Designs in finite general linear groups

Kai-Uwe Schmidt

Paderborn University
Germany
(joint work with Alena Ernst)

Combinatorics: A big picture

sets

Combinatorics: A big picture

sets
\square
vector spaces

Combinatorics: A big picture

vector spaces

Combinatorics: A big picture

Coding and design theory

Coding Theory
Design Theory

Coding and design theory

Coding Theory
Separation

Design Theory
Approximation

Coding and design theory

Coding Theory
 Separation

ordinary codes
constant weight codes
subspace codes
permutation codes

Design Theory
Approximation
orthogonal arrays
combinatorial designs
subspace designs
transitive sets

Coding and design theory

Coding Theory
 Separation

ordinary codes
constant weight codes
subspace codes
permutation codes
full rank codes

Design Theory
Approximation
orthogonal arrays
combinatorial designs
subspace designs
transitive sets
transitive linear sets

Coding and design theory

Coding Theory
 Separation

 ordinary codesconstant weight codes
subspace codes
permutation codes
full rank codes

Design Theory
Approximation orthogonal arrays
combinatorial designs
subspace designs
transitive sets
transitive linear sets

Common framework: association schemes

Association schemes

Association scheme: A finite set X and a finite-dimensional subspace of $\mathbb{C}^{X \times X}$.

Association schemes

Association scheme: A finite set X and a finite-dimensional subspace of $\mathbb{C}^{X \times X}$.

Subset: $Y \subseteq X$.

Association schemes

Association scheme: A finite set X and a finite-dimensional subspace of $\mathbb{C}^{X \times X}$.

Subset: $Y \subseteq X$.

> Basis of matrices with entries 0 or 1 $\left\{D_{0}, D_{1}, \ldots, D_{m}\right\}$

Basis of matrices
with eigenvalues 0 or 1
$\left\{E_{0}, E_{1}, \ldots, E_{m}\right\}$

Association schemes

Association scheme: A finite set X and a finite-dimensional subspace of $\mathbb{C}^{X \times X}$.
Subset: $Y \subseteq X$.

$$
\begin{aligned}
& \text { Basis of matrices } \\
& \text { with entries } 0 \text { or } 1 \\
& \left\{D_{0}, D_{1}, \ldots, D_{m}\right\}
\end{aligned}
$$

Inner distribution $\left(A_{i}\right)$

$$
A_{i}=\frac{1}{|Y|} 1_{Y}^{T} D_{i} 1_{Y}
$$

Basis of matrices
with eigenvalues 0 or 1

$$
\left\{E_{0}, E_{1}, \ldots, E_{m}\right\}
$$

Dual distribution (A_{k}^{\prime})

$$
A_{k}^{\prime}=\frac{|X|}{|Y|} 1_{Y}^{T} E_{k} 1_{Y}
$$

Association schemes

Association scheme: A finite set X and a finite-dimensional subspace of $\mathbb{C}^{X \times X}$.
Subset: $Y \subseteq X$.

Basis of matrices with entries 0 or 1

$$
\left\{D_{0}, D_{1}, \ldots, D_{m}\right\}
$$

Inner distribution $\left(A_{i}\right)$

$$
A_{i}=\frac{1}{|Y|} 1_{Y}^{T} D_{i} 1_{Y}
$$

D-code

$$
A_{i} \neq 0 \Rightarrow i \in D
$$

Basis of matrices
with eigenvalues 0 or 1

$$
\left\{E_{0}, E_{1}, \ldots, E_{m}\right\}
$$

Dual distribution (A_{k}^{\prime})

$$
A_{k}^{\prime}=\frac{|X|}{|Y|} 1_{Y}^{T} E_{k} 1_{Y}
$$

$$
\begin{gathered}
T \text {-design } \\
k \in T \Rightarrow A_{k}^{\prime}=0
\end{gathered}
$$

Designs

For $T=\{1,2, \ldots, t\}$, the T-designs

Designs

For $T=\{1,2, \ldots, t\}$, the T-designs in the
■ Hamming scheme are orthogonal arrays;

Designs

For $T=\{1,2, \ldots, t\}$, the T-designs in the
■ Hamming scheme are orthogonal arrays;
■ Johnson scheme are combinatorial designs;

Designs

For $T=\{1,2, \ldots, t\}$, the T-designs in the
■ Hamming scheme are orthogonal arrays;
■ Johnson scheme are combinatorial designs;
■ q-Johnson scheme are subspace designs.

