The linear programming bounds for classical association schemes

Charlene Weiß
(joint work with Kai-Uwe Schmidt)

Department of Mathematics
Paderborn University
Germany

Basic coding-theoretic problem

A d-code Y is a set of binary n-tuples such that the Hamming distance between two distinct elements of Y is at least d.

Basic coding-theoretic problem

A d-code Y is a set of binary n-tuples such that the Hamming distance between two distinct elements of Y is at least d.

What is the maximal number $A(n, d)$ of elements in a d-code?

Basic coding-theoretic problem

A d-code Y is a set of binary n-tuples such that the Hamming distance between two distinct elements of Y is at least d.

What is the maximal number $A(n, d)$ of elements in a d-code?

Goal: Find lower and upper bounds for $A(n, d)$.

Basic coding-theoretic problem

A d-code Y is a set of binary n-tuples such that the Hamming distance between two distinct elements of Y is at least d.

What is the maximal number $A(n, d)$ of elements in a d-code?

Goal: Find lower and upper bounds for $A(n, d)$.
This problem goes back to the 1940s.

LP optimum

There exists a linear program (Delsarte, 1973):
"Find x that maximizes $c^{T} x$ subject to $A x \geq b$."

LP optimum

There exists a linear program (Delsarte, 1973):
"Find x that maximizes $c^{T} x$ subject to $A x \geq b$."
such that $A(n, d) \leq \mathrm{LP}$ optimum.

LP optimum

There exists a linear program (Delsarte, 1973):
"Find x that maximizes $c^{T} x$ subject to $A x \geq b$."
such that $A(n, d) \leq$ LP optimum.
The LP optimum can be computed numerically with an LP solver.

Asymptotic bounds for binary codes

Gilbert-Varshamov (1952) McEliece et al. (1977)

Asymptotic bounds for binary codes

Gilbert-Varshamov (1952) McEliece et al. (1977)

All upper bounds B satisfy LP optimum $\leq B$.

Asymptotic bounds for binary codes

Gilbert-Varshamov (1952)
McEliece et al. (1977)
All upper bounds B satisfy
LP optimum $\leq B$.

- Is the Gilbert-Varshamov bound asymptotically optimal?

Asymptotic bounds for binary codes

$\lim _{n \rightarrow \infty} \frac{\log _{2} A(n, d)}{n}$

Gilbert-Varshamov (1952) McEliece et al. (1977)

All upper bounds B satisfy
LP optimum $\leq B$.

- Is the Gilbert-Varshamov bound asymptotically optimal?
- Is the McEliece et al. bound asymptotically optimal?

Asymptotic bounds for binary codes

$\lim _{n \rightarrow \infty} \frac{\log _{2} A(n, d)}{n}$

Gilbert-Varshamov (1952) McEliece et al. (1977)

All upper bounds B satisfy LP optimum $\leq B$.

- Is the Gilbert-Varshamov bound asymptotically optimal?
- Is the McEliece et al. bound asymptotically optimal?
- Is the McEliece et al. bound the asymptotic LP optimum?

Asymptotic bounds for binary codes

$\lim _{n \rightarrow \infty} \frac{\log _{2} A(n, d)}{n}$

Gilbert-Varshamov (1952) McEliece et al. (1977)

All upper bounds B satisfy LP optimum $\leq B$.

- Is the Gilbert-Varshamov bound asymptotically optimal?
- Is the McEliece et al. bound asymptotically optimal?
- Is the McEliece et al. bound the asymptotic LP optimum?

Here: Codes in different classical association schemes.

Association schemes

Take a metric space (X, ρ) and define

$$
R_{i}=\{(x, y) \in X \times X: \rho(x, y)=i\}
$$

Association schemes

Take a metric space (X, ρ) and define

$$
R_{i}=\{(x, y) \in X \times X: \rho(x, y)=i\}
$$

If $R_{0}, R_{1}, \ldots, R_{n}$ fulfill certain conditions, then $\left(X,\left\{R_{i}\right\}\right)$ is an association scheme with n classes.

Association schemes

Take a metric space (X, ρ) and define

$$
R_{i}=\{(x, y) \in X \times X: \rho(x, y)=i\}
$$

If $R_{0}, R_{1}, \ldots, R_{n}$ fulfill certain conditions, then $\left(X,\left\{R_{i}\right\}\right)$ is an association scheme with n classes.

The adjacency matrices of the graphs $\left(X, R_{i}\right)$ are simultaneously diagonalizable.

Association schemes

Take a metric space (X, ρ) and define

$$
R_{i}=\{(x, y) \in X \times X: \rho(x, y)=i\}
$$

If $R_{0}, R_{1}, \ldots, R_{n}$ fulfill certain conditions, then $\left(X,\left\{R_{i}\right\}\right)$ is an association scheme with n classes.

The adjacency matrices of the graphs $\left(X, R_{i}\right)$ are simultaneously diagonalizable.

They have exactly $n+1$ maximal common eigenspaces

$$
V_{0}, V_{1}, \ldots, V_{n}
$$

Association schemes

Take a metric space (X, ρ) and define

$$
R_{i}=\{(x, y) \in X \times X: \rho(x, y)=i\}
$$

If $R_{0}, R_{1}, \ldots, R_{n}$ fulfill certain conditions, then $\left(X,\left\{R_{i}\right\}\right)$ is an association scheme with n classes.

