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The Critical Problem (Crapo&Rota, 1970)

Setup:

X be a vector space of dimension N ≥ 3 over Fq ;
Gq(X ,1) be the set of 1-dimensional subspaces of X ;

A ⊆ Gq(X ,1) a non-empty subset;

1≤ k ≤ N−1 an integer.

Questions:

Is there a k-dimensional subspace C ≤ X such that C ∩L= {0} for all L ∈ A ?

How many are these spaces?

“Answer”: It depends on the combinatorics of A , in a precise sense.
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The Critical Problem (Crapo&Rota, 1970)

Recall: A ⊆ Gq(X ,1).

Let L be the lattice of subspaces of X that are spanned by some elements of A , ordered
by inclusion ≤.

Proposition (Folklore)

L is a geometric lattice and its rank function is the Fq-dimension of spaces.

The ith Whitney number of L is

wi (L ) = ∑
V∈L

dim(V )=i

µL (V ).

The characteristic polynomial of L is

χ(L ,λ ) = ∑
i

wi (L )λ rk(L )−i ∈ Z[λ ].

Theorem (Crapo&Rota, 1970)

The largest k for which there exists a k-subspace of X avoiding all the elements of A is

rk(L )−min{r | χ(L ,qr ) ̸= 0} .

The value of the minimum is called critical exponent.
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The Critical Problem (Crapo&Rota, 1970)

Refining the result of Crapo&Rota:

Theorem (R., 2020)

The following are equivalent:

(partial) knowledge of the number of “avoiders”

(partial) knowledge of the Whitney numbers

More precisely, let αk(A ) = #{C ≤ X | dim(C ) = k, C ∩L= {0} for all L ∈ A }. Then

αk(A ) =
k

∑
i=0

wi (L )

[
N− i

k− i

]
q

for 0≤ k ≤ N,

wi (L ) =
i

∑
k=0

αk(A )

[
N−k

i −k

]
q

(−1)i−kq(
i−k
2 ) for 0≤ i ≤ N.
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The Critical Problem and Coding Theory

Having large minimum distance is an “avoiding-type” property:

Remark

Let X = Fnq and let 2≤ d ≤ n.

Let A be the collection of 1-dimensional subspaces of X generated by a vector of
Hamming weight < d .

Then the avoiders of A are the codes C ≤ Fnq of minimum Hamming distance ≥ d .

The lattices that correspond to Hamming-metric codes are called higher-weight Dowling
lattices (∼ 1970).

Notation

H (q,n, r) is the lattice of subspaces of Fn
q that are generated by some vectors of

Hamming weight ≤ r . The ith Whitney number is wi (q,n, j).

The techniques for computing the Whitney numbers of these lattices have not been
discovered yet (some progress made by Dowling, Zaslavsky, Bonin, Kung, Brini, Games,
...) → wide open problem, equivalent to counting codes.
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Higher-Weight Dowling Lattices

Formulas can be nasty and with no obvious “structure”:

Theorem (R., 2020)

For all n ≥ 9 we have

−w3(2,n,3) = ∑
1≤ℓ1<ℓ2<ℓ3≤n−2

(
3

∏
j=1

(
n− ℓj −9+3j)

2

))
+8

(
n

3

) 8

∑
s=3

(
n−3

n− s

)
(−1)s−3

+106

(
n

4

) 8

∑
s=4

(
n−4

n− s

)
(−1)s−4+820

(
n

5

) 8

∑
s=5

(
n−5

n− s

)
(−1)s−5

+4565

(
n

6

) 8

∑
s=6

(
n−6

n− s

)
(−1)s−6

+19810

(
n

8

) 8

∑
s=7

(
n−7

n− s

)
(−1)s−7+70728

(
n

8

)
.
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Higher-Weight Dowling Lattices

For some parameters, Bernoulli numbers show up:

Theorem (R., 2020)