Designs

For $T=\{1,2, \ldots, t\}$, the T-designs in the
■ Hamming scheme are orthogonal arrays;
■ Johnson scheme are combinatorial designs;
■ q-Johnson scheme are subspace designs.

Designs

For $T=\{1,2, \ldots, t\}$, the T-designs in the
■ Hamming scheme are orthogonal arrays;
■ Johnson scheme are combinatorial designs;
■ q-Johnson scheme are subspace designs.

This motivates the present general definition [of T-designs], the "conjecture" being that T-designs will often have interesting properties.
— Delsarte's Thesis, 1973

Finite groups \& association schemes

Finite groups \& association schemes

Let G be a finite group with
■ conjugacy classes $C_{1}, C_{2}, \ldots, C_{m}$ and
■ (complex) irreducible characters $\chi_{1}, \chi_{2}, \ldots, \chi_{m}$.

Finite groups \& association schemes

Let G be a finite group with
■ conjugacy classes $C_{1}, C_{2}, \ldots, C_{m}$ and
■ (complex) irreducible characters $\chi_{1}, \chi_{2}, \ldots, \chi_{m}$.

Every finite group gives an association scheme with

$$
D_{i}(x, y)=1\left[x^{-1} y \in C_{i}\right] \quad E_{k}(x, y)=\chi_{k}(1) \chi_{k}\left(x^{-1} y\right)
$$

Finite groups \& association schemes

Let G be a finite group with
■ conjugacy classes $C_{1}, C_{2}, \ldots, C_{m}$ and
■ (complex) irreducible characters $\chi_{1}, \chi_{2}, \ldots, \chi_{m}$.

Every finite group gives an association scheme with

$$
D_{i}(x, y)=1\left[x^{-1} y \in C_{i}\right] \quad E_{k}(x, y)=\chi_{k}(1) \chi_{k}\left(x^{-1} y\right)
$$

The dual distribution of a subset Y of G then satisfies

$$
A_{k}^{\prime}=\chi_{k}(1) \sum_{x, y \in Y} \chi_{k}\left(x^{-1} y\right)
$$

Designs in the symmetric group

Designs in the symmetric group

$$
\sigma=(421)
$$

Designs in the symmetric group

$$
\sigma=(421)
$$

Designs in the symmetric group

$$
\sigma=(421)
$$

1	3	6	7
4	5		
2			

Designs in the symmetric group

$$
\sigma=(421)
$$

1	3	6	7	
4	5			
2				

σ-tabloid

Designs in the symmetric group

$$
\sigma=(421)
$$

1	3	6	7	
4	5			
2				

A subset Y of S_{n} is transitive on σ-tabloids if the number of $\pi \in Y$ such that

a_{1}	a_{2}	a_{3}	a_{4}					
a_{5}	a_{6}		π					
a_{7}					b_{1}	b_{2}	b_{3}	b_{4}
:---	:---	:---	:---					
b_{5}	b_{6}							
b_{7}								

is independent of the two σ-tabloids.

Designs in S_{5}

transitive on (41)-tabloids

Designs in S_{5}

transitive on (32)-tabloids
transitive on (41)-tabloids

Designs in S_{5}

transitive on (32)-tabloids
transitive on (41)-tabloids

transitive on (41)-tabloids

Partitions and the symmetric group

For the symmetric group, the conjugacy classes and the irreducible characters are naturally indexed by partitions.

