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Basic coding-theoretic problem

A d-code Y is a set of binary n-tuples such that the Hamming

distance between two distinct elements of Y is at least d .

What is the maximal number A(n, d) of elements in a d-code?

Goal: Find lower and upper bounds for A(n, d).

This problem goes back to the 1940s.
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LP optimum

There exists a linear program (Delsarte, 1973):

“Find x that maximizes cT x subject to Ax ≥ b.”

such that A(n, d) ≤ LP optimum.

The LP optimum can be computed numerically with an LP solver.
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Asymptotic bounds for binary codes

0.3 0.35 0.4 0.45 0.5
0
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0.6
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n

lim
n→∞

log2 A(n,d)
n

Gilbert-Varshamov (1952)

McEliece et al. (1977)

All upper bounds B satisfy

LP optimum ≤ B.

• Is the Gilbert-Varshamov bound asymptotically optimal?

• Is the McEliece et al. bound asymptotically optimal?

• Is the McEliece et al. bound the asymptotic LP optimum?

Here: Codes in different classical association schemes.
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Association schemes

Take a metric space (X , ρ) and define

Ri = {(x , y) ∈ X × X : ρ(x , y) = i}.

If R0,R1, . . . ,Rn fulfill certain conditions, then (X , {Ri}) is an

association scheme with n classes.

The adjacency matrices of the graphs (X ,Ri ) are simultaneously

diagonalizable.

They have exactly n + 1 maximal common eigenspaces

V0,V1, . . . ,Vn.

Dual eigenvalues: Qk(i)

(related to the eigenspace Vk and the relation Ri )
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Codes in association schemes

Inner distribution of a subset Y of X : a = (a0, a1, . . . , an)T with

ai =
#{(x , y) ∈ Y × Y : ρ(x , y) = i}

|Y |

A d-code Y in X satisfies ρ(x , y) ≥ d for all distinct x , y ∈ Y :

a1 = a2 = · · · = ad−1 = 0.

All entries of Qa are nonnegative and
n∑

i=0
ai = |Y |.
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Linear program (Delsarte, 1973)

Find x0, x1, . . . , xn that maximize x0 + x1 + · · ·+ xn subject to

x0 = 1, xi ≥ 0, Qx ≥ 0, x1 = x2 = · · · = xd−1 = 0.

The LP optimum LP(d) is the optimal value of the LP, that is, for

all feasible solutions (xi ) of the LP, we have

n∑
i=0

xi ≤ LP(d).

Especially, |Y | ≤ LP(d) for all d-codes Y .
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Classical association schemes

Cubic type

Hamming scheme: classical codes, Hamming distance dH .

Bilinear forms scheme Bilq(m, n): rank-metric codes.

Alternating forms scheme Altq(m): alternating rank-metric codes.

Hermitian forms scheme Herq(n): Hermitian rank-metric codes.

Together with ρ(x , y) = rk(x − y) (or 1
2 rk(x − y) for Altq(m)).

Triangular type

Johnson scheme: constant-weight codes, distance 1
2dH .

q-Johnson scheme Jq(n,m + n): constant-dimension codes.

Polar space schemes: constant-dimension codes in polar spaces.

Together with ρ(x , y) = n − dim(x ∩ y).
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Polar spaces

Take a finite vector space V over Fq and a nondegenerate form f .

A (finite classical) polar space consists of all totally isotropic

subspaces of V .

Example: f : F4
2 → F2 with f (x) = x1x3 + x2x4.

The maximal subspaces have the same

dimension, which is the rank of the

polar space.

Polar space schemes: X is the set of n-spaces in a polar space of

rank n and ρ(x , y) = n − dim(x ∩ y).
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Six polar spaces

There are six polar spaces of rank n (up to isomorphism).

form name type

Hermitian Hermitian 2A2n−1

Hermitian Hermitian 2A2n

alternating symplectic Cn

quadratic hyperbolic Dn

quadratic parabolic Bn

quadratic elliptic 2Dn+1

9



Classical association schemes are Q-polynomial.

Q-polynomial: Qk(x) is a polynomial of degree k .

V0 V1 · · · Vn

Q0(x) Q1(x) · · · Qn(x)

Hamming scheme Krawtchouk polynomials

Bilq(m, n), Altq(m), Herq(n) affine q-Krawtchouk polynomials

Johnson scheme Hahn polynomials

Jq(n,m + n) q-Hahn polynomials

Polar space schemes q-Krawtchouk polynomials
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Hermitian polar space 2A2n−1

The association scheme of 2A2n−1 has two orderings

1st ordering: V0 V1 · · · Vn

2nd ordering: V0 Vn V1 Vn−1 V2 Vn−2 · · ·

2nd ordering: Qk(x) becomes a q-Hahn polynomial instead of a

q-Krawtchouk polynomial.
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Bipartite halves 1
2
Dm

Hyperbolic polar space Dm

= ∪

bipartite halves 1
2Dm (Latins and Greeks)

1
2Dm gives rise to an association scheme with n = bm/2c classes.

