Renitent lines

Peter Sziklai*, joint work with B. Csajbók and Zs. Weiner

*ELTE, Institute of Mathematics, Department of Computer Science ELKH-ELTE Geometric and Algebraic Combinatorics Research Group

Irsee
29 August, 2022
$\mathbb{F}_{q}, \operatorname{char}=p, \operatorname{AG}(2, q), \operatorname{PG}(2, q)$
\mathcal{T} : a point set of $\mathrm{AG}(2, q)$ might be multiset
geometric structure: intersection (numbers) with lines
regularity: when all the lines of a parallel class intersect in the same number of points (possibly mod p)

REGULARITY: this holds for many directions
examples:

- graph of a function, from (∞)
- an additive pointset (subspace over a subfield)
- $q=2^{h}$: a hyperoval in $\operatorname{AG}(2, q)$, a maximal (k, n)-arc
- a KM-arc
almost regularity: almost all lines of a parallel class intersect in the same number of points (possibly $\bmod p$)
renitent lines: intersect not the typical way
ALMOST REGULARITY: this holds for many dir's (not necessarily the same way from every dir)

examples:
- $q=2^{h}$: a $(q+1)$-arc in $\operatorname{AG}(2, q)$: one renitent line from each direction

Question(s)

Is it true, that if \mathcal{T} is almost regular, then it has a hidden structure, i.e. the non-regular intersections may be "corrected"?
Or at least they also possess some regularity themselves?
Is there a structure in the set of renitent lines?
This resembles Segre's theorem: let \mathcal{K} be a $(q+2-t)$-arc in $\operatorname{PG}(2, q)$ "typical intersections": 0 or 2. Not typical lines: tangents
Segre: not typical lines are contained in a dual curve of low degree $(\leq 2 t)$ (just motivation, not the same situation as there are two types of "typical intersections" if q is odd)
structure of a set of lines: contained in a dual curve of low degree (algebraic envelope, class)

Lemma (Lemma of renitent lines (Csajbók, Weiner))
Let \mathcal{T} be a point set of $\operatorname{AG}(2, q)$. A line ℓ with slope d is called renitent if there exists an integer m_{d} such that $|\ell \cap \mathcal{T}| \not \equiv m_{d}(\bmod p)$ but every other line with slope d meets \mathcal{T} in m_{d} modulo p points. Then the renitent lines are concurrent.

Lemma (Lemma of renitent lines (Csajbók, Weiner))
Let \mathcal{T} be a point set of $\operatorname{AG}(2, q)$. A line ℓ with slope d is called renitent if there exists an integer m_{d} such that $|\ell \cap \mathcal{T}| \not \equiv m_{d}(\bmod p)$ but every other line with slope d meets \mathcal{T} in m_{d} modulo p points. Then the renitent lines are concurrent.

Now we define renitent lines in the following, more general setting and then prove various generalizations of the lemma above.

Definition

Let \mathcal{M} be a multiset of $\operatorname{AG}(2, q)$. For some $\lambda \leq(q-1) / 2$, a direction (d) is $(q-\lambda)$-uniform if there are at least $(q-\lambda)$ affine lines with slope d meeting \mathcal{M} in the same number of points mod p. This number will be called the typical intersection number at (d). The rest of the lines with direction (d) will be called renitent.
A sharply $(q-\lambda)$-uniform direction (d) is a direction incident with exactly $(q-\lambda)$ affine lines meeting \mathcal{M} in the same number of points modulo p.

Different directions might have different typical intersection numbers. Uniquely determined for each $(q-\lambda)$-uniform direction because $\lambda \leq(q-1) / 2$.

The basic case

Theorem (Cs-Sz-W)

Take a multiset \mathcal{T} of $\mathrm{AG}(2, q)$ and let \mathcal{E}_{λ} denote a set of at most q directions which are $(q-\lambda)$-uniform, with typical intersection numbers $m_{d}(\bmod p)$ for each $(d) \in \mathcal{E}_{\lambda}$, such that the following hold:
(i) $0<\lambda \leq \min \{q-2, p-1\}$,
(ii) for each $(d) \in \mathcal{E}_{\lambda}$ the renitent lines meet \mathcal{T} in the same number, say t_{d}, of points modulo p,
(iii) for each $(d) \in \mathcal{E}_{\lambda} \quad t_{d}-m_{d}$ mod p does not depend on the choice of (d).

