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Association schemes
Association scheme: A finite set X and a finite-dimensional

subspace of CX×X .

Subset: Y ⊆ X .

Basis of matrices Basis of matrices

with entries 0 or 1 with eigenvalues 0 or 1

{D0,D1, . . . ,Dm} {E0,E1, . . . ,Em}

Inner distribution (Ai) Dual distribution (A′k)

Ai = 1
|Y |1

T
YDi1Y A′k = |X |

|Y |1
T
YEk1Y

D-code T -design

Ai 6= 0 ⇒ i ∈ D k ∈ T ⇒ A′k = 0
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Designs

For T = {1, 2, . . . , t}, the T -designs

in the

Hamming scheme are orthogonal arrays;

Johnson scheme are combinatorial designs;

q-Johnson scheme are subspace designs.

. . . .

This motivates the present general definition [of T -designs],

the “conjecture” being that T -designs will often have inter-

esting properties.
— Delsarte’s Thesis, 1973
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Finite groups & association schemes

Let G be a finite group with

conjugacy classes C1,C2, . . . ,Cm and

(complex) irreducible characters χ1, χ2, . . . , χm.

Every finite group gives an association scheme with

Di(x , y) = 1[x−1y ∈ Ci ] Ek(x , y) = χk(1)χk(x−1y).

The dual distribution of a subset Y of G then satisfies

A′k = χk(1)
∑
x ,y∈Y

χk(x−1y).
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Designs in the symmetric group

σ = (421)

2

4 5

1 3 6 7

2

4 5

1 3 6 7

σ-tabloid

A subset Y of Sn is transitive on σ-tabloids if the number of

π ∈ Y such that

a7

a5 a6

a1 a2 a3 a4

b7

b5 b6

b1 b2 b3 b4
π

is independent of the two σ-tabloids.
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Designs in S5

transitive on (41)-tabloids

transitive on (32)-tabloids

transitive on (41)-tabloids
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Partitions and the symmetric group

For the symmetric group, the

conjugacy classes and the irre-

ducible characters are naturally

indexed by partitions.

The partitions are partially or-

dered by dominance E.
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Characterisation of designs in Sn

Theorem (Martin-Sagan 2007) Y ⊆ Sn is transitive on

σ-tabloids if and only if A′λ = 0 for all σ E λC (n).

Theorem (Livingstone-Wagner 1965)

Every subgroup of Sn that is t-homogeneous for some t

satisfying 1 ≤ t ≤ n/2 is also (t − 1)-homogeneous.

Corollary (Martin-Sagan 2007) If Y is transitive on σ-tabloids,

then Y is also transitive on τ -tabloids for all σ E τ .

This implies the Livingstone-Wagner Theorem since

(n − t, t) E (n − t + 1, t − 1) for 1 ≤ t ≤ n/2.
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Compositions and flags

Let GL(n, q) be the group of invertible n× n matrices over Fq.

σ = (241)

v7

v1 v2

v3 v4 v5 v6

σ-flag

V3 = 〈v1, v2, v3, v4, v5, v6, v7〉
V2 = 〈v1, v2, v3, v4, v5, v6〉
V1 = 〈v1, v2〉

Our interest: subsets of GL(n, q) that are transitive on σ-flags.
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Some facts about GL(n, q)

Reminder: The conjugacy classes of GL(n, q) correspond to

the Jordan normal forms.

The conjugacy classes and the (complex) irreducible characters

of GL(n, q) are naturally indexed by mappings

λ : {monic irr. polynomials in Fq[X ]} \ {X} → Partitions

of finite support such that∑
f

deg(f ) |λ(f )| = n.
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Characterisation of designs

Notation: Composition σ = (241) −→ partition σ̃ = (421).

Theorem (Ernst-S. 2022) A subset Y ⊆ GL(n, q) is transitive

on σ-flags if and only if A′λ = 0 for all σ̃ E λ(X − 1) C (n).

Corollary Transitivity on σ-flags implies transitivity on τ -flags,

where τ has the same parts as σ.

E.g., transitivity on t-spaces implies transitivity on (n − t)-spaces.

Corollary Transitivity on σ-flags implies transitivity on τ -flags

for all τ satisfying σ̃ E τ̃ .

