., Zhou, Zullo
2020-202x)

s(2t—1) qu(zr—l)

3of 16



UNIVERSITA
S

Translation planes related to scattered

polynomials

4 of 16



UNIVERSITA
S

Translation planes related to scattered

polynomials

Ingredients:

4 of 16



UNIVERSITA
S

Translation planes related to scattered

polynomials

Ingredients:
m U ={(y,f(y): y €Fg}

4 of 16



Translation planes related to scattered

polynomials

Ingredients:
m U ={(y,f(y)): y €Fg}
w Ly ={( f Y y € Fon}

4 of 16



Translation planes related to scattered

polynomials

Ingredients:

U =A{(y:f(y)): y € Fer}
L= {((y,f(y)))]Fq,, CyE ]F:;,,} a subset of the Desarguesian spread

8 D={{(v)p,: veF,, v#0}

4 of 16



UNIVERSITA

Translation planes related to scattered &0 = i

polynomials

Ingredients:

U ={(rf(y): y € Fr}
m L ={{(y,f(¥)))F,.: ¥ € Fyu} asubset of the Desarguesian spread

8 D={{(v)p,: veF,, v#0}

@ If f(x) € Fgn[x] is scattered, then any two distinct subspaces hUs, kUs, h, k €
IF%a, intersect trivially (for: h(y,f(y)) = k(z,f(2)) = @ = g) .

— . * f 2 . . .
So, By = (D\ Ly) U{hUs: h € I3} is a spread of F%n in n-dimensional F-
subspaces.

4 of 16



UNIVERSITA

Translation planes related to scattered 5 o

polynomials

Ingredients:

U ={(rf(y): y € Fr}
m L ={{(y,f(¥)))F,.: ¥ € Fyu} asubset of the Desarguesian spread

8 D={{(v)p,: veF,, v#0}

@ If f(x) € Fgn[x] is scattered, then any two distinct subspaces hUs, kUs, h, k €
IF%a, intersect trivially (for: h(y,f(y)) = k(z,f(2)) = @ = g) .

— . * f 2 . . .
So, By = (D\ Ly) U{hUs: h € I3} is a spread of F%n in n-dimensional F-
subspaces.

DEFINITION.

Ag is the affine translation plane whose

4 of 16



Translation planes related to scattered 20 ¢

polynomials

Ingredients:

U =A{(y:f(y)): y € Fer}
L= {((y,f(y)))]Fq,, CyE ]F:;,,} a subset of the Desarguesian spread

8 D={{(v)p,: veF,, v#0}

@ If f(x) € Fgn[x] is scattered, then any two distinct subspaces hUs, kUs, h, k €
IF%a, intersect trivially (for: h(y,f(y)) = k(z,f(2)) = @ = g) .

— . * f 2 . . .
So, By = (D\ Ly) U{hUs: h € I3} is a spread of F%n in n-dimensional F-
subspaces.

DEFINITION.

Ag is the affine translation plane whose

m point set is ]F‘Z],7

4 of 16



Translation planes related to scattered 20 ¢

polynomials

Ingredients:

U =A{(y:f(y)): y € Fer}
L= {((y,f(y)))]Fq,, CyE ]F:;,,} a subset of the Desarguesian spread

8 D={{(v)p,: veF,, v#0}

@ If f(x) € Fgn[x] is scattered, then any two distinct subspaces hUs, kUs, h, k €
IF%a, intersect trivially (for: h(y,f(y)) = k(z,f(2)) = @ = g) .

— . * f 2 . . .
So, By = (D\ Ly) U{hUs: h € I3} is a spread of F%n in n-dimensional F-
subspaces.

DEFINITION.

