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∗ELTE, Institute of Mathematics, Department of Computer Science
ELKH-ELTE Geometric and Algebraic Combinatorics Research Group

29 August, 2022

Irsee



Fq, char = p, AG(2, q), PG(2, q)
T : a point set of AG(2, q) might be multiset
geometric structure: intersection (numbers) with lines
regularity: when all the lines of a parallel class intersect in the same number of points
(possibly mod p)

REGULARITY: this holds for many directions
examples:

I graph of a function, from (∞)
I an additive pointset (subspace over a subfield)
I q = 2h: a hyperoval in AG(2, q), a maximal (k, n)-arc
I a KM-arc



almost regularity: almost all lines of a parallel class intersect in the same number of
points (possibly mod p)
renitent lines: intersect not the typical way
ALMOST REGULARITY: this holds for many dir’s (not necessarily the same way from
every dir)

examples:
I q = 2h: a (q + 1)-arc in AG(2, q): one renitent line from each direction
I ...
I ...



Question(s)
Is it true, that if T is almost regular, then it has a hidden structure, i.e. the
non-regular intersections may be ”corrected”?
Or at least they also possess some regularity themselves?
Is there a structure in the set of renitent lines?

This resembles Segre’s theorem: let K be a (q + 2− t)-arc in PG(2, q)
”typical intersections”: 0 or 2. Not typical lines: tangents
Segre: not typical lines are contained in a dual curve of low degree (≤ 2t)
(just motivation, not the same situation as there are two types of ”typical
intersections” if q is odd)

structure of a set of lines: contained in a dual curve of low degree
(algebraic envelope, class)



Lemma (Lemma of renitent lines (Csajbók, Weiner))
Let T be a point set of AG(2, q). A line ` with slope d is called renitent if there exists
an integer md such that |`∩ T | 6≡ md (mod p) but every other line with slope d meets
T in md modulo p points. Then the renitent lines are concurrent.

Now we define renitent lines in the following, more general setting and then prove
various generalizations of the lemma above.
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Let T be a point set of AG(2, q). A line ` with slope d is called renitent if there exists
an integer md such that |`∩ T | 6≡ md (mod p) but every other line with slope d meets
T in md modulo p points. Then the renitent lines are concurrent.

Now we define renitent lines in the following, more general setting and then prove
various generalizations of the lemma above.



Definition
Let M be a multiset of AG(2, q). For some λ ≤ (q − 1)/2, a direction (d) is
(q − λ)-uniform if there are at least (q − λ) affine lines with slope d meeting M in the
same number of points mod p. This number will be called the typical intersection
number at (d). The rest of the lines with direction (d) will be called renitent.
A sharply (q − λ)-uniform direction (d) is a direction incident with exactly (q − λ)
affine lines meeting M in the same number of points modulo p.

Different directions might have different typical intersection numbers. Uniquely
determined for each (q − λ)-uniform direction because λ ≤ (q − 1)/2.



The basic case

Theorem (Cs-Sz-W)
Take a multiset T of AG(2, q) and let Eλ denote a set of at most q directions which
are (q − λ)-uniform, with typical intersection numbers md (mod p) for each (d) ∈ Eλ,
such that the following hold:

(i) 0 < λ ≤ min{q − 2, p − 1},
(ii) for each (d) ∈ Eλ the renitent lines meet T in the same number, say td , of points

modulo p,
(iii) for each (d) ∈ Eλ td −md mod p does not depend on the choice of (d).

Then the renitent lines with direction in Eλ are contained in a dual curve of degree λ.

Note: min{|Eλ|, λ} ≤ min deg ≤ d
√

2 · |Eλ| · λe − 1



Proof

First we show that the number of renitent lines is the same at each direction (d) of Eλ.
Let (d) and (e) denote two directions in Eλ which are sharply (q − λd )-uniform and
sharply (q − λe)-uniform, respectively. Then

(q − λd )md + λd td ≡ |T | ≡ (q − λe)me + λete (mod p),

hence
λd (td −md ) ≡ λe(te −me) (mod p).

By (iii), td −md ≡ te −me (mod p) and td 6≡ md (mod p), thus λd ≡ λe (mod p).
Then λd = λe as 0 ≤ λe , λd ≤ λ ≤ p − 1.

⇒ directions in Eλ are sharply (q − λ)-uniform



|Eλ| ≤ q, wlog (0 : 1 : 0) /∈ Eλ.
For each (1 : d : 0) ∈ Eλ put (0 : α1(d) : 1), (0 : α2(d) : 1), . . . , (0 : αλ(d) : 1) for the
points of the Y -axis on the renitent lines with slope d .

s := |T | and T = {(ai : bi : 1)}si=1.
The line joining (1 : d : 0) and (ai : bi : 1) meets the Y -axis at the point
(0 : bi − ai d : 1), hence for each (1 : d : 0) ∈ Eλ the multiset

Md := {(bi − ai d)}si=1 = (md mod p) · Fq ∪ (c = td −md mod p) · {αi}λi=1

where c ∈ {1, . . . , p − 1}.



Proof
Define the polynomials

πk(V ) :=
s∑

i=1
(bi − ai V )k ∈ Fq[V ]

of degree at most k.
As

∑
γ∈Fq γ

k = 0 for 0 ≤ k ≤ q − 2 and since πk(d) is the k-th power sum of Md ,

πk(d) = c
λ∑

i=1
αi (d)k for (1 : d : 0) ∈ Eλ. (1)

σi (X1, . . . ,Xλ): the i-th elementary symmetric polynomial in the variables X1, . . . ,Xλ.
Also, for d ∈ Eλ put σi (d) = σi (α1(d), . . . , αλ(d)).
For p − 1 ≥ j ≥ 1 define the following polynomial of degree at most j :

Sj(V ) := (−1)j ∑
n1+2n2+...+jnj =j

n1,n2,...,nj>0

j∏
i=1

(−πi (V )/c)ni

ni !ini
∈ Fq[V ].