Then the renitent lines with direction in \mathcal{E}_{λ} are contained in a dual curve of degree λ.
Note: $\min \left\{\left|\mathcal{E}_{\lambda}\right|, \lambda\right\} \leq \min \operatorname{deg} \leq\left\lceil\sqrt{2 \cdot\left|\mathcal{E}_{\lambda}\right| \cdot \lambda}\right\rceil-1$

Proof

First we show that the number of renitent lines is the same at each direction (d) of \mathcal{E}_{λ}. Let (d) and (e) denote two directions in \mathcal{E}_{λ} which are sharply $\left(q-\lambda_{d}\right)$-uniform and sharply $\left(q-\lambda_{e}\right)$-uniform, respectively. Then

$$
\left(q-\lambda_{d}\right) m_{d}+\lambda_{d} t_{d} \equiv|\mathcal{T}| \equiv\left(q-\lambda_{e}\right) m_{e}+\lambda_{e} t_{e} \quad(\bmod p)
$$

hence

$$
\lambda_{d}\left(t_{d}-m_{d}\right) \equiv \lambda_{e}\left(t_{e}-m_{e}\right) \quad(\bmod p)
$$

By (iii), $t_{d}-m_{d} \equiv t_{e}-m_{e}(\bmod p)$ and $t_{d} \not \equiv m_{d}(\bmod p)$, thus $\lambda_{d} \equiv \lambda_{e}(\bmod p)$. Then $\lambda_{d}=\lambda_{e}$ as $0 \leq \lambda_{e}, \lambda_{d} \leq \lambda \leq p-1$.
\Rightarrow directions in \mathcal{E}_{λ} are sharply $(q-\lambda)$-uniform
$\left|\mathcal{E}_{\lambda}\right| \leq q$, wlog $(0: 1: 0) \notin \mathcal{E}_{\lambda}$.
For each $(1: d: 0) \in \mathcal{E}_{\lambda}$ put $\left(0: \alpha_{1}(d): 1\right),\left(0: \alpha_{2}(d): 1\right), \ldots,\left(0: \alpha_{\lambda}(d): 1\right)$ for the points of the Y-axis on the renitent lines with slope d.

$s:=|\mathcal{T}|$ and $\mathcal{T}=\left\{\left(a_{i}: b_{i}: 1\right)\right\}_{i=1}^{s}$.
The line joining $(1: d: 0)$ and $\left(a_{i}: b_{i}: 1\right)$ meets the Y-axis at the point $\left(0: b_{i}-a_{i} d: 1\right)$, hence for each $(1: d: 0) \in \mathcal{E}_{\lambda}$ the multiset

$$
M_{d}:=\left\{\left(b_{i}-a_{i} d\right)\right\}_{i=1}^{s}=\left(m_{d} \bmod p\right) \cdot \mathbb{F}_{q} \cup\left(c=t_{d}-m_{d} \bmod p\right) \cdot\left\{\alpha_{i}\right\}_{i=1}^{\lambda}
$$

where $c \in\{1, \ldots, p-1\}$.

Proof

Define the polynomials

$$
\pi_{k}(V):=\sum_{i=1}^{s}\left(b_{i}-a_{i} V\right)^{k} \in \mathbb{F}_{q}[V]
$$

of degree at most k.
As $\sum_{\gamma \in \mathbb{F}_{q}} \gamma^{k}=0$ for $0 \leq k \leq q-2$ and since $\pi_{k}(d)$ is the k-th power sum of M_{d},

$$
\begin{equation*}
\pi_{k}(d)=c \sum_{i=1}^{\lambda} \alpha_{i}(d)^{k} \text { for }(1: d: 0) \in \mathcal{E}_{\lambda} \tag{1}
\end{equation*}
$$