The adjacency matrices of the graphs $\left(X, R_{i}\right)$ are simultaneously diagonalizable.

They have exactly $n+1$ maximal common eigenspaces

$$
V_{0}, V_{1}, \ldots, V_{n}
$$

Dual eigenvalues: $Q_{k}(i)$

Association schemes

Take a metric space (X, ρ) and define

$$
R_{i}=\{(x, y) \in X \times X: \rho(x, y)=i\}
$$

If $R_{0}, R_{1}, \ldots, R_{n}$ fulfill certain conditions, then $\left(X,\left\{R_{i}\right\}\right)$ is an association scheme with n classes.

The adjacency matrices of the graphs $\left(X, R_{i}\right)$ are simultaneously diagonalizable.

They have exactly $n+1$ maximal common eigenspaces

$$
V_{0}, V_{1}, \ldots, V_{n}
$$

Dual eigenvalues: $Q_{k}(i)$
(related to the eigenspace V_{k} and the relation R_{i})

Codes in association schemes

Inner distribution of a subset Y of $X: a=\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{T}$ with

$$
a_{i}=\frac{\#\{(x, y) \in Y \times Y: \rho(x, y)=i\}}{|Y|}
$$

Codes in association schemes

Inner distribution of a subset Y of $X: a=\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{T}$ with

$$
a_{i}=\frac{\#\{(x, y) \in Y \times Y: \rho(x, y)=i\}}{|Y|}
$$

A d-code Y in X satisfies $\rho(x, y) \geq d$ for all distinct $x, y \in Y$:

$$
a_{1}=a_{2}=\cdots=a_{d-1}=0
$$

Codes in association schemes

Inner distribution of a subset Y of $X: a=\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{T}$ with

$$
a_{i}=\frac{\#\{(x, y) \in Y \times Y: \rho(x, y)=i\}}{|Y|}
$$

A d-code Y in X satisfies $\rho(x, y) \geq d$ for all distinct $x, y \in Y$:

$$
a_{1}=a_{2}=\cdots=a_{d-1}=0
$$

All entries of $Q a$ are nonnegative and $\sum_{i=0}^{n} a_{i}=|Y|$.

Linear program (Delsarte, 1973)

Find $x_{0}, x_{1}, \ldots, x_{n}$ that maximize $x_{0}+x_{1}+\cdots+x_{n}$ subject to

$$
x_{0}=1, \quad x_{i} \geq 0, \quad Q x \geq 0, \quad x_{1}=x_{2}=\cdots=x_{d-1}=0
$$

Linear program (Delsarte, 1973)

Find $x_{0}, x_{1}, \ldots, x_{n}$ that maximize $x_{0}+x_{1}+\cdots+x_{n}$ subject to

$$
x_{0}=1, \quad x_{i} \geq 0, \quad Q x \geq 0, \quad x_{1}=x_{2}=\cdots=x_{d-1}=0
$$

The LP optimum $\operatorname{LP}(d)$ is the optimal value of the LP, that is, for all feasible solutions $\left(x_{i}\right)$ of the LP, we have

$$
\sum_{i=0}^{n} x_{i} \leq \operatorname{LP}(d)
$$

Linear program (Delsarte, 1973)

Find $x_{0}, x_{1}, \ldots, x_{n}$ that maximize $x_{0}+x_{1}+\cdots+x_{n}$ subject to

$$
x_{0}=1, \quad x_{i} \geq 0, \quad Q x \geq 0, \quad x_{1}=x_{2}=\cdots=x_{d-1}=0
$$

The LP optimum $\operatorname{LP}(d)$ is the optimal value of the LP, that is, for all feasible solutions $\left(x_{i}\right)$ of the LP, we have

$$
\sum_{i=0}^{n} x_{i} \leq \operatorname{LP}(d)
$$

Especially, $|Y| \leq \operatorname{LP}(d)$ for all d-codes Y.

Classical association schemes

Classical association schemes

Cubic type

Classical association schemes

Cubic type
Hamming scheme: classical codes, Hamming distance d_{H}.

Classical association schemes

Cubic type
Hamming scheme: classical codes, Hamming distance d_{H}.
Bilinear forms scheme $\operatorname{Bil}_{q}(m, n)$: rank-metric codes.

Classical association schemes

Cubic type
Hamming scheme: classical codes, Hamming distance d_{H}.
Bilinear forms scheme $\operatorname{Bil}_{q}(m, n)$: rank-metric codes.
Alternating forms scheme $\mathrm{Alt}_{q}(m)$: alternating rank-metric codes.

Classical association schemes

Cubic type
Hamming scheme: classical codes, Hamming distance d_{H}.
Bilinear forms scheme $\operatorname{Bil}_{q}(m, n)$: rank-metric codes.
Alternating forms scheme $\mathrm{Alt}_{q}(m)$: alternating rank-metric codes.
Hermitian forms scheme $\operatorname{Her}_{q}(n)$: Hermitian rank-metric codes.