Partitions and the symmetric group

For the symmetric group, the conjugacy classes and the irreducible characters are naturally indexed by partitions.

The partitions are partially ordered by dominance \unlhd.

Characterisation of designs in S_{n}

Theorem (Martin-Sagan 2007) $Y \subseteq S_{n}$ is transitive on σ-tabloids if and only if $A_{\lambda}^{\prime}=0$ for all $\sigma \unlhd \lambda \triangleleft(n)$.

Characterisation of designs in S_{n}

Theorem (Martin-Sagan 2007) $Y \subseteq S_{n}$ is transitive on σ-tabloids if and only if $A_{\lambda}^{\prime}=0$ for all $\sigma \unlhd \lambda \triangleleft(n)$.

Theorem (Livingstone-Wagner 1965)
Every subgroup of S_{n} that is t-homogeneous for some t satisfying $1 \leq t \leq n / 2$ is also ($t-1$)-homogeneous.

Characterisation of designs in S_{n}

Theorem (Martin-Sagan 2007) $Y \subseteq S_{n}$ is transitive on σ-tabloids if and only if $A_{\lambda}^{\prime}=0$ for all $\sigma \unlhd \lambda \triangleleft(n)$.

Theorem (Livingstone-Wagner 1965)
Every subgroup of S_{n} that is t-homogeneous for some t satisfying $1 \leq t \leq n / 2$ is also ($t-1$)-homogeneous.

Corollary (Martin-Sagan 2007) If Y is transitive on σ-tabloids, then Y is also transitive on τ-tabloids for all $\sigma \unlhd \tau$.

Characterisation of designs in S_{n}

Theorem (Martin-Sagan 2007) $Y \subseteq S_{n}$ is transitive on σ-tabloids if and only if $A_{\lambda}^{\prime}=0$ for all $\sigma \unlhd \lambda \triangleleft(n)$.

Theorem (Livingstone-Wagner 1965)
Every subgroup of S_{n} that is t-homogeneous for some t satisfying $1 \leq t \leq n / 2$ is also $(t-1)$-homogeneous.

Corollary (Martin-Sagan 2007) If Y is transitive on σ-tabloids, then Y is also transitive on τ-tabloids for all $\sigma \unlhd \tau$.

This implies the Livingstone-Wagner Theorem since

$$
(n-t, t) \unlhd(n-t+1, t-1) \quad \text { for } 1 \leq t \leq n / 2
$$

Compositions and flags

Let $\operatorname{GL}(n, q)$ be the group of invertible $n \times n$ matrices over \mathbb{F}_{q}.

Compositions and flags

Let $\operatorname{GL}(n, q)$ be the group of invertible $n \times n$ matrices over \mathbb{F}_{q}.

$$
\sigma=(241)
$$

Compositions and flags

Let $\operatorname{GL}(n, q)$ be the group of invertible $n \times n$ matrices over \mathbb{F}_{q}.

$$
\begin{aligned}
& v_{1}=\left\langle v_{1}, v_{2}\right\rangle \\
& v_{2}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\rangle \\
& v_{3}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\rangle
\end{aligned}
$$

Compositions and flags

Let $\operatorname{GL}(n, q)$ be the group of invertible $n \times n$ matrices over \mathbb{F}_{q}.

$$
\sigma=(241) \quad \sigma \text {-flag }
$$

v_{1}			v_{2}
v_{3}			v_{4}
v_{5}	v_{6}		
v_{7}			

$$
\begin{aligned}
& V_{1}=\left\langle v_{1}, v_{2}\right\rangle \\
& V_{2}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\rangle \\
& V_{3}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\rangle
\end{aligned}
$$

Our interest: subsets of $\mathrm{GL}(n, q)$ that are transitive on σ-flags.

