Renitent lines

Peter Sziklai*, joint work with B. Csajbók and Zs. Weiner

*ELTE, Institute of Mathematics, Department of Computer Science ELKH-ELTE Geometric and Algebraic Combinatorics Research Group

Irsee

29 August, 2022

 \mathbb{F}_q , char = p, AG(2, q), PG(2, q) \mathcal{T} : a point set of AG(2, q) might be multiset geometric structure: intersection (numbers) with lines regularity: when all the lines of a parallel class intersect in the same number of points (possibly mod p)

REGULARITY: this holds for many directions examples:

- ightharpoonup graph of a function, from (∞)
- ► an additive pointset (subspace over a subfield)
- $ightharpoonup q=2^h$: a hyperoval in AG(2, q), a maximal (k,n)-arc
- ► a KM-arc

almost regularity: almost all lines of a parallel class intersect in the same number of points (possibly mod p)

renitent lines: intersect not the typical way

ALMOST REGULARITY: this holds for many dir's (not necessarily the same way from every dir)

examples:

- $ightharpoonup q=2^h$: a (q+1)-arc in AG(2, q): one renitent line from each direction
- ▶ ..
- **...**

Question(s)

Is it true, that if \mathcal{T} is almost regular, then it has a hidden structure, i.e. the non-regular intersections may be "corrected"? Or at least they also possess some regularity themselves? Is there a structure in the set of renitent lines?

This resembles Segre's theorem: let \mathcal{K} be a (q+2-t)-arc in PG(2, q) "typical intersections": 0 or 2. Not typical lines: tangents Segre: not typical lines are contained in a dual curve of low degree ($\leq 2t$) (just motivation, not the same situation as there are two types of "typical intersections" if q is odd)

structure of a set of lines: contained in a dual curve of low degree (algebraic envelope, class)

Lemma (Lemma of renitent lines (Csajbók, Weiner))

Let \mathcal{T} be a point set of AG(2, q). A line ℓ with slope d is called renitent if there exists an integer m_d such that $|\ell \cap \mathcal{T}| \not\equiv m_d \pmod{p}$ but every other line with slope d meets \mathcal{T} in m_d modulo p points. Then the renitent lines are concurrent.

Lemma (Lemma of renitent lines (Csajbók, Weiner))

Let \mathcal{T} be a point set of AG(2, q). A line ℓ with slope d is called renitent if there exists an integer m_d such that $|\ell \cap \mathcal{T}| \not\equiv m_d \pmod{p}$ but every other line with slope d meets \mathcal{T} in m_d modulo p points. Then the renitent lines are concurrent.

Now we define **renitent lines** in the following, more general setting and then prove various generalizations of the lemma above.

Definition

Let $\mathcal M$ be a multiset of AG(2,q). For some $\lambda \leq (q-1)/2$, a direction (d) is $(q-\lambda)$ -uniform if there are at least $(q-\lambda)$ affine lines with slope d meeting $\mathcal M$ in the same number of points mod p. This number will be called the *typical intersection number* at (d). The rest of the lines with direction (d) will be called *renitent*. A *sharply* $(q-\lambda)$ -uniform direction (d) is a direction incident with *exactly* $(q-\lambda)$ affine lines meeting $\mathcal M$ in the same number of points modulo p.

Different directions might have different typical intersection numbers. Uniquely determined for each $(q - \lambda)$ -uniform direction because $\lambda \le (q - 1)/2$.

The basic case

Theorem (Cs-Sz-W)

Take a multiset \mathcal{T} of AG(2, q) and let \mathcal{E}_{λ} denote a set of at most q directions which are $(q - \lambda)$ -uniform, with typical intersection numbers m_d (mod p) for each $(d) \in \mathcal{E}_{\lambda}$, such that the following hold:

- (i) $0 < \lambda \le \min\{q 2, p 1\}$,
- (ii) for each $(d) \in \mathcal{E}_{\lambda}$ the renitent lines meet \mathcal{T} in the same number, say t_d , of points modulo p,
- (iii) for each $(d) \in \mathcal{E}_{\lambda}$ $t_d m_d \mod p$ does not depend on the choice of (d).

Then the renitent lines with direction in \mathcal{E}_{λ} are contained in a dual curve of degree λ .

Note: $\min\{|\mathcal{E}_{\lambda}|, \lambda\} \leq \min \deg \leq \lceil \sqrt{2 \cdot |\mathcal{E}_{\lambda}| \cdot \lambda} \rceil - 1$

Proof

First we show that the number of renitent lines is the same at each direction (d) of \mathcal{E}_{λ} . Let (d) and (e) denote two directions in \mathcal{E}_{λ} which are sharply $(q - \lambda_d)$ -uniform and sharply $(q - \lambda_e)$ -uniform, respectively. Then

$$(q - \lambda_d)m_d + \lambda_d t_d \equiv |\mathcal{T}| \equiv (q - \lambda_e)m_e + \lambda_e t_e \pmod{p},$$

hence

$$\lambda_d(t_d-m_d)\equiv \lambda_e(t_e-m_e)\pmod{p}.$$

By (iii), $t_d - m_d \equiv t_e - m_e \pmod{p}$ and $t_d \not\equiv m_d \pmod{p}$, thus $\lambda_d \equiv \lambda_e \pmod{p}$. Then $\lambda_d = \lambda_e$ as $0 \le \lambda_e, \lambda_d \le \lambda \le p-1$.