Ag is the affine translation plane whose
m point set is ]F‘Z],7

m linesarev+ U,v € IF{ZJ,,, U € By

4 of 16



Translation planes related to scattered 0w

polynomials

Ingredients:

U =A{(y:f(y)): y € Fer}
L= {((y,f(y)))]Fq,, CyE ]F:;,,} a subset of the Desarguesian spread

8 D={{(v)p,: veF,, v#0}

@ If f(x) € Fgn[x] is scattered, then any two distinct subspaces hUs, kUs, h, k €
IF%a, intersect trivially (for: h(y,f(y)) = k(z,f(2)) = @ = g) .

— . * f 2 . . .
So, By = (D\ Ly) U{hUs: h € I3} is a spread of F%n in n-dimensional F-
subspaces.

DEFINITION.

Ag is the affine translation plane whose
m point set is ]F‘Z]n

m linesarev+ U,v € IF{ZJ,,, U € By

@ The elements of By are lines through the origin, and will also be considered as
points of the line at infinity Loo = (Lo ) 4 of 16
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THEOREM (CASARINO-LONGOBARDI-Z. 2022).

Let f(x), g(x) € Fgn[x] be scattered, and let W : A; — Ag be a collineation. Then
W x— v+ o(x) withv € ]F‘ZI,,, p eTL(2,q9");
¢ stabilizes the partial spreads D \ Ly and {hUs: h € [y, }.

The converse holds.

COROLLARY 1.
Ar =2 Ay iff f(x) and g(x) are ['L-equivalent.

COROLLARY 2.

Any linear set Ly of I'L-class c (Csajbok-Marino-Polverino 2018) gives rise to c pairwise
nonisomorphic translation planes.
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André planes 1L o

DEFINITION.

Leta: Fy — {0,1,...,n— 1} be any mapping, and
o (Ngn /g (m)
Bm,a = {(x, mx9 (/g )) x€Fn}, meFy.

Then Bo, = {Bm,a: m € Fgn} U{((1,0))r,0, ((0,1))r,, } is a spread of Fén, and the related
translation plane is an André plane.

Recall: Bf = (D \ Lg) U {hUs: h€ F}}

EXAMPLE.
If f(x) = x7', then By = Bo where
o) = s ifv=1,
~ 1 0 otherwise,

hence Af is an André plane (Lunardon-Polverino 2001).

QUESTION.
For which f(x) is Ay an André plane, or a generalized André plane?
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(1) X + 6x‘7nis, neven
(2) 6x9° + xqs+"/2, n€ {6,8}
3) qurxq3 +5xq5, n==o6

1 41

(8) x9 + x4 7" 4 piHaxa

2t—1 2t—1
+ AT x4 | n=2t, teven

are of type F(x7 ) where F(x) is Fgr-linear for some 1 < r | n,and (s,r) = 1:

(1) F(x)—x+5xq 25, r=2
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@ F(x) = x+x3 " 4 RFax0 4 =7 77 =2 s=1
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Many (but not all) scattered polynomials, e.g.

(1) X + 6x‘7nis, neven
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(2)F(x)-5x+xq , r=n/2

(3)F(x)—x+x‘7 +5xq, r=2,s=1

@ F(x) = x+x3 " 4 RFax0 4 =7 77 =2 s=1

We call a polynomial in standard form any polynomial of this type.
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DEFINITION (LONGOBARDI-Z. 202X).
Let f(x) = >, ax? € Fgn[x] be scattered and

Ar = {(i—j) mod n: gja; # 0} U {n}.
Let r = rp = gcd Ay, If r > 1, then f(x) is in standard form.

@ If f(x) = F(x9) is in standard form, then f(x) = 3, bkxqs+k' where r > 1,
(s,r)=1.
|

The stabilizer of Ur = {(y,f(y)): y € Fgn} is
Gr = GL(2, q”){Uf} (i.e. setwise stabilizer).

|G| > q — 1since diag(a, ) € Gy forall o € Fy.
If |G¢| = g — 1, then G is trivial.