Some facts about GL (n, q)

Reminder: The conjugacy classes of $\mathrm{GL}(n, q)$ correspond to the Jordan normal forms.

Some facts about GL($n, q)$

Reminder: The conjugacy classes of $\mathrm{GL}(n, q)$ correspond to the Jordan normal forms.

The conjugacy classes and the (complex) irreducible characters of $\mathrm{GL}(n, q)$ are naturally indexed by mappings
$\underline{\lambda}:\left\{\right.$ monic irr. polynomials in $\left.\mathbb{F}_{q}[X]\right\} \backslash\{X\} \rightarrow$ Partitions of finite support such that

$$
\sum_{f} \operatorname{deg}(f)|\underline{\lambda}(f)|=n
$$

Characterisation of designs

Notation: Composition $\sigma=(241) \longrightarrow$ partition $\tilde{\sigma}=(421)$.

Characterisation of designs

Notation: Composition $\sigma=(241) \longrightarrow$ partition $\tilde{\sigma}=(421)$.
Theorem (Ernst-S. 2022) A subset $Y \subseteq G L(n, q)$ is transitive on σ-flags if and only if $A_{\underline{\lambda}}^{\prime}=0$ for all $\tilde{\sigma} \unlhd \underline{\lambda}(X-1) \triangleleft(n)$.

Characterisation of designs

Notation: Composition $\sigma=(241) \longrightarrow$ partition $\tilde{\sigma}=(421)$.
Theorem (Ernst-S. 2022) A subset $Y \subseteq G L(n, q)$ is transitive on σ-flags if and only if $A_{\underline{\lambda}}^{\prime}=0$ for all $\tilde{\sigma} \unlhd \underline{\lambda}(X-1) \triangleleft(n)$.

Corollary Transitivity on σ-flags implies transitivity on τ-flags, where τ has the same parts as σ.

Characterisation of designs

Notation: Composition $\sigma=(241) \longrightarrow$ partition $\tilde{\sigma}=(421)$.
Theorem (Ernst-S. 2022) A subset $Y \subseteq G L(n, q)$ is transitive on σ-flags if and only if $A_{\underline{\lambda}}^{\prime}=0$ for all $\tilde{\sigma} \unlhd \underline{\lambda}(X-1) \triangleleft(n)$.

Corollary Transitivity on σ-flags implies transitivity on τ-flags, where τ has the same parts as σ.
E.g., transitivity on t-spaces implies transitivity on $(n-t)$-spaces.

Characterisation of designs

Notation: Composition $\sigma=(241) \longrightarrow$ partition $\tilde{\sigma}=(421)$.
Theorem (Ernst-S. 2022) A subset $Y \subseteq G L(n, q)$ is transitive on σ-flags if and only if $A_{\underline{\lambda}}^{\prime}=0$ for all $\tilde{\sigma} \unlhd \underline{\lambda}(X-1) \triangleleft(n)$.

Corollary Transitivity on σ-flags implies transitivity on τ-flags, where τ has the same parts as σ.
E.g., transitivity on t-spaces implies transitivity on $(n-t)$-spaces.

Corollary Transitivity on σ-flags implies transitivity on τ-flags for all τ satisfying $\tilde{\sigma} \unlhd \tilde{\tau}$.

Characterisation of designs

Notation: Composition $\sigma=(241) \longrightarrow$ partition $\tilde{\sigma}=(421)$.
Theorem (Ernst-S. 2022) A subset $Y \subseteq G L(n, q)$ is transitive on σ-flags if and only if $A_{\underline{\lambda}}^{\prime}=0$ for all $\tilde{\sigma} \unlhd \underline{\lambda}(X-1) \triangleleft(n)$.

Corollary Transitivity on σ-flags implies transitivity on τ-flags, where τ has the same parts as σ.
E.g., transitivity on t-spaces implies transitivity on $(n-t)$-spaces.

