Renitent lines
Peter Sziklai*, joint work with B. Csajbdk and Zs. Weiner

*ELTE, Institute of Mathematics, Department of Computer Science
ELKH-ELTE Geometric and Algebraic Combinatorics Research Group

Irsee

29 August, 2022



Fq, char = p, AG(2,q), PG(2,q)

T: a point set of AG(2,q) might be multiset

geometric structure: intersection (numbers) with lines

regularity: when all the lines of a parallel class intersect in the same number of points
(possibly mod p)

(d)

REGULARITY: this holds for many directions
examples:

v

graph of a function, from (c0)

» an additive pointset (subspace over a subfield)

» g = 2" a hyperoval in AG(2, q), a maximal (k, n)-arc
» a KM-arc



almost regularity: almost all lines of a parallel class intersect in the same number of
points (possibly mod p)

renitent lines: intersect not the typical way

ALMOST REGULARITY: this holds for many dir's (not necessarily the same way from
every dir)

examples:
» g =2" a(q+1)-arcin AG(2, q): one renitent line from each direction
>

> ...



Question(s)

Is it true, that if 7 is almost regular, then it has a hidden structure, i.e. the
non-regular intersections may be "corrected”?

Or at least they also possess some regularity themselves?

Is there a structure in the set of renitent lines?

This resembles Segre's theorem: let K be a (g + 2 — t)-arc in PG(2, q)
"typical intersections”: 0 or 2. Not typical lines: tangents

Segre: not typical lines are contained in a dual curve of low degree (< 2t)
(just motivation, not the same situation as there are two types of "typical
intersections” if g is odd)

structure of a set of lines: contained in a dual curve of low degree
(algebraic envelope, class)



Lemma (Lemma of renitent lines (Csajbdk, Weiner))

Let T be a point set of AG(2, q). A line ¢ with slope d is called renitent if there exists
an integer my such that |( T | # my (mod p) but every other line with slope d meets
T in mg modulo p points. Then the renitent lines are concurrent.



Lemma (Lemma of renitent lines (Csajbdk, Weiner))

Let T be a point set of AG(2, q). A line ¢ with slope d is called renitent if there exists
an integer my such that |( T | # my (mod p) but every other line with slope d meets
T in mg modulo p points. Then the renitent lines are concurrent.

Now we define renitent lines in the following, more general setting and then prove
various generalizations of the lemma above.



Definition

Let M be a multiset of AG(2, q). For some A < (¢ — 1)/2, a direction (d) is

(g — \)-uniform if there are at least (g — \) affine lines with slope d meeting M in the
same number of points mod p. This number will be called the typical intersection
number at (d). The rest of the lines with direction (d) will be called renitent.

A sharply (g — A)-uniform direction (d) is a direction incident with exactly (g — \)
affine lines meeting M in the same number of points modulo p.

éx

Different directions might have different typical intersection numbers. Uniquely
determined for each (g — A)-uniform direction because A < (g —1)/2.



The basic case

Theorem (Cs-Sz-W)

Take a multiset T of AG(2, q) and let £, denote a set of at most q directions which
are (g — \)-uniform, with typical intersection numbers myg (mod p) for each (d) € &,
such that the following hold:

(i) 0 <A <min{g—2,p—1},

(ii) for each (d) € &y the renitent lines meet T in the same number, say tq, of points
modulo p,

(iii) for each (d) € €y tq — mg mod p does not depend on the choice of (d).

Then the renitent lines with direction in £y are contained in a dual curve of degree \.

Note: min{|Ex], A} < mindeg < [/2-|Ex\]-A] -1



Proof

First we show that the number of renitent lines is the same at each direction (d) of &).
Let (d) and (e) denote two directions in £, which are sharply (g — Ag)-uniform and
sharply (g — Ae)-uniform, respectively. Then

(g —Ag)mg + Agtg = |T| = (g — Ae)me + Aete  (mod p),

hence
Ad(tg — mg) = Ae(te — me)  (mod p).

By (iii), tg — mg = te — me (mod p) and ty; Z mg (mod p), thus Ay = Ae (mod p).
Then Ag =X as 0 < A, Mg <A< p-—1.

= directions in £y are sharply (g — A)-uniform



IEx] < g, wlog (0:1:0) ¢ &,
Foreach (1:d:0) €& put (0:ai(d):1),(0:ax(d):1),...,(0: ax(d): 1) for the
points of the Y-axis on the renitent lines with slope d.

s:=|T|and T = {(ai: bi : 1)}i_;.
The line joining (1 :d :0) and (a; : b : 1) meets the Y-axis at the point
(0: b — a;jd : 1), hence for each (1:d:0) € &, the multiset

Mg = {(bi — aid)};—1 = (mg mod p) - Fq U (c = tg — mg mod p) - {oz,-},’-\zl
where c € {1,...,p—1}.



Proof

Define the polynomials

S

(V) =D (b — aiV)* € Fg[V]
i=1
of degree at most k.

As 3 er, 7k =0 for 0 < k < g — 2 and since 7, (d) is the k-th power sum of My,

A
mi(d) = ¢ > ai(d)* for (1:d:0) € &, (1)
i=1
oi(X1,...,Xy): the i-th elementary symmetric polynomial in the variables Xi, ..., X).