9 of 16



UNIVERSITA

A pattern for scattered polynomials 5 o

DEFINITION (LONGOBARDI-Z. 202X).
Let f(x) = >, ax? € Fgn[x] be scattered and

Ar = {(i—j) mod n: gja; # 0} U {n}.
Let r = rp = gcd Ay, If r > 1, then f(x) is in standard form.

@ If f(x) = F(x9) is in standard form, then f(x) = 3, bkxqs+k' where r > 1,
(s,r)=1.
|

The stabilizer of Ur = {(y,f(y)): y € Fgn} is
Gr = GL(2, q”){Uf} (i.e. setwise stabilizer).

|G| > q — 1since diag(a, ) € Gy forall o € Fy.
If |G¢| = g — 1, then G is trivial.
@ Iff(x)=>, bkxqs+k' = F(x9) is in standard form, then
{diag(e,a%): o € e} C Gy

Indeed, f(ay) = a¥ F(y?) = a9 f(y) Vy € Fn.
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DEFINITION (SHEEKEY 2016).

The rank distance code associated with f(x) is the following subspace of Endp, (Fqn):
Cr = (x, F 0N,

DEFINITION.

The right idealizer of Cy is
/R(Cf) ={pe€ End]Fq(]Fqn): gopeE Cf, Vg € Cf}.

THEOREM.

Ir(Cr) is a field isomorphic to Ft, t | n,and t = nif and only if f(x) is of pseudoregulus type.
Proof. As regards the case t = n, Csajbok-Marino-Polverino-Zhou (2020) prove that if an
MRD code C has both right and left idealizers isomorphic to Fgn, then it is equivalent to

(A i=0,1,... k—1)F
and if C = C this is equivalent to (x, xqs)]yq,,.

"
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DEFINITION (SHEEKEY 2016).

The rank distance code associated with f(x) is the following subspace of Endp, (Fqn):
Cr = (x, F 0N,

DEFINITION.

The right idealizer of Cy is
/R(Cf) ={pe€ End]Fq(]Fqn): gopeE Cf, Vg € Cf}.

THEOREM.

Ir(Cr) is a field isomorphic to Ft, t | n,and t = nif and only if f(x) is of pseudoregulus type.
Proof. As regards the case t = n, Csajbok-Marino-Polverino-Zhou (2020) prove that if an
MRD code C has both right and left idealizers isomorphic to Fgn, then it is equivalent to

(A i=0,1,... k—1)F
and if C = C this is equivalent to (x, xqs)]yq,,.

"

THEOREM (Longobardi-Marino-Trombetti-Zhou 202x).
Ir(Cr) and Gf U {0} are isomorphic fields. (R.: Gy, setwise stabilizer of Ur in GL(2, ¢").)
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All elements of Gy are simultaneously diagonalizable.

Proof. Use the complete description by Beard (1972) and Willett (1973) of all subrings of
]Fg’XN which are fields.

COROLLARY.

Iff(x) =>4 bkxqs+kr is in standard form, then
Gr={diag(a, a®): o€ F;,}.
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THEOREM (Longobardi-Z. 202x).

All elements of Gy are simultaneously diagonalizable.

Proof. Use the complete description by Beard (1972) and Willett (1973) of all subrings of
]Fg’XN which are fields.

COROLLARY.

Iff(x) =>4 bkxqs+kr is in standard form, then
Gr={diag(a, a®): o€ F;,}.

@ If £(x) is in standard form, then Gf only depends on s and r, i.e. on the shape of
f().
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PropPosITION.

Vi,Va & Ly

Proof. The orbits in L \ {Vi, V2} under Gy are of size |G¢|/(q — 1), obtain a contradiction.

12 of 16



UNIVERSITA

Simultaneous diagonalization 1] mousmn

DI PADOVA

The elements of Gy are simultaneously diagonalizable ~ Fgn-basis v1, v, of Fé , eigenvectors
of any ¢ € Gy ~ for |G| > g — 1, two “transversal points” V; = (v1)]pq,,, Vy, = (VZ>]Fqn are
projectively defined by f.