Classical association schemes

Cubic type
Hamming scheme: classical codes, Hamming distance d_{H}.
Bilinear forms scheme $\operatorname{Bil}_{q}(m, n)$: rank-metric codes.
Alternating forms scheme $\mathrm{Alt}_{q}(m)$: alternating rank-metric codes.
Hermitian forms scheme $\operatorname{Her}_{q}(n)$: Hermitian rank-metric codes.
Together with $\rho(x, y)=\operatorname{rk}(x-y)\left(\right.$ or $\frac{1}{2} r \mathrm{k}(x-y)$ for $\left.\mathrm{Alt}_{q}(m)\right)$.

Classical association schemes

Cubic type
Hamming scheme: classical codes, Hamming distance d_{H}.
Bilinear forms scheme $\operatorname{Bil}_{q}(m, n)$: rank-metric codes.
Alternating forms scheme $\mathrm{Alt}_{q}(m)$: alternating rank-metric codes.
Hermitian forms scheme $\operatorname{Her}_{q}(n)$: Hermitian rank-metric codes.
Together with $\rho(x, y)=\operatorname{rk}(x-y)\left(\right.$ or $\frac{1}{2} r \mathrm{k}(x-y)$ for $\left.\mathrm{Alt}_{q}(m)\right)$.
Triangular type

Classical association schemes

Cubic type
Hamming scheme: classical codes, Hamming distance d_{H}.
Bilinear forms scheme $\operatorname{Bil}_{q}(m, n)$: rank-metric codes.
Alternating forms scheme $\mathrm{Alt}_{q}(m)$: alternating rank-metric codes.
Hermitian forms scheme $\operatorname{Her}_{q}(n)$: Hermitian rank-metric codes.
Together with $\rho(x, y)=\operatorname{rk}(x-y)\left(\right.$ or $\frac{1}{2} r \mathrm{k}(x-y)$ for $\left.\mathrm{Alt}_{q}(m)\right)$.
Triangular type
Johnson scheme: constant-weight codes, distance $\frac{1}{2} d_{H}$.

Classical association schemes

Cubic type
Hamming scheme: classical codes, Hamming distance d_{H}.
Bilinear forms scheme $\operatorname{Bil}_{q}(m, n)$: rank-metric codes.
Alternating forms scheme $\mathrm{Alt}_{q}(m)$: alternating rank-metric codes.
Hermitian forms scheme $\operatorname{Her}_{q}(n)$: Hermitian rank-metric codes.
Together with $\rho(x, y)=\operatorname{rk}(x-y)\left(\right.$ or $\frac{1}{2} r \mathrm{k}(x-y)$ for $\left.\mathrm{Alt}_{q}(m)\right)$.
Triangular type
Johnson scheme: constant-weight codes, distance $\frac{1}{2} d_{H}$.
q-Johnson scheme $J_{q}(n, m+n)$: constant-dimension codes.

Classical association schemes

Cubic type
Hamming scheme: classical codes, Hamming distance d_{H}.
Bilinear forms scheme $\operatorname{Bil}_{q}(m, n)$: rank-metric codes.
Alternating forms scheme $\mathrm{Alt}_{q}(m)$: alternating rank-metric codes.
Hermitian forms scheme $\operatorname{Her}_{q}(n)$: Hermitian rank-metric codes.
Together with $\rho(x, y)=\operatorname{rk}(x-y)\left(\right.$ or $\frac{1}{2} r \mathrm{k}(x-y)$ for $\left.\mathrm{Alt}_{q}(m)\right)$.
Triangular type
Johnson scheme: constant-weight codes, distance $\frac{1}{2} d_{H}$.
q-Johnson scheme $J_{q}(n, m+n)$: constant-dimension codes.
Polar space schemes: constant-dimension codes in polar spaces.

Classical association schemes

Cubic type
Hamming scheme: classical codes, Hamming distance d_{H}.
Bilinear forms scheme $\operatorname{Bil}_{q}(m, n)$: rank-metric codes.
Alternating forms scheme $\mathrm{Alt}_{q}(m)$: alternating rank-metric codes.
Hermitian forms scheme $\operatorname{Her}_{q}(n)$: Hermitian rank-metric codes.
Together with $\rho(x, y)=\mathrm{rk}(x-y)\left(\right.$ or $\frac{1}{2} \mathrm{rk}(x-y)$ for $\left.\mathrm{Alt}_{q}(m)\right)$.
Triangular type
Johnson scheme: constant-weight codes, distance $\frac{1}{2} d_{H}$.
q-Johnson scheme $J_{q}(n, m+n)$: constant-dimension codes.
Polar space schemes: constant-dimension codes in polar spaces.
Together with $\rho(x, y)=n-\operatorname{dim}(x \cap y)$.

Polar spaces

Take a finite vector space V over \mathbb{F}_{q} and a nondegenerate form f.

Polar spaces

Take a finite vector space V over \mathbb{F}_{q} and a nondegenerate form f.
A (finite classical) polar space consists of all totally isotropic subspaces of V.

Polar spaces

Take a finite vector space V over \mathbb{F}_{q} and a nondegenerate form f.
A (finite classical) polar space consists of all totally isotropic subspaces of V.

Example: $f: \mathbb{F}_{2}^{4} \rightarrow \mathbb{F}_{2}$ with $f(x)=x_{1} x_{3}+x_{2} x_{4}$.

Polar spaces

Take a finite vector space V over \mathbb{F}_{q} and a nondegenerate form f.
A (finite classical) polar space consists of all totally isotropic subspaces of V.