Here, Qk(x) is also a q-Hahn polynomial.
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Connection between the cubic and triangular type

Bilq(m, n), Altq(m), Herq(n) affine q-Krawtchouk polynomial

Jq(n,m + n), 1
2Dm, 2A2n−1 q-Hahn polynomial

Embedding b c

Bilq(m, n) ↪→ Jq(n,m + n) q qm−n

Altq(m) ↪→ 1
2Dm q2 1/q or q

Herq(n) ↪→ 2A2n−1 −q −1
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Known results

Cubic type: Singleton bound |Y | ≤ (cbn)n−d+1

• Bilq(m, n), sharp for all parameters (Delsarte, 1978)

• Altq(m), sharp except possibly for even m and odd q

(Delsarte, Goethals, 1975)

• Herq(n) for odd d , sharp for all parameters (Schmidt, 2018)

Triangular Type: Anticode bound |Y | ≤
[ m+n
n−d+1]q

[ n
n−d+1]q

for Jq(n,m + n).

This bound is sharp up to a constant factor (Silva, Kschischang,

Kötter, 2008).
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The LP optimum

Theorem (Schmidt, W., 2022)

Triangular types Jq(n,m + n), 1
2Dm, 2A2n−1 (with odd d for 2A2n−1)

LP(d) = |X |
d−2∏
`=0

qb` − 1

qcbn+` − 1

Cubic types Bilq(m, n), Altq(m), Herq(n) (with odd d for Herq(n))

LP(d) = |X |
d−2∏
`=0

qb`

qcbn+`
= (cbn)n−d+1

Corollary (Schmidt, W., 2022)

The anticode bound in Jq(n,m + n) is the LP optimum.
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Other results

We also obtained the LP optimum for

• the Hermitian matrices Herq(n) with even d

• the Hermitian polar space 2A2n−1 with even d

• the parabolic and symplectic polar spaces Bn and Cn with odd d .

Moreover, we gave upper bounds in all the remaining polar spaces.

Theorem (Schmidt, W., 2022)

The bounds are sharp up to a constant factor for

• 2A2n−1 for odd d

• hyperbolic polar space Dn except possibly for even n and odd q

• symplectic polar space Cn for odd d

• parabolic polar space Bn for odd d and even q.
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Steiner systems

The anticode bound in Jq(n,m + n) is reached by a d-code Y if

and only if Y is an (n − d + 1)-Steiner system over Fq.

A t-Steiner system over Fq is a collection Y of n-spaces in Fv
q such

that each t-space in Fv
q is contained in exactly one member of Y .

Existence? Nontrivial examples only known for (t, n, v) = (2, 3, 13)

and q = 2 (Braun, Etzion, Österg̊ard, Vardy, Wassermann, 2016).
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and q = 2 (Braun, Etzion, Österg̊ard, Vardy, Wassermann, 2016).

17



Steiner systems

The anticode bound in Jq(n,m + n) is reached by a d-code Y if

and only if Y is an (n − d + 1)-Steiner system over Fq.

A t-Steiner system over Fq is a collection Y of n-spaces in Fv
q such

that each t-space in Fv
q is contained in exactly one member of Y .

Existence? Nontrivial examples only known for (t, n, v) = (2, 3, 13)
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Steiner systems in polar spaces

A t-Steiner system in a polar space P of rank n is a collection Y

of n-spaces in P such that each t-space of P lies in exactly one

member of Y .

Example

• n-Steiner systems contain all n-spaces.

• 1-Steiner systems in D2:

= ∪

• (n − 1)-Steiner systems always exist in Dn: bipartite halves 1
2Dn.

• 1-Steiner systems are spreads in polar spaces.
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Existence results

Spreads have been studied since the 1960s.

They always exist in Cn, but never in 2A2n−1.

Open cases:

• 2A2n except for 2A4 with q = 2

• 2Dn+1 with n > 2, odd q

• D2n with n > 2, odd q

• . . .

There are no t-Steiner systems in polar spaces of rank n if

(n, t) = (4, 2) or (n, t) = (5, 3) (Cossidente, Marino, Pavese,

Smaldore, 2022).

Except for 1
2Dn and spreads in some polar spaces, no other

nontrivial Steiner systems are known.
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Classification of Steiner systems

Theorem (Schmidt, W., 2022)

Suppose that a polar space P of rank n contains a t-Steiner system

with 1 < t < n. Then, one of the following holds:

(1) t = n − 1 and P = Dn

(2) t = n − 1 and P = 2A2n or 2Dn+1 for q ≥ 3

(3) t = 2 and P = 2A2n or 2Dn+1 for odd n

Proof: Steiner systems are codes, whose sizes are larger than our

bounds in most cases.

Conjecture
1
2Dn are the only nontrivial t-Steiner systems with t > 1.
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