Also, for d € &y put oi(d) = oi(a1(d), ..., ar(d)).
For p —1 > j > 1 define the following polynomial of degree at most j:
; J —mi(V)/c)"
SV =(-1y % HM € Fg[V].

L n;lini
n1+2n2+...+Jnj:_/ i=1 !
ni,nz,...,n;>0



Proof
from the Newton-Girard identities it follows that S;(d) = oj(d) for each
(1:d:0)€é.
affine curve of degree A defined by
f(U,V):=UN=S(V)UAM T+ So(V)UA 2 — ...+ (1) IS 1 (V)U + (—1)*S\ (V).
make it projective: g(U, V, W) := WAF(U/W,V /W)
it contains the point (a;j(d) : d : 1) for each d € £, and 1 < i < A. Indeed:
g(U,d,1) = U* —o1(d)UN L+ on(d)UA 2 — ...+ (=) Loa_1(d) U+ (1) o (d) =
A
[I(U — ai(d)).
i=1

So the renitent lines [d : —1 : «j(d)] are contained in an algebraic envelope of class .



Pushing it further
Theorem (Cs-Sz-W)

Take a multiset T of AG(2, q) and let Fy denote a set of (q — \)-uniform directions.
For each (d) € F) denote the typical intersection number by my (mod p) and denote
the intersection numbers of the renitent lines by tq1,tq2,...,tq,, for some

0<Ag <A ForcelF,\ {0} define the integers Ay i(c) € {1,...,p — 1} such that

cAgi(c) =tgi—mg (mod p)
and assume that

Ad
Aa(c) = Agi(c) <min{g—2,p—1}
i=1

holds for each (d) € F» (the sum is taken over natural numbers). Then for a fixed c,
A(c) := Ny(c) does not depend on d and the renitent lines with direction in F are
contained in an algebraic envelope of class \(c).

Moreover, the intersection multiplicity of this envelope with the pencil centered at (d)
at a renitent line incident with (d) and with intersection number tq ; is Mg i(c).



Remark

Here if we assume ty1 = tgo = ... =ty ), =: tq for each (d) € F\, we also assume
that ty — my does not depend on the choice of d, and further assume

0 < XA <min{q —2,p — 1}, then with the choice c = t; — my (mod p) we obtain the
previous Theorem without the restriction |€5] < q.

Remark

If |T| =0 (mod p) then this Theorem cannot be applied. Indeed, in that case for each

(d) € Fa,
Ad

> (taj—mg) =0 (mod p)

i=1

and hence Ny = Z,’-\:dl Ad,i =0 (mod p), which is not possible if \g < p —1 (by
definition Ay ; > 0 for each i).



examples

Example

A=3,p#2, my =1, assume that the renitent lines meet 7 modulo p in the multiset
{3,3,5} for each (d) € F.

With the choice ¢ = 2 it follows that the renitent lines are contained in a curve of
degree A(c) = (3—-1)/2+(3—1)/2+(5—1)/2 = 4 whenever p > 5,q > 5.

One might think that to obtain a curve of the lowest degree, the best option is to
chose c as the greatest common divisor of the values ty ; — my. not true:

Example

Put A =2, p =13, and assume that my = 1 and the renitent lines meet 7 modulo 13
in the multiset {2,8} for each (d) € F).

choosing ¢ = 1: renitent lines are in a curve of deg A(c)=(2—1)+(8—1) =8.
choosing ¢ = 7: renitent lines are in a curve of deg A(c) =1/7+7/7=2+1=3.



The general case

Theorem (Cs-Sz-W)

Take any T C AG(2,q) and an integer 0 < A < (q — 1)/2. Let £\ denote a set of

(g — A\)-uniform directions of size at most q. Then the renitent lines with slope in &y
are contained in an algebraic envelope of class \>. Furthermore, if a direction of £y is
not sharply (q — \)-uniform, then the line pencil centered at that direction is fully
contained in the envelope.

Proof: using a recursion technique (with Vandermonde-matrices and linear algebra)
connecting elementary symmetric polynomials to weighted power sums



Corollary

Suppose that the assumptions of the previous theorem holds and also that there exists
a sharply (q — \)-uniform direction. Then there are at most A2 — X directions incident
with less than X\ renitent lines. More precisely, if Ay denotes the number of renitent
lines with slope d for every (d) € &y, then

D (A=A) S A=
(d)eéa



With the resultant method

Theorem (Cs-Sz-W)

Take a multiset M of AG(2,q), g > 2, and fix an integer A > 0. Let F) denote the
set of (q — \)-uniform directions. If | Fy| > A? + \ then for each point R of the plane
it holds that R is incident with at most A or with at least | Fy| + 1 — A renitent lines.

If X =1 it implies that



With the resultant method

Theorem (Cs-Sz-W)

Take a multiset M of AG(2,q), g > 2, and fix an integer A > 0. Let F) denote the
set of (q — \)-uniform directions. If | Fy| > A? + \ then for each point R of the plane
it holds that R is incident with at most A or with at least | Fy| + 1 — A renitent lines.

If A =1 it implies that the renitent lines are concurrent.



Thank you for your attention!