Corollary Transitivity on σ-flags implies transitivity on τ-flags for all τ satisfying $\tilde{\sigma} \unlhd \tilde{\tau}$.
E.g., transitivity on t-spaces implies transitivity on $(t-1)$-spaces for $1 \leq t \leq n / 2$. For subgroups this was proved by (Perin 1972).

Signed flags

$$
\sigma=(241)
$$

Signed flags

$$
\sigma=(241) \quad \sigma \text {-flag }
$$

v_{1}			v_{2}
v_{3}			v_{4}

$$
\begin{aligned}
& V_{1}=\left\langle v_{1}, v_{2}\right\rangle \\
& V_{2}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\rangle \\
& V_{3}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\rangle
\end{aligned}
$$

Signed flags

$$
\sigma=(241) \quad \sigma \text {-flag }
$$

$$
\begin{aligned}
& V_{1}=\left\langle v_{1}, v_{2}\right\rangle \\
& V_{2}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\rangle \\
& V_{3}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\rangle
\end{aligned}
$$

Signed flags

$$
\sigma=(241)
$$

σ-flag
bases

$*$	v_{1}	v_{2}		$V_{1}$$=\left\langle v_{1}, v_{2}\right\rangle$	$\left(v_{1}, v_{2}\right)$
v_{3}	v_{4}	v_{5}	v_{6}		
	v_{2}			v_{2}	

Signed flags

$$
\sigma=(241) \quad \sigma \text {-flag }
$$

bases

We call this a signed σ-flag with signature $S=(* \circ *)$.

Signed flags

$$
\sigma=(241) \quad \sigma \text {-flag }
$$

bases

$*$	v_{1}	v_{2}			$\left(V_{1}=\left\langle v_{1}, v_{2}\right\rangle\right.$
	v_{3}	v_{4}	v_{5}	v_{6}	
$*$	v_{7}			$v_{2}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\rangle$	

We call this a signed σ-flag with signature $S=(* \circ *)$.
The type of this flag is the double partition ((21), (4)).

Signed flags

$$
\sigma=(241) \quad \sigma \text {-flag }
$$

$*$	v_{1}	v_{2}			$\left(v_{1}=\left\langle v_{1}, v_{2}\right\rangle\right.$
	v_{3}	v_{4}	v_{5}	v_{6}	
$*$	v_{7}			$V_{2}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\rangle$	
		$V_{3}=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\rangle$	$\left(v_{7}\right)$		

We call this a signed σ-flag with signature $S=(* \circ *)$.
The type of this flag is the double partition ((21), (4)).

Two special cases:
$(t, n-t)$-flag with signature (\circ): t-space of V.
$(t, n-t)$-flag with signature $(*)$: basis of a t-space of V.

The general characterisation

For $q=3$, let $\underline{\lambda}$ be given by
$X-1$
$X+1$
$X^{2}+1$
$X^{2}+X-1$
(31)
(33)
(2)
(21)

The general characterisation

For $q=3$, let $\underline{\lambda}$ be given by
$X-1$
$X+1$
$X^{2}+1$
$X^{2}+X-1$
(31)
(33)
(2)
(21)

Its type equals $\left(\left(2^{5} 1^{6}\right),(31)\right)$.

The general characterisation

For $q=3$, let $\underline{\lambda}$ be given by
$X-1$
$X+1$
$X^{2}+1$
$X^{2}+X-1$
(31)
(33)
(2)
(21)

Its type equals $\left(\left(2^{5} 1^{6}\right),(31)\right)$.

A partial order \preceq on double partitions: reverse refinement in first coordinate, dominance in second coordinate.

The general characterisation

For $q=3$, let $\underline{\lambda}$ be given by
$X-1$
(31)
$X+1$
$X^{2}+1$
(2)
$X^{2}+X-1$
(33)
(21)

Its type equals $\left(\left(2^{5} 1^{6}\right),(31)\right)$.

A partial order \preceq on double partitions: reverse refinement in first coordinate, dominance in second coordinate.