Example: $f: \mathbb{F}_{2}^{4} \rightarrow \mathbb{F}_{2}$ with $f(x)=x_{1} x_{3}+x_{2} x_{4}$.

Polar spaces

Take a finite vector space V over \mathbb{F}_{q} and a nondegenerate form f.
A (finite classical) polar space consists of all totally isotropic subspaces of V.

Example: $f: \mathbb{F}_{2}^{4} \rightarrow \mathbb{F}_{2}$ with $f(x)=x_{1} x_{3}+x_{2} x_{4}$.

The maximal subspaces have the same dimension, which is the rank of the polar space.

Polar spaces

Take a finite vector space V over \mathbb{F}_{q} and a nondegenerate form f.
A (finite classical) polar space consists of all totally isotropic subspaces of V.

Example: $f: \mathbb{F}_{2}^{4} \rightarrow \mathbb{F}_{2}$ with $f(x)=x_{1} x_{3}+x_{2} x_{4}$.

The maximal subspaces have the same dimension, which is the rank of the polar space.

Polar space schemes: X is the set of n-spaces in a polar space of rank n and $\rho(x, y)=n-\operatorname{dim}(x \cap y)$.

Six polar spaces

There are six polar spaces of rank n (up to isomorphism).

form	name	type
Hermitian	Hermitian	${ }^{2} A_{2 n-1}$
Hermitian	Hermitian	${ }^{2} A_{2 n}$
alternating	symplectic	C_{n}
quadratic	hyperbolic	D_{n}
quadratic	parabolic	B_{n}
quadratic	elliptic	${ }^{2} D_{n+1}$

Classical association schemes are Q-polynomial.

Q-polynomial: $Q_{k}(x)$ is a polynomial of degree k.

Classical association schemes are Q-polynomial.

Q-polynomial: $Q_{k}(x)$ is a polynomial of degree k.

$$
\begin{array}{cccc}
V_{0} & V_{1} & \cdots & V_{n} \\
Q_{0}(x) & Q_{1}(x) & \cdots & Q_{n}(x)
\end{array}
$$

Classical association schemes are Q-polynomial.

Q-polynomial: $Q_{k}(x)$ is a polynomial of degree k.

$$
\begin{array}{cccc}
V_{0} & V_{1} & \cdots & V_{n} \\
Q_{0}(x) & Q_{1}(x) & \cdots & Q_{n}(x)
\end{array}
$$

Hamming scheme
$\operatorname{Bil}_{q}(m, n), \operatorname{Alt}_{q}(m), \operatorname{Her}_{q}(n)$

Krawtchouk polynomials
affine q-Krawtchouk polynomials

Classical association schemes are Q-polynomial.

Q-polynomial: $Q_{k}(x)$ is a polynomial of degree k.

$$
\begin{array}{cccc}
V_{0} & V_{1} & \cdots & V_{n} \\
Q_{0}(x) & Q_{1}(x) & \cdots & Q_{n}(x)
\end{array}
$$

Hamming scheme
$\operatorname{Bil}_{q}(m, n), \operatorname{Alt}_{q}(m), \operatorname{Her}_{q}(n) \quad$ affine q-Krawtchouk polynomials
Johnson scheme
$J_{q}(n, m+n)$
Polar space schemes

Krawtchouk polynomials

Hahn polynomials
q-Hahn polynomials
q-Krawtchouk polynomials

Hermitian polar space ${ }^{2} A_{2 n-1}$

The association scheme of ${ }^{2} A_{2 n-1}$ has two orderings

$$
\begin{array}{lllllll}
1^{\text {st }} \text { ordering: } & V_{0} & V_{1} & \cdots & V_{n} & & \\
2^{\text {nd }} \text { ordering: } & V_{0} & V_{n} & V_{1} & V_{n-1} & V_{2} & V_{n-2}
\end{array} \cdots
$$

Hermitian polar space ${ }^{2} A_{2 n-1}$

The association scheme of ${ }^{2} A_{2 n-1}$ has two orderings

$$
\begin{array}{rllllll}
1^{\text {st }} \text { ordering: } & V_{0} & V_{1} & \cdots & V_{n} & & \\
2^{\text {nd }} \text { ordering: } & V_{0} & V_{n} & V_{1} & V_{n-1} & V_{2} & V_{n-2}
\end{array} \cdots
$$

$2^{\text {nd }}$ ordering: $Q_{k}(x)$ becomes a q-Hahn polynomial instead of a q-Krawtchouk polynomial.

Hyperbolic polar space D_{m}

Bipartite halves $\frac{1}{2} D_{m}$

Hyperbolic polar space D_{m}

Bipartite halves $\frac{1}{2} D_{m}$

Hyperbolic polar space D_{m}

bipartite halves $\frac{1}{2} D_{m}$ (Latins and Greeks)
$\frac{1}{2} D_{m}$ gives rise to an association scheme with $n=\lfloor m / 2\rfloor$ classes.

Bipartite halves $\frac{1}{2} D_{m}$

Hyperbolic polar space D_{m}

$\frac{1}{2} D_{m}$ gives rise to an association scheme with $n=\lfloor m / 2\rfloor$ classes.
Here, $Q_{k}(x)$ is also a q-Hahn polynomial.