$\sigma_{i}\left(X_{1}, \ldots, X_{\lambda}\right)$: the i-th elementary symmetric polynomial in the variables $X_{1}, \ldots, X_{\lambda}$. Also, for $d \in \mathcal{E}_{\lambda}$ put $\sigma_{i}(d)=\sigma_{i}\left(\alpha_{1}(d), \ldots, \alpha_{\lambda}(d)\right)$.
For $p-1 \geq j \geq 1$ define the following polynomial of degree at most j :

$$
S_{j}(V):=(-1)^{j} \sum_{\substack{n_{1}+2 n_{2}+\ldots+j n_{j}=j \\ n_{1}, n_{2}, \ldots, n_{j}>0}} \prod_{i=1}^{j} \frac{\left(-\pi_{i}(V) / c\right)^{n_{i}}}{n_{i}!i^{n_{i}}} \in \mathbb{F}_{q}[V] .
$$

Proof

from the Newton-Girard identities it follows that $S_{j}(d)=\sigma_{j}(d)$ for each $(1: d: 0) \in \mathcal{E}_{\lambda}$.
affine curve of degree λ defined by

$$
f(U, V):=U^{\lambda}-S_{1}(V) U^{\lambda-1}+S_{2}(V) U^{\lambda-2}-\ldots+(-1)^{\lambda-1} S_{\lambda-1}(V) U+(-1)^{\lambda} S_{\lambda}(V)
$$

make it projective: $g(U, V, W):=W^{\lambda} f(U / W, V / W)$
it contains the point $\left(\alpha_{i}(d): d: 1\right)$ for each $d \in \mathcal{E}_{\lambda}$ and $1 \leq i \leq \lambda$. Indeed:

$$
\begin{gathered}
g(U, d, 1)=U^{\lambda}-\sigma_{1}(d) U^{\lambda-1}+\sigma_{2}(d) U^{\lambda-2}-\ldots+(-1)^{\lambda-1} \sigma_{\lambda-1}(d) U+(-1)^{\lambda} \sigma_{\lambda}(d)= \\
\prod_{i=1}^{\lambda}\left(U-\alpha_{i}(d)\right)
\end{gathered}
$$

So the renitent lines $\left[d:-1: \alpha_{i}(d)\right]$ are contained in an algebraic envelope of class λ.

Pushing it further

Theorem (Cs-Sz-W)

Take a multiset \mathcal{T} of $\mathrm{AG}(2, q)$ and let \mathcal{F}_{λ} denote a set of $(q-\lambda)$-uniform directions. For each $(d) \in \mathcal{F}_{\lambda}$ denote the typical intersection number by $m_{d}(\bmod p)$ and denote the intersection numbers of the renitent lines by $t_{d, 1}, t_{d, 2}, \ldots, t_{d, \lambda_{d}}$, for some $0<\lambda_{d} \leq \lambda$. For $c \in \mathbb{F}_{p} \backslash\{0\}$ define the integers $\lambda_{d, i}(c) \in\{1, \ldots, p-1\}$ such that

$$
c \lambda_{d, i}(c) \equiv t_{d, i}-m_{d} \quad(\bmod p)
$$

and assume that

$$
\Lambda_{d}(c):=\sum_{i=1}^{\lambda_{d}} \lambda_{d, i}(c) \leq \min \{q-2, p-1\}
$$

holds for each $(d) \in \mathcal{F}_{\lambda}$ (the sum is taken over natural numbers). Then for a fixed c, $\Lambda(c):=\Lambda_{d}(c)$ does not depend on d and the renitent lines with direction in \mathcal{F}_{λ} are contained in an algebraic envelope of class $\wedge(c)$.
Moreover, the intersection multiplicity of this envelope with the pencil centered at (d) at a renitent line incident with (d) and with intersection number $t_{d, i}$ is $\lambda_{d, i}(c)$.

Remark

Here if we assume $t_{d, 1}=t_{d, 2}=\ldots=t_{d, \lambda_{d}}=: t_{d}$ for each $(d) \in \mathcal{F}_{\lambda}$, we also assume that $t_{d}-m_{d}$ does not depend on the choice of d, and further assume $0<\lambda \leq \min \{q-2, p-1\}$, then with the choice $c \equiv t_{d}-m_{d}(\bmod p)$ we obtain the previous Theorem without the restriction $\left|\mathcal{E}_{\lambda}\right| \leq q$.