Theorem (Ernst-S. 2022) A subset $Y \subseteq G \mathrm{GL}(n, q)$ is transitive on signed flags of type (σ, τ) with fixed signature if and only if $A_{\underline{\lambda}}^{\prime}=0$ for all

$$
(\sigma, \tau) \preceq \operatorname{type}(\underline{\lambda}) \prec(\emptyset,(n)) .
$$

The general characterisation

For $q=3$, let $\underline{\lambda}$ be given by
$X-1$
(31)
$X+1$
$X^{2}+1$
(2)
$X^{2}+X-1$
(33)
(21)

Its type equals $\left(\left(2^{5} 1^{6}\right),(31)\right)$.

A partial order \preceq on double partitions: reverse refinement in first coordinate, dominance in second coordinate.

Theorem (Ernst-S. 2022) A subset $Y \subseteq \mathrm{GL}(n, q)$ is transitive on signed flags of type (σ, τ) with fixed signature if and only if $A_{\underline{\lambda}}^{\prime}=0$ for all

$$
(\sigma, \tau) \preceq \operatorname{type}(\underline{\lambda}) \prec(\emptyset,(n))
$$

This has similar consequences as the result for unsigned flags.

Transitive subgroups of $\mathrm{GL}(n, q)$

A Singer cycle is sharply transitive nonzero points of \mathbb{F}_{q}^{n} and it contains a subgroup that is sharply transitive on 1-spaces.

Transitive subgroups of $\mathrm{GL}(n, q)$

A Singer cycle is sharply transitive nonzero points of \mathbb{F}_{q}^{n} and it contains a subgroup that is sharply transitive on 1-spaces.

If G is a subgroup of $\mathrm{GL}(n, q)$ with stronger transitivity and does not contain $\mathrm{SL}(n, q)$, then one of the following holds:

Transitive subgroups of $\mathrm{GL}(n, q)$

A Singer cycle is sharply transitive nonzero points of \mathbb{F}_{q}^{n} and it contains a subgroup that is sharply transitive on 1-spaces.

If G is a subgroup of $\mathrm{GL}(n, q)$ with stronger transitivity and does not contain $\operatorname{SL}(n, q)$, then one of the following holds:

(n, q)	group	(σ, τ)
$(2,3)$	$G \cong \Gamma \mathrm{~L}\left(1,3^{2}\right)$	$\left(\left(1^{2}\right), \emptyset\right)$
$(2,5)$	$\|G\|=96$	$\left(\left(1^{2}\right), \emptyset\right)$
$(3,2)$	$G \cong \Gamma \mathrm{~L}\left(1,2^{3}\right)$	$\left(\left(1^{3}\right), \emptyset\right)$
$(4,2)$	$G \cong A_{7}$	$((31), \emptyset)$
$(5,2)$	$G \cong \Gamma \mathrm{~L}\left(1,2^{5}\right)$	$(\emptyset,(32))$

Transitive subgroups of $\mathrm{GL}(n, q)$

A Singer cycle is sharply transitive nonzero points of \mathbb{F}_{q}^{n} and it contains a subgroup that is sharply transitive on 1-spaces.

If G is a subgroup of $\mathrm{GL}(n, q)$ with stronger transitivity and does not contain $\operatorname{SL}(n, q)$, then one of the following holds:

(n, q)	group	(σ, τ)
$(2,3)$	$G \cong \Gamma \mathrm{~L}\left(1,3^{2}\right)$	$\left(\left(1^{2}\right), \emptyset\right)$
$(2,5)$	$\|G\|=96$	$\left(\left(1^{2}\right), \emptyset\right)$
$(3,2)$	$G \cong \Gamma \mathrm{~L}\left(1,2^{3}\right)$	$\left(\left(1^{3}\right), \emptyset\right)$
$(4,2)$	$G \cong A_{7}$	$((31), \emptyset)$
$(5,2)$	$G \cong \Gamma \mathrm{~L}\left(1,2^{5}\right)$	$(\emptyset,(32))$

$\mathrm{SL}(n, q)$ is transitive on bases of $(n-1)$-spaces.