Connection between the cubic and triangular type

$$
\begin{array}{ll}
\operatorname{Bil}_{q}(m, n), \operatorname{Alt}_{q}(m), \operatorname{Her}_{q}(n) & \text { affine } q \text {-Krawtchouk polynomial } \\
J_{q}(n, m+n), \frac{1}{2} D_{m},{ }^{2} A_{2 n-1} & q \text {-Hahn polynomial }
\end{array}
$$

Connection between the cubic and triangular type

$$
\begin{array}{ll}
\operatorname{Bil}_{q}(m, n), \operatorname{Alt}_{q}(m), \operatorname{Her}_{q}(n) & \text { affine } q \text {-Krawtchouk polynomial } \\
J_{q}(n, m+n), \frac{1}{2} D_{m},{ }^{2} A_{2 n-1} & q \text {-Hahn polynomial }
\end{array}
$$

$$
\operatorname{Bil}_{q}(m, n) \hookrightarrow J_{q}(n, m+n) \quad q \quad q^{m-n}
$$

Connection between the cubic and triangular type

$$
\begin{array}{ll}
\operatorname{Bil}_{q}(m, n), \operatorname{Alt}_{q}(m), \operatorname{Her}_{q}(n) & \text { affine } q \text {-Krawtchouk polynomial } \\
J_{q}(n, m+n), \frac{1}{2} D_{m},{ }^{2} A_{2 n-1} & q \text {-Hahn polynomial }
\end{array}
$$

$$
\begin{array}{rlrl}
\operatorname{Bil}_{q}(m, n) & q J_{q}(n, m+n) & q & q^{m-n} \\
\operatorname{Alt}_{q}(m) \hookrightarrow \frac{1}{2} D_{m} & q^{2} & 1 / q \text { or } q
\end{array}
$$

Connection between the cubic and triangular type

$$
\begin{array}{ll}
\operatorname{Bil}_{q}(m, n), \operatorname{Alt}_{q}(m), \operatorname{Her}_{q}(n) & \text { affine } q \text {-Krawtchouk polynomial } \\
J_{q}(n, m+n), \frac{1}{2} D_{m},{ }^{2} A_{2 n-1} & q \text {-Hahn polynomial }
\end{array}
$$

Embedding

C

$$
\begin{array}{rlrc}
\operatorname{BiI}_{q}(m, n) & \hookrightarrow J_{q}(n, m+n) & q & q^{m-n} \\
\operatorname{Alt}_{q}(m) & \hookrightarrow \frac{1}{2} D_{m} & q^{2} & 1 / q \text { or } q \\
\operatorname{Her}_{q}(n) & \hookrightarrow{ }^{2} A_{2 n-1} & -q & -1
\end{array}
$$

Known results

Cubic type: Singleton bound $|Y| \leq\left(c b^{n}\right)^{n-d+1}$

Known results

Cubic type: Singleton bound $|Y| \leq\left(c b^{n}\right)^{n-d+1}$

- $\operatorname{Bil}_{q}(m, n)$, sharp for all parameters (Delsarte, 1978)

Known results

Cubic type: Singleton bound $|Y| \leq\left(c b^{n}\right)^{n-d+1}$

- $\operatorname{Bil}_{q}(m, n)$, sharp for all parameters (Delsarte, 1978)
- $\mathrm{Alt}_{q}(m)$, sharp except possibly for even m and odd q (Delsarte, Goethals, 1975)

Known results

Cubic type: Singleton bound $|Y| \leq\left(c b^{n}\right)^{n-d+1}$

- $\operatorname{Bil}_{q}(m, n)$, sharp for all parameters (Delsarte, 1978)
- $\mathrm{Alt}_{q}(m)$, sharp except possibly for even m and odd q (Delsarte, Goethals, 1975)
- $\operatorname{Her}_{q}(n)$ for odd d, sharp for all parameters (Schmidt, 2018)

Known results

Cubic type: Singleton bound $|Y| \leq\left(c b^{n}\right)^{n-d+1}$

- $\operatorname{Bil}_{q}(m, n)$, sharp for all parameters (Delsarte, 1978)
- $\mathrm{Alt}_{q}(m)$, sharp except possibly for even m and odd q (Delsarte, Goethals, 1975)
- $\operatorname{Her}_{q}(n)$ for odd d, sharp for all parameters (Schmidt, 2018)

Triangular Type: Anticode bound $|Y| \leq \frac{\left[\begin{array}{c}m+n \\ n-d+1\end{array}\right]_{q}}{\left[\begin{array}{l}n \\ n-d+1\end{array}\right]_{q}}$ for $J_{q}(n, m+n)$.

Known results

Cubic type: Singleton bound $|Y| \leq\left(c b^{n}\right)^{n-d+1}$

- $\operatorname{Bil}_{q}(m, n)$, sharp for all parameters (Delsarte, 1978)
- $\mathrm{Alt}_{q}(m)$, sharp except possibly for even m and odd q (Delsarte, Goethals, 1975)
- $\operatorname{Her}_{q}(n)$ for odd d, sharp for all parameters (Schmidt, 2018)

Triangular Type: Anticode bound $|Y| \leq \frac{\left[\begin{array}{c}m+n \\ n-d+1\end{array}\right]_{q}}{\left[\begin{array}{c}n \\ n-d+1\end{array}\right]_{q}}$ for $J_{q}(n, m+n)$.
This bound is sharp up to a constant factor (Silva, Kschischang, Kötter, 2008).