O COr
V[ V2
PG(1,q") Ly

PropPosITION.

Vi,Va & Ly

Proof. The orbits in L \ {Vi, V2} under Gy are of size |G¢|/(q — 1), obtain a contradiction.

PropPosITION.

If f(x) is in standard form, then f(x) is nonsingular.

12 of 16



UNIVERSITA

Simultaneous diagonalization 118 musmn

DI PADOVA

The elements of Gy are simultaneously diagonalizable ~ Fgn-basis v1, v, of Fé , eigenvectors
of any ¢ € Gy ~ for |G| > g — 1, two “transversal points” V; = (v1)]pq,,, Vy, = (VZ>]Fqn are
projectively defined by f.

O COr
V[ V2
PG(1,q") Ly

PropPosITION.

Vi,Va & Ly

Proof. The orbits in L \ {Vi, V2} under Gy are of size |G¢|/(q — 1), obtain a contradiction.

PropPosITION.

If f(x) is in standard form, then f(x) is nonsingular.

OPEN PROBLEM.

Do V; and V; depend only on the linear set Lg?
12 of 16
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THEOREM (Longobardi-Z. 202x).

If |G¢| > g — 1, then f(x) is GL-equivalent to a scattered polynomial g(x) in standard form.
Such g(x) is essentially unique, i.e. the only polynomials in standard form which are
GL-equivalent to f(x) are

ag(bx) and ag™'(bx) for a, b € F},.
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THEOREM (Longobardi-Z. 202x).

If |G¢| > g — 1, then f(x) is GL-equivalent to a scattered polynomial g(x) in standard form.
Such g(x) is essentially unique, i.e. the only polynomials in standard form which are
GL-equivalent to f(x) are

ag(bx) and ag™'(bx) for a, b € F},.

ExAMPLE
For g =1 (mod 4), f(x) = x7 + x7 — x9' 4+ x7 € IF s [x] is scattered and GL-equivalent to

gx) = (1= p)x9 — x% + (14 p)x%
where p> = —1.
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An affine central collineation of an affine plane A fixes an affine line a (the axis) pointwise, as
well as all lines through a point C (the center) at infinity.

O

aN Lso is the co-center of the central collineation.

If A = Ay, f(x) scattered, then any affine central collineation & is of type
K:x v+ de(x), v e an,dEF;mtp € Gy.

[@ If |G¢| > q — 1, the center and the co-center are the transversal points of f.
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THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;
Longobardi-Z. 202x for the general case).

(i) If|G¢| = g — 1, then As admits no nontrivial central collineation.
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THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino
Longobardi-Z. 202x for the general case).

(i) If|G¢| = g — 1, then As admits no nontrivial central collineation.

(ii) If |G¢| > g — 1, then the central collineations fixing O are in two cyclic groups of
homologies of order (¢" — 1)/(q — 1). In this case the intersection of the full
collineation group with GL(2, ") is the direct product of one of those homology
groups for the kernel homology group of the associated Desarguesian plane (maps of
type (x,y) = (dx, dy), d € Fy).
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THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;
Longobardi-Z. 202x for the general case).

(i) If|G¢| = g — 1, then As admits no nontrivial central collineation.

(i) If |Gf| > g — 1, then the central collineations fixing O are in two cyclic groups of
homologies of order (¢" — 1)/(q — 1). In this case the intersection of the full
collineation group with GL(2, ") is the direct product of one of those homology
groups for the kernel homology group of the associated Desarguesian plane (maps of
type (x,y) = (dx, dy), d € Fy).

THEOREM (Jha-Johnson 2008 for the Lunardon-Polverino polynomials;

Longobardi-Z. 202x for the general case).

If £(x) is a scattered polynomial not GL-equivalent to a polynomial of pseudoregulus type,
then Ay is neither an André plane nor a generalized André plane.
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