Remark

If $|\mathcal{T}| \equiv 0(\bmod p)$ then this Theorem cannot be applied. Indeed, in that case for each $(d) \in \mathcal{F}_{\lambda}$,

$$
\sum_{i=1}^{\lambda_{d}}\left(t_{d, i}-m_{d}\right) \equiv 0 \quad(\bmod p)
$$

and hence $\Lambda_{d}=\sum_{i=1}^{\lambda_{d}} \lambda_{d, i} \equiv 0(\bmod p)$, which is not possible if $\Lambda_{d} \leq p-1$ (by definition $\lambda_{d, i}>0$ for each i).

examples

Example

$\lambda=3, p \neq 2, m_{d}=1$, assume that the renitent lines meet \mathcal{T} modulo p in the multiset $\{3,3,5\}$ for each $(d) \in \mathcal{F}_{\lambda}$.
With the choice $c=2$ it follows that the renitent lines are contained in a curve of degree $\Lambda(c)=(3-1) / 2+(3-1) / 2+(5-1) / 2=4$ whenever $p \geq 5, q>5$.

One might think that to obtain a curve of the lowest degree, the best option is to chose c as the greatest common divisor of the values $t_{d, i}-m_{d}$. not true:

Example

Put $\lambda=2, p=13$, and assume that $m_{d}=1$ and the renitent lines meet \mathcal{T} modulo 13 in the multiset $\{2,8\}$ for each $(d) \in \mathcal{F}_{\lambda}$.
choosing $c=1$: renitent lines are in a curve of $\operatorname{deg} \Lambda(c)=(2-1)+(8-1)=8$.
choosing $c=7$: renitent lines are in a curve of $\operatorname{deg} \Lambda(c)=1 / 7+7 / 7=2+1=3$.

The general case

Theorem (Cs-Sz-W)

Take any $\mathcal{T} \subseteq \mathrm{AG}(2, q)$ and an integer $0<\lambda \leq(q-1) / 2$. Let \mathcal{E}_{λ} denote a set of $(q-\lambda)$-uniform directions of size at most q. Then the renitent lines with slope in \mathcal{E}_{λ} are contained in an algebraic envelope of class λ^{2}. Furthermore, if a direction of \mathcal{E}_{λ} is not sharply $(q-\lambda)$-uniform, then the line pencil centered at that direction is fully contained in the envelope.

Proof: using a recursion technique (with Vandermonde-matrices and linear algebra) connecting elementary symmetric polynomials to weighted power sums

Corollary

Suppose that the assumptions of the previous theorem holds and also that there exists a sharply $(q-\lambda)$-uniform direction. Then there are at most $\lambda^{2}-\lambda$ directions incident with less than λ renitent lines. More precisely, if λ_{d} denotes the number of renitent lines with slope d for every $(d) \in \mathcal{E}_{\lambda}$, then

$$
\sum_{(d) \in \mathcal{E}_{\lambda}}\left(\lambda-\lambda_{d}\right) \leq \lambda^{2}-\lambda
$$

With the resultant method

Theorem (Cs-Sz-W)

Take a multiset \mathcal{M} of $\mathrm{AG}(2, q), q>2$, and fix an integer $\lambda>0$. Let \mathcal{F}_{λ} denote the set of $(q-\lambda)$-uniform directions. If $\left|\mathcal{F}_{\lambda}\right|>\lambda^{2}+\lambda$ then for each point R of the plane it holds that R is incident with at most λ or with at least $\left|\mathcal{F}_{\lambda}\right|+1-\lambda$ renitent lines.

If $\lambda=1$ it implies that

With the resultant method

Theorem (Cs-Sz-W)

Take a multiset \mathcal{M} of $\mathrm{AG}(2, q), q>2$, and fix an integer $\lambda>0$. Let \mathcal{F}_{λ} denote the set of $(q-\lambda)$-uniform directions. If $\left|\mathcal{F}_{\lambda}\right|>\lambda^{2}+\lambda$ then for each point R of the plane it holds that R is incident with at most λ or with at least $\left|\mathcal{F}_{\lambda}\right|+1-\lambda$ renitent lines.

If $\lambda=1$ it implies that the renitent lines are concurrent.

Thank you for your attention!