The LP optimum

Theorem (Schmidt, W., 2022)
Triangular types $J_{q}(n, m+n), \frac{1}{2} D_{m},{ }^{2} A_{2 n-1}$ (with odd d for ${ }^{2} A_{2 n-1}$)

The LP optimum

Theorem (Schmidt, W., 2022)
Triangular types $J_{q}(n, m+n), \frac{1}{2} D_{m},{ }^{2} A_{2 n-1}$ (with odd d for ${ }^{2} A_{2 n-1}$)

$$
\operatorname{LP}(d)=|X| \prod_{\ell=0}^{d-2} \frac{q b^{\ell}-1}{q c b^{n+\ell}-1}
$$

The LP optimum

Theorem (Schmidt, W., 2022)
Triangular types $J_{q}(n, m+n), \frac{1}{2} D_{m},{ }^{2} A_{2 n-1}$ (with odd d for ${ }^{2} A_{2 n-1}$)

$$
\operatorname{LP}(d)=|X| \prod_{\ell=0}^{d-2} \frac{q b^{\ell}-1}{q c b^{n+\ell}-1}
$$

Cubic types $\operatorname{Bil}_{q}(m, n), \operatorname{Alt}_{q}(m), \operatorname{Her}_{q}(n)\left(\right.$ with odd d for $\left.\operatorname{Her}_{q}(n)\right)$

The LP optimum

Theorem (Schmidt, W., 2022)
Triangular types $J_{q}(n, m+n), \frac{1}{2} D_{m},{ }^{2} A_{2 n-1}$ (with odd d for ${ }^{2} A_{2 n-1}$)

$$
\operatorname{LP}(d)=|X| \prod_{\ell=0}^{d-2} \frac{q b^{\ell}-1}{q c b^{n+\ell}-1}
$$

Cubic types $\operatorname{Bil}_{q}(m, n), \operatorname{Alt}_{q}(m), \operatorname{Her}_{q}(n)$ (with odd d for $\operatorname{Her}_{q}(n)$)

$$
\operatorname{LP}(d)=|X| \prod_{\ell=0}^{d-2} \frac{q b^{\ell}}{q c b^{n+\ell}}
$$

The LP optimum

Theorem (Schmidt, W., 2022)
Triangular types $J_{q}(n, m+n), \frac{1}{2} D_{m},{ }^{2} A_{2 n-1}$ (with odd d for ${ }^{2} A_{2 n-1}$)

$$
\operatorname{LP}(d)=|X| \prod_{\ell=0}^{d-2} \frac{q b^{\ell}-1}{q c b^{n+\ell}-1}
$$

Cubic types $\operatorname{Bil}_{q}(m, n), \operatorname{Alt}_{q}(m), \operatorname{Her}_{q}(n)$ (with odd d for $\operatorname{Her}_{q}(n)$)

$$
\operatorname{LP}(d)=|X| \prod_{\ell=0}^{d-2} \frac{q b^{\ell}}{q c b^{n+\ell}}=\left(c b^{n}\right)^{n-d+1}
$$

The LP optimum

Theorem (Schmidt, W., 2022)
Triangular types $J_{q}(n, m+n), \frac{1}{2} D_{m},{ }^{2} A_{2 n-1}$ (with odd d for ${ }^{2} A_{2 n-1}$)

$$
\operatorname{LP}(d)=|X| \prod_{\ell=0}^{d-2} \frac{q b^{\ell}-1}{q c b^{n+\ell}-1}
$$

Cubic types $\operatorname{Bil}_{q}(m, n), \operatorname{Alt}_{q}(m), \operatorname{Her}_{q}(n)$ (with odd d for $\operatorname{Her}_{q}(n)$)

$$
\operatorname{LP}(d)=|X| \prod_{\ell=0}^{d-2} \frac{q b^{\ell}}{q c b^{n+\ell}}=\left(c b^{n}\right)^{n-d+1}
$$

Corollary (Schmidt, W., 2022)
The anticode bound in $J_{q}(n, m+n)$ is the LP optimum.

Other results

We also obtained the LP optimum for

Other results

We also obtained the LP optimum for

- the Hermitian matrices $\operatorname{Her}_{q}(n)$ with even d

Other results

We also obtained the LP optimum for

- the Hermitian matrices $\operatorname{Her}_{q}(n)$ with even d
- the Hermitian polar space ${ }^{2} A_{2 n-1}$ with even d

Other results

We also obtained the LP optimum for

- the Hermitian matrices $\operatorname{Her}_{q}(n)$ with even d
- the Hermitian polar space ${ }^{2} A_{2 n-1}$ with even d
- the parabolic and symplectic polar spaces B_{n} and C_{n} with odd d.

Other results

We also obtained the LP optimum for

- the Hermitian matrices $\operatorname{Her}_{q}(n)$ with even d
- the Hermitian polar space ${ }^{2} A_{2 n-1}$ with even d
- the parabolic and symplectic polar spaces B_{n} and C_{n} with odd d.

Moreover, we gave upper bounds in all the remaining polar spaces.