Proof

from the Newton-Girard identities it follows that Sj(d) = σj(d) for each
(1 : d : 0) ∈ Eλ.

affine curve of degree λ defined by

f (U,V ) := Uλ − S1(V )Uλ−1 + S2(V )Uλ−2 − . . .+ (−1)λ−1Sλ−1(V )U + (−1)λSλ(V ).

make it projective: g(U,V ,W ) := W λf (U/W ,V /W )
it contains the point (αi (d) : d : 1) for each d ∈ Eλ and 1 ≤ i ≤ λ. Indeed:

g(U, d , 1) = Uλ−σ1(d)Uλ−1 +σ2(d)Uλ−2− . . .+ (−1)λ−1σλ−1(d)U + (−1)λσλ(d) =

λ∏
i=1

(U − αi (d)).

So the renitent lines [d : −1 : αi (d)] are contained in an algebraic envelope of class λ.



Pushing it further
Theorem (Cs-Sz-W)
Take a multiset T of AG(2, q) and let Fλ denote a set of (q − λ)-uniform directions.
For each (d) ∈ Fλ denote the typical intersection number by md (mod p) and denote
the intersection numbers of the renitent lines by td ,1, td ,2, . . . , td ,λd , for some
0 < λd ≤ λ. For c ∈ Fp \ {0} define the integers λd ,i (c) ∈ {1, . . . , p − 1} such that

cλd ,i (c) ≡ td ,i −md (mod p)
and assume that

Λd (c) :=
λd∑
i=1

λd ,i (c) ≤ min{q − 2, p − 1}

holds for each (d) ∈ Fλ (the sum is taken over natural numbers). Then for a fixed c,
Λ(c) := Λd (c) does not depend on d and the renitent lines with direction in Fλ are
contained in an algebraic envelope of class Λ(c).
Moreover, the intersection multiplicity of this envelope with the pencil centered at (d)
at a renitent line incident with (d) and with intersection number td ,i is λd ,i (c).



Remark
Here if we assume td ,1 = td ,2 = . . . = td ,λd =: td for each (d) ∈ Fλ, we also assume
that td −md does not depend on the choice of d, and further assume
0 < λ ≤ min{q − 2, p − 1}, then with the choice c ≡ td −md (mod p) we obtain the
previous Theorem without the restriction |Eλ| ≤ q.

Remark
If |T | ≡ 0 (mod p) then this Theorem cannot be applied. Indeed, in that case for each
(d) ∈ Fλ,

λd∑
i=1

(td ,i −md ) ≡ 0 (mod p)

and hence Λd =
∑λd

i=1 λd ,i ≡ 0 (mod p), which is not possible if Λd ≤ p − 1 (by
definition λd ,i > 0 for each i).



examples

Example
λ = 3, p 6= 2, md = 1, assume that the renitent lines meet T modulo p in the multiset
{3, 3, 5} for each (d) ∈ Fλ.
With the choice c = 2 it follows that the renitent lines are contained in a curve of
degree Λ(c) = (3− 1)/2 + (3− 1)/2 + (5− 1)/2 = 4 whenever p ≥ 5, q > 5.

One might think that to obtain a curve of the lowest degree, the best option is to
chose c as the greatest common divisor of the values td ,i −md . not true:

Example
Put λ = 2, p = 13, and assume that md = 1 and the renitent lines meet T modulo 13
in the multiset {2, 8} for each (d) ∈ Fλ.
choosing c = 1: renitent lines are in a curve of deg Λ(c) = (2− 1) + (8− 1) = 8.
choosing c = 7: renitent lines are in a curve of deg Λ(c) = 1/7 + 7/7 = 2 + 1 = 3.



The general case

Theorem (Cs-Sz-W)
Take any T ⊆ AG(2, q) and an integer 0 < λ ≤ (q − 1)/2. Let Eλ denote a set of
(q − λ)-uniform directions of size at most q. Then the renitent lines with slope in Eλ
are contained in an algebraic envelope of class λ2. Furthermore, if a direction of Eλ is
not sharply (q − λ)-uniform, then the line pencil centered at that direction is fully
contained in the envelope.

Proof: using a recursion technique (with Vandermonde-matrices and linear algebra)
connecting elementary symmetric polynomials to weighted power sums



Corollary
Suppose that the assumptions of the previous theorem holds and also that there exists
a sharply (q − λ)-uniform direction. Then there are at most λ2 − λ directions incident
with less than λ renitent lines. More precisely, if λd denotes the number of renitent
lines with slope d for every (d) ∈ Eλ, then∑

(d)∈Eλ

(λ− λd ) ≤ λ2 − λ.



With the resultant method

Theorem (Cs-Sz-W)
Take a multiset M of AG(2, q), q > 2, and fix an integer λ > 0. Let Fλ denote the
set of (q − λ)-uniform directions. If |Fλ| > λ2 + λ then for each point R of the plane
it holds that R is incident with at most λ or with at least |Fλ|+ 1− λ renitent lines.

If λ = 1 it implies that

the renitent lines are concurrent.
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Thank you for your attention!