 \Rightarrow directions in \mathcal{E}_{λ} are sharply $(q-\lambda)$ -uniform

 $|\mathcal{E}_{\lambda}| \leq q$, wlog $(0:1:0) \notin \mathcal{E}_{\lambda}$. For each $(1:d:0) \in \mathcal{E}_{\lambda}$ put $(0:\alpha_1(d):1), (0:\alpha_2(d):1), \ldots, (0:\alpha_{\lambda}(d):1)$ for the points of the Y-axis on the renitent lines with slope d.

$$s := |\mathcal{T}|$$
 and $\mathcal{T} = \{(a_i : b_i : 1)\}_{i=1}^s$.
The line joining $(1 : d : 0)$ and $(a_i : b_i : 1)$ meets the Y-axis at the point

 $(0:b_i-a_id:1)$, hence for each $(1:d:0)\in\mathcal{E}_{\lambda}$ the multiset

$$M_d := \{(b_i - a_i d)\}_{i=1}^s = (m_d \mod p) \cdot \mathbb{F}_q \cup (c = t_d - m_d \mod p) \cdot \{\alpha_i\}_{i=1}^{\lambda}$$
 where $c \in \{1, \dots, p-1\}$.

Proof

Define the polynomials

$$\pi_k(V) := \sum_{i=1}^s (b_i - a_i V)^k \in \mathbb{F}_q[V]$$

of degree at most k.

As $\sum_{\gamma \in \mathbb{F}_q} \gamma^k = 0$ for $0 \le k \le q-2$ and since $\pi_k(d)$ is the k-th power sum of M_d ,

$$\pi_k(d) = c \sum_{i=1}^{\lambda} \alpha_i(d)^k \text{ for } (1:d:0) \in \mathcal{E}_{\lambda}.$$
 (1)

 $\sigma_i(X_1,\ldots,X_{\lambda})$: the *i*-th elementary symmetric polynomial in the variables X_1,\ldots,X_{λ} . Also, for $d\in\mathcal{E}_{\lambda}$ put $\sigma_i(d)=\sigma_i(\alpha_1(d),\ldots,\alpha_{\lambda}(d))$.

For $p-1 \ge j \ge 1$ define the following polynomial of degree at most j:

$$S_j(V) := (-1)^j \sum_{\substack{n_1+2n_2+...+jn_j=j \ n_1,n_2,...,n_j>0}} \prod_{i=1}^j \frac{(-\pi_i(V)/c)^{n_i}}{n_i! i^{n_i}} \in \mathbb{F}_q[V].$$

Proof

from the Newton-Girard identities it follows that $S_j(d) = \sigma_j(d)$ for each $(1:d:0) \in \mathcal{E}_{\lambda}$.

affine curve of degree λ defined by

$$f(U,V) := U^{\lambda} - S_1(V)U^{\lambda-1} + S_2(V)U^{\lambda-2} - \ldots + (-1)^{\lambda-1}S_{\lambda-1}(V)U + (-1)^{\lambda}S_{\lambda}(V).$$

make it projective: $g(U, V, W) := W^{\lambda} f(U/W, V/W)$

it contains the point $(\alpha_i(d):d:1)$ for each $d \in \mathcal{E}_{\lambda}$ and $1 \leq i \leq \lambda$. Indeed:

$$g(U,d,1) = U^{\lambda} - \sigma_1(d)U^{\lambda-1} + \sigma_2(d)U^{\lambda-2} - \ldots + (-1)^{\lambda-1}\sigma_{\lambda-1}(d)U + (-1)^{\lambda}\sigma_{\lambda}(d) =$$

$$\prod_{i=1}^{\lambda} (U - \alpha_i(d)).$$

So the renitent lines $[d:-1:\alpha_i(d)]$ are contained in an algebraic envelope of class λ .

Pushing it further

Theorem (Cs-Sz-W)

Take a multiset \mathcal{T} of AG(2, q) and let \mathcal{F}_{λ} denote a set of $(q - \lambda)$ -uniform directions. For each $(d) \in \mathcal{F}_{\lambda}$ denote the typical intersection number by $m_d \pmod{p}$ and denote the intersection numbers of the renitent lines by $t_{d,1}, t_{d,2}, \ldots, t_{d,\lambda_d}$, for some $0 < \lambda_d \leq \lambda$. For $c \in \mathbb{F}_p \setminus \{0\}$ define the integers $\lambda_{d,i}(c) \in \{1,\ldots,p-1\}$ such that

$$c\lambda_{d,i}(c) \equiv t_{d,i} - m_d \pmod{p}$$

and assume that

$$\Lambda_d(c) := \sum_{i=1}^{\lambda_d} \lambda_{d,i}(c) \leq \min\{q-2,p-1\}$$

holds for each $(d) \in \mathcal{F}_{\lambda}$ (the sum is taken over natural numbers). Then for a fixed c, $\Lambda(c) := \Lambda_d(c)$ does not depend on d and the renitent lines with direction in \mathcal{F}_{λ} are contained in an algebraic envelope of class $\Lambda(c)$.