For all integers n ≥ d ≥ 2 and any prime power q,

w2(q,n,d) = (qn−1−1)
d

∑
j=1

(
n

j

)
(q−1)j−2 − ∑

1≤ℓ1<ℓ2≤n

[
qn−ℓ1−1

(
d−1

∑
j=0

(
n− ℓ2

j

)
(q−1)j

)

+
n−ℓ2

∑
j=d

d−1

∑
h=0

(
n− ℓ2

j

)(
n− ℓ1−1

h

)
(q−1)j+h

+
n−ℓ2

∑
s=d

d−2

∑
t=0

(
n− ℓ2

s

)(
n− ℓ1−1− s

t

)
(q−1)s+t

s

∑
ν=d−t

γq(s,s−d+ t+2,ν)

]
,

where the γa(b,c,ν)’s are the agreement numbers.

γa(b,c,ν) is a polynomial in a (for any b, c and ν) whose coefficients are expressions
involving the Bernoulli numbers:

x

ex −1
=

+∞

∑
n=0

Bn
xn

n!
.
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The Hardness of Counting Codes

Whitney numbers have a very good track record of resisting explicit computations
(NP-hard, in Sheekey’s sense).

And counting codes is as hard as computing Whitney numbers explicitly.

→ Counting codes is a hard problem.

→ Look at approximations: estimate codes having a certain property.

Proposition (Folklore)

A uniformly random k-dimensional code C ≤ Fnq is MDS with probability that approaches
1 as q →+∞.

In a language that is better aligned with this conference:

Proposition (Folklore)

n uniformly random projective points in PG(k−1,q) form an arc with probability that
goes to 1 as q →+∞.
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Rank-metric codes

Definition

A rank-metric code is a non-zero Fq-subspace C ≤ Fn×m
q . Its minimum distance is

drk(C ) = min{rk(X ) | X ∈ C , X ̸= 0}.

Known since 1978 in various contexts:

1978: Delsarte (association schemes, bilinear forms)
1985: Gabidulin (vectors over field extension)
1991: Roth (crisscross error correction)
1998: Cooperstein (external flats to determinantal varieties)
2008: Silva, Koetter, Kschischang (fixing error amplification in networks)

Studied in connection with a number of topics:

association schemes
semifields
linear sets
posets and lattices
q-analogues of matroids
zeta functions
q-rook theory
...
Alberto Ravagnani (TU/e) The Critical Problem and Coding Theory Irsee, Sept. 2022



The Singleton-type bound

We assume m ≥ n without loss of generality.

Theorem (Delsarte)

Let C ≤ Fn×m
q be a rank-metric code with drk(C )≥ d . Then

dim(C )≤m(n−d+1).

This follows from the fact that the projection

π : C → F(n−d+1)×m
q

onto the last n−d+1 rows must be injective.

Definition

C is MRD if dim(C ) =m(n−drk(C )+1).

Unlike MDS codes, MRD codes exist for all parameters (existence question solved by
Delsarte himself).
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How many MRD codes are out there?

Equivalently, what is the value of

δq(n×m,d) :=
#{C ≤ Fn×m

q | dim(C ) =m(n−d+1), C is MRD of distance d}[
mn

m(n−d+1)

]
q

?

This is a hard problem, equivalent to computing the Whitney numbers of certain lattices.

Recall:

The (Generalized) Critical Problem by Crapo&Rota, 1970

Let X be a linear space over Fq and let A be a collection of 1-dimensional subspaces
of X . How many k-dimensional subspaces of X avoid every element of A ?

Specializing:

Remark (MRD codes)

Let X = Fn×m
q and let A be the nonzero matrices of rank ≤ d −1 up to multiples. Then

the “avoiders” of A of dimension m(n−d+1) are precisely the MRD codes of
distance d .
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2×m MRD codes of distance 2

Expanding the theory of spectrum-free matrices:

Theorem (Antrobus, Gluesing-Luerssen, 2018)

We have

lim
q→+∞

δq(2×m,2) =
m

∑
i=0

(−1)i

i !
.

This number is close to 1/e. Explanation? Is