Other results

We also obtained the LP optimum for

- the Hermitian matrices $\operatorname{Her}_{q}(n)$ with even d
- the Hermitian polar space ${ }^{2} A_{2 n-1}$ with even d
- the parabolic and symplectic polar spaces B_{n} and C_{n} with odd d.

Moreover, we gave upper bounds in all the remaining polar spaces.
Theorem (Schmidt, W., 2022)
The bounds are sharp up to a constant factor for

Other results

We also obtained the LP optimum for

- the Hermitian matrices $\operatorname{Her}_{q}(n)$ with even d
- the Hermitian polar space ${ }^{2} A_{2 n-1}$ with even d
- the parabolic and symplectic polar spaces B_{n} and C_{n} with odd d.

Moreover, we gave upper bounds in all the remaining polar spaces.
Theorem (Schmidt, W., 2022)
The bounds are sharp up to a constant factor for

- ${ }^{2} A_{2 n-1}$ for odd d

Other results

We also obtained the LP optimum for

- the Hermitian matrices $\operatorname{Her}_{q}(n)$ with even d
- the Hermitian polar space ${ }^{2} A_{2 n-1}$ with even d
- the parabolic and symplectic polar spaces B_{n} and C_{n} with odd d.

Moreover, we gave upper bounds in all the remaining polar spaces.
Theorem (Schmidt, W., 2022)
The bounds are sharp up to a constant factor for

- ${ }^{2} A_{2 n-1}$ for odd d
- hyperbolic polar space D_{n} except possibly for even n and odd q

Other results

We also obtained the LP optimum for

- the Hermitian matrices $\operatorname{Her}_{q}(n)$ with even d
- the Hermitian polar space ${ }^{2} A_{2 n-1}$ with even d
- the parabolic and symplectic polar spaces B_{n} and C_{n} with odd d.

Moreover, we gave upper bounds in all the remaining polar spaces.
Theorem (Schmidt, W., 2022)
The bounds are sharp up to a constant factor for

- ${ }^{2} A_{2 n-1}$ for odd d
- hyperbolic polar space D_{n} except possibly for even n and odd q
- symplectic polar space C_{n} for odd d

Other results

We also obtained the LP optimum for

- the Hermitian matrices $\operatorname{Her}_{q}(n)$ with even d
- the Hermitian polar space ${ }^{2} A_{2 n-1}$ with even d
- the parabolic and symplectic polar spaces B_{n} and C_{n} with odd d.

Moreover, we gave upper bounds in all the remaining polar spaces.

Theorem (Schmidt, W., 2022)

The bounds are sharp up to a constant factor for

- ${ }^{2} A_{2 n-1}$ for odd d
- hyperbolic polar space D_{n} except possibly for even n and odd q
- symplectic polar space C_{n} for odd d
- parabolic polar space B_{n} for odd d and even q.

Steiner systems

The anticode bound in $J_{q}(n, m+n)$ is reached by a d-code Y if and only if Y is an $(n-d+1)$-Steiner system over \mathbb{F}_{q}.

Steiner systems

The anticode bound in $J_{q}(n, m+n)$ is reached by a d-code Y if and only if Y is an $(n-d+1)$-Steiner system over \mathbb{F}_{q}.

A t-Steiner system over \mathbb{F}_{q} is a collection Y of n-spaces in \mathbb{F}_{q}^{v} such that each t-space in \mathbb{F}_{q}^{v} is contained in exactly one member of Y.

Steiner systems

The anticode bound in $J_{q}(n, m+n)$ is reached by a d-code Y if and only if Y is an $(n-d+1)$-Steiner system over \mathbb{F}_{q}.

A t-Steiner system over \mathbb{F}_{q} is a collection Y of n-spaces in \mathbb{F}_{q}^{v} such that each t-space in \mathbb{F}_{q}^{v} is contained in exactly one member of Y.

Existence? Nontrivial examples only known for $(t, n, v)=(2,3,13)$ and $q=2$ (Braun, Etzion, Östergård, Vardy, Wassermann, 2016).

Steiner systems in polar spaces

A t-Steiner system in a polar space \mathcal{P} of rank n is a collection Y of n-spaces in \mathcal{P} such that each t-space of \mathcal{P} lies in exactly one member of Y.

Steiner systems in polar spaces

A t-Steiner system in a polar space \mathcal{P} of rank n is a collection Y of n-spaces in \mathcal{P} such that each t-space of \mathcal{P} lies in exactly one member of Y.

Example

- n-Steiner systems contain all n-spaces.

Steiner systems in polar spaces

A t-Steiner system in a polar space \mathcal{P} of rank n is a collection Y of n-spaces in \mathcal{P} such that each t-space of \mathcal{P} lies in exactly one member of Y.

Example

- n-Steiner systems contain all n-spaces.
- 1-Steiner systems in D_{2} :

Steiner systems in polar spaces

A t-Steiner system in a polar space \mathcal{P} of rank n is a collection Y of n-spaces in \mathcal{P} such that each t-space of \mathcal{P} lies in exactly one member of Y.

Example

- n-Steiner systems contain all n-spaces.
- 1-Steiner systems in D_{2} :

- $(n-1)$-Steiner systems always exist in D_{n} : bipartite halves $\frac{1}{2} D_{n}$.