A recursive construction

t-design in $G L(V)$: Transitive on bases of t-spaces of $V=\mathbb{F}_{q}^{n}$.

A recursive construction

t-design in $G L(V)$: Transitive on bases of t-spaces of $V=\mathbb{F}_{q}^{n}$.
t-design in $J_{q}(n, k)$: Subset D of the Grassmannian $J_{q}(n, k)$ of V such that the number of elements in D containing a given t-space of V is independent of the choice of this t-space.

A recursive construction

t-design in $\mathrm{GL}(V)$: Transitive on bases of t-spaces of $V=\mathbb{F}_{q}^{n}$.
t-design in $J_{q}(n, k)$: Subset D of the Grassmannian $J_{q}(n, k)$ of V such that the number of elements in D containing a given t-space of V is independent of the choice of this t-space.

Theorem (Ernst-S. 2022) Write $V=U \oplus W$ with $\operatorname{dim} U=k$. If there is a
(1) a t-design Y in $\mathrm{GL}(U)$,
(2) a t-design Z in $\mathrm{GL}(W)$,
(3) a t-design D in $J_{q}(n, k)$,
then there is a t-design in $\mathrm{GL}(V)$ of size $|Y| \cdot|Z| \cdot|D| \cdot q^{k(n-k)}$.

A recursive construction

t-design in $\mathrm{GL}(V)$: Transitive on bases of t-spaces of $V=\mathbb{F}_{q}^{n}$. t-design in $J_{q}(n, k)$: Subset D of the Grassmannian $J_{q}(n, k)$ of V such that the number of elements in D containing a given t-space of V is independent of the choice of this t-space.

Theorem (Ernst-S. 2022) Write $V=U \oplus W$ with $\operatorname{dim} U=k$.
If there is a
(1) a t-design Y in $G L(U)$,
(2) a t-design Z in $\mathrm{GL}(W)$,
(3) a t-design D in $J_{q}(n, k)$,
then there is a t-design in $\mathrm{GL}(V)$ of size $|Y| \cdot|Z| \cdot|D| \cdot q^{k(n-k)}$.
Example. Taking $Y=Z \cong \mathrm{GL}(3,2)$ and D a 2-design in $J_{2}(6,3)$ of size 279 gives a 2 -design in $\operatorname{GL}(6,2)$ of size $\frac{1}{5}|\operatorname{GL}(6,2)|$.

An existence result

It was shown by (Fazeli-Lovett-Vardy 2014) that small t-designs in $J_{q}(n, k)$ exist for all t.

An existence result

It was shown by (Fazeli-Lovett-Vardy 2014) that small t-designs in $J_{q}(n, k)$ exist for all t.

Theorem (Ernst.-S. 2022) Let t be a positive integer and let $\epsilon>0$. Then, for all sufficiently large n, there is a t-design in $\mathrm{GL}(n, q)$ whose cardinality N satisfies $N /|\mathrm{GL}(n, q)|<\epsilon$.

An existence result

It was shown by (Fazeli-Lovett-Vardy 2014) that small t-designs in $J_{q}(n, k)$ exist for all t.

Theorem (Ernst.-S. 2022) Let t be a positive integer and let $\epsilon>0$. Then, for all sufficiently large n, there is a t-design in $\mathrm{GL}(n, q)$ whose cardinality N satisfies $N /|\mathrm{GL}(n, q)|<\epsilon$.

Through our algebraic characterisation this also gives similar existence results for subsets of $\mathrm{GL}(n, q)$ that are transitive on signed flags.

Designs in finite general linear groups

Kai-Uwe Schmidt

Paderborn University
Germany
(joint work with Alena Ernst)