Moreover, the intersection multiplicity of this envelope with the pencil centered at (d)

at a renitent line incident with (d) and with intersection number $t_{d,i}$ is $\lambda_{d,i}(c)$.

Remark

Here if we assume $t_{d,1}=t_{d,2}=\ldots=t_{d,\lambda_d}=:t_d$ for each $(d)\in\mathcal{F}_{\lambda}$, we also assume

that $t_d - m_d$ does not depend on the choice of d, and further assume

previous Theorem without the restriction $|\mathcal{E}_{\lambda}| < q$.

 $0 < \lambda \le \min\{q-2, p-1\}$, then with the choice $c \equiv t_d - m_d \pmod{p}$ we obtain the

If $|\mathcal{T}| \equiv 0 \pmod{p}$ then this Theorem cannot be applied. Indeed, in that case for each

 $\sum_{i=0}^{\lambda_d} (t_{d,i} - m_d) \equiv 0 \pmod{p}$

and hence $\Lambda_d = \sum_{i=1}^{\lambda_d} \lambda_{d,i} \equiv 0 \pmod{p}$, which is not possible if $\Lambda_d \leq p-1$ (by

Remark

 $(d) \in \mathcal{F}_{\lambda}$,

definition $\lambda_{d,i} > 0$ for each i).

examples

Example

 $\lambda=3, p\neq 2, \ m_d=1$, assume that the renitent lines meet $\mathcal T$ modulo p in the multiset $\{3,3,5\}$ for each $(d)\in \mathcal F_\lambda$.

With the choice c=2 it follows that the renitent lines are contained in a curve of degree $\Lambda(c)=(3-1)/2+(3-1)/2+(5-1)/2=4$ whenever $p\geq 5, q>5$.

One might think that to obtain a curve of the lowest degree, the best option is to chose c as the greatest common divisor of the values $t_{d,i} - m_d$. not true:

Example

Put $\lambda=2$, p=13, and assume that $m_d=1$ and the renitent lines meet \mathcal{T} modulo 13 in the multiset $\{2,8\}$ for each $(d)\in\mathcal{F}_{\lambda}$.

choosing c=1: renitent lines are in a curve of deg $\Lambda(c)=(2-1)+(8-1)=8$. choosing c=7: renitent lines are in a curve of deg $\Lambda(c)=1/7+7/7=2+1=3$.

The general case

Theorem (Cs-Sz-W)

Take any $\mathcal{T} \subseteq \mathsf{AG}(2,q)$ and an integer $0 < \lambda \le (q-1)/2$. Let \mathcal{E}_{λ} denote a set of $(q-\lambda)$ -uniform directions of size at most q. Then the renitent lines with slope in \mathcal{E}_{λ} are contained in an algebraic envelope of class λ^2 . Furthermore, if a direction of \mathcal{E}_{λ} is not sharply $(q-\lambda)$ -uniform, then the line pencil centered at that direction is fully contained in the envelope.

Proof: using a recursion technique (with Vandermonde-matrices and linear algebra) connecting elementary symmetric polynomials to weighted power sums

Corollary

Suppose that the assumptions of the previous theorem holds and also that there exists a sharply $(q - \lambda)$ -uniform direction. Then there are at most $\lambda^2 - \lambda$ directions incident with less than λ renitent lines. More precisely, if λ_d denotes the number of renitent

a sharply
$$(q - \lambda)$$
-uniform direction. Then there are at most $\lambda^2 - \lambda$ directions incident with less than λ renitent lines. More precisely, if λ_d denotes the number of renitent lines with slope d for every $(d) \in \mathcal{E}_{\lambda}$, then

 $\sum (\lambda - \lambda_d) \leq \lambda^2 - \lambda.$

 $(d) \in \mathcal{E}_{\lambda}$

With the resultant method

Theorem (Cs-Sz-W)

Take a multiset \mathcal{M} of AG(2,q), q>2, and fix an integer $\lambda>0$. Let \mathcal{F}_{λ} denote the set of $(q-\lambda)$ -uniform directions. If $|\mathcal{F}_{\lambda}|>\lambda^2+\lambda$ then for each point R of the plane it holds that R is incident with at most λ or with at least $|\mathcal{F}_{\lambda}|+1-\lambda$ renitent lines.

If $\lambda = 1$ it implies that

With the resultant method

Theorem (Cs-Sz-W)

Take a multiset \mathcal{M} of AG(2, q), q>2, and fix an integer $\lambda>0$. Let \mathcal{F}_{λ} denote the set of $(q-\lambda)$ -uniform directions. If $|\mathcal{F}_{\lambda}|>\lambda^2+\lambda$ then for each point R of the plane it holds that R is incident with at most λ or with at least $|\mathcal{F}_{\lambda}|+1-\lambda$ renitent lines.

If $\lambda = 1$ it implies that the renitent lines are concurrent.