E.g., transitivity on t-spaces implies transitivity on (t − 1)-spaces

for 1 ≤ t ≤ n/2. For subgroups this was proved by (Perin 1972).
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Signed flags

σ = (241)

σ-flag

v7

v1 v2

v3 v4 v5 v6

V3 = 〈v1, v2, v3, v4, v5, v6, v7〉
V2 = 〈v1, v2, v3, v4, v5, v6〉
V1 = 〈v1, v2〉∗

∗

bases

(v1, v2)

(v7)

We call this a signed σ-flag with signature S = (∗ ◦ ∗).

The type of this flag is the double partition ((21), (4)).

Two special cases:

(t, n − t)-flag with signature (◦◦): t-space of V .

(t, n − t)-flag with signature (∗◦): basis of a t-space of V .

13
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The general characterisation
For q = 3, let λ be given by

X − 1 X + 1 X 2 + 1 X 2 + X − 1

(31) (33) (2) (21)

Its type equals ((2516), (31)).

A partial order � on double partitions: reverse refinement in

first coordinate, dominance in second coordinate.

Theorem (Ernst-S. 2022) A subset Y ⊆ GL(n, q) is transitive

on signed flags of type (σ, τ) with fixed signature if and only if

A′λ = 0 for all

(σ, τ) � type(λ) ≺ (∅, (n)).

This has similar consequences as the result for unsigned flags.
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Transitive subgroups of GL(n, q)

A Singer cycle is sharply transitive nonzero points of Fn
q and it

contains a subgroup that is sharply transitive on 1-spaces.

If G is a subgroup of GL(n, q) with stronger transitivity and

does not contain SL(n, q), then one of the following holds:

(n, q) group (σ, τ)

(2, 3) G ∼= ΓL(1, 32) ((12), ∅)
(2, 5) |G | = 96 ((12), ∅)
(3, 2) G ∼= ΓL(1, 23) ((13), ∅)
(4, 2) G ∼= A7 ((31), ∅)
(5, 2) G ∼= ΓL(1, 25) (∅, (32))

SL(n, q) is transitive on bases of (n − 1)-spaces.
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A recursive construction

t-design in GL(V ): Transitive on bases of t-spaces of V = Fn
q.

t-design in Jq(n, k): Subset D of the Grassmannian Jq(n, k) of

V such that the number of elements in D containing a given

t-space of V is independent of the choice of this t-space.

Theorem (Ernst-S. 2022) Write V = U ⊕W with dimU = k .

If there is a (1) a t-design Y in GL(U),

(2) a t-design Z in GL(W ),

(3) a t-design D in Jq(n, k),

then there is a t-design in GL(V ) of size |Y | · |Z | · |D| · qk(n−k).

Example. Taking Y = Z ∼= GL(3, 2) and D a 2-design in J2(6, 3)

of size 279 gives a 2-design in GL(6, 2) of size 1
5
|GL(6, 2)|.
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An existence result

It was shown by (Fazeli-Lovett-Vardy 2014) that small

t-designs in Jq(n, k) exist for all t.

Theorem (Ernst.-S. 2022) Let t be a positive integer and let

ε > 0. Then, for all sufficiently large n, there is a t-design in

GL(n, q) whose cardinality N satisfies N/|GL(n, q)| < ε.

Through our algebraic characterisation this also gives similar

existence results for subsets of GL(n, q) that are transitive on

signed flags.

17



An existence result

It was shown by (Fazeli-Lovett-Vardy 2014) that small

t-designs in Jq(n, k) exist for all t.

Theorem (Ernst.-S. 2022) Let t be a positive integer and let

ε > 0. Then, for all sufficiently large n, there is a t-design in

GL(n, q) whose cardinality N satisfies N/|GL(n, q)| < ε.

Through our algebraic characterisation this also gives similar

existence results for subsets of GL(n, q) that are transitive on

signed flags.

17



An existence result

It was shown by (Fazeli-Lovett-Vardy 2014) that small

t-designs in Jq(n, k) exist for all t.

Theorem (Ernst.-S. 2022) Let t be a positive integer and let

ε > 0. Then, for all sufficiently large n, there is a t-design in

GL(n, q) whose cardinality N satisfies N/|GL(n, q)| < ε.

Through our algebraic characterisation this also gives similar

existence results for subsets of GL(n, q) that are transitive on

signed flags.

17



Designs in finite general linear groups

Kai-Uwe Schmidt

Paderborn University

Germany

(joint work with Alena Ernst)

18