Steiner systems in polar spaces

A t-Steiner system in a polar space \mathcal{P} of rank n is a collection Y of n-spaces in \mathcal{P} such that each t-space of \mathcal{P} lies in exactly one member of Y.

Example

- n-Steiner systems contain all n-spaces.
- 1-Steiner systems in D_{2} :

- $(n-1)$-Steiner systems always exist in D_{n} : bipartite halves $\frac{1}{2} D_{n}$.
- 1-Steiner systems are spreads in polar spaces.

Existence results

Spreads have been studied since the 1960s.

Existence results

Spreads have been studied since the 1960s.
They always exist in C_{n}, but never in ${ }^{2} A_{2 n-1}$.

Existence results

Spreads have been studied since the 1960s.
They always exist in C_{n}, but never in ${ }^{2} A_{2 n-1}$.
Open cases:

- ${ }^{2} A_{2 n}$ except for ${ }^{2} A_{4}$ with $q=2$
- ${ }^{2} D_{n+1}$ with $n>2$, odd q
- $D_{2 n}$ with $n>2$, odd q

Existence results

Spreads have been studied since the 1960s.
They always exist in C_{n}, but never in ${ }^{2} A_{2 n-1}$.
Open cases:

- ${ }^{2} A_{2 n}$ except for ${ }^{2} A_{4}$ with $q=2$
- ${ }^{2} D_{n+1}$ with $n>2$, odd q
- $D_{2 n}$ with $n>2$, odd q
- ...

There are no t-Steiner systems in polar spaces of rank n if $(n, t)=(4,2)$ or $(n, t)=(5,3)$ (Cossidente, Marino, Pavese, Smaldore, 2022).

Existence results

Spreads have been studied since the 1960s.
They always exist in C_{n}, but never in ${ }^{2} A_{2 n-1}$.
Open cases:

- ${ }^{2} A_{2 n}$ except for ${ }^{2} A_{4}$ with $q=2$
- ${ }^{2} D_{n+1}$ with $n>2$, odd q
- $D_{2 n}$ with $n>2$, odd q
- ...

There are no t-Steiner systems in polar spaces of rank n if $(n, t)=(4,2)$ or $(n, t)=(5,3)$ (Cossidente, Marino, Pavese, Smaldore, 2022).

Except for $\frac{1}{2} D_{n}$ and spreads in some polar spaces, no other nontrivial Steiner systems are known.

Classification of Steiner systems

Theorem (Schmidt, W., 2022)
Suppose that a polar space \mathcal{P} of rank n contains a t-Steiner system with $1<t<n$. Then, one of the following holds:

Classification of Steiner systems

Theorem (Schmidt, W., 2022)
Suppose that a polar space \mathcal{P} of rank n contains a t-Steiner system with $1<t<n$. Then, one of the following holds:
(1) $t=n-1$ and $\mathcal{P}=D_{n}$

Classification of Steiner systems

Theorem (Schmidt, W., 2022)

Suppose that a polar space \mathcal{P} of rank n contains a t-Steiner system with $1<t<n$. Then, one of the following holds:
(1) $t=n-1$ and $\mathcal{P}=D_{n}$
(2) $t=n-1$ and $\mathcal{P}={ }^{2} A_{2 n}$ or ${ }^{2} D_{n+1}$ for $q \geq 3$

Classification of Steiner systems

Theorem (Schmidt, W., 2022)

Suppose that a polar space \mathcal{P} of rank n contains a t-Steiner system with $1<t<n$. Then, one of the following holds:
(1) $t=n-1$ and $\mathcal{P}=D_{n}$
(2) $t=n-1$ and $\mathcal{P}={ }^{2} A_{2 n}$ or ${ }^{2} D_{n+1}$ for $q \geq 3$
(3) $t=2$ and $\mathcal{P}={ }^{2} A_{2 n}$ or ${ }^{2} D_{n+1}$ for odd n

Classification of Steiner systems

Theorem (Schmidt, W., 2022)

Suppose that a polar space \mathcal{P} of rank n contains a t-Steiner system with $1<t<n$. Then, one of the following holds:
(1) $t=n-1$ and $\mathcal{P}=D_{n}$
(2) $t=n-1$ and $\mathcal{P}={ }^{2} A_{2 n}$ or ${ }^{2} D_{n+1}$ for $q \geq 3$
(3) $t=2$ and $\mathcal{P}={ }^{2} A_{2 n}$ or ${ }^{2} D_{n+1}$ for odd n

Proof: Steiner systems are codes, whose sizes are larger than our bounds in most cases.

Classification of Steiner systems

Theorem (Schmidt, W., 2022)

Suppose that a polar space \mathcal{P} of rank n contains a t-Steiner system with $1<t<n$. Then, one of the following holds:
(1) $t=n-1$ and $\mathcal{P}=D_{n}$
(2) $t=n-1$ and $\mathcal{P}={ }^{2} A_{2 n}$ or ${ }^{2} D_{n+1}$ for $q \geq 3$
(3) $t=2$ and $\mathcal{P}={ }^{2} A_{2 n}$ or ${ }^{2} D_{n+1}$ for odd n

Proof: Steiner systems are codes, whose sizes are larger than our bounds in most cases.

Conjecture

$\frac{1}{2} D_{n}$ are the only nontrivial t-Steiner systems with $t>1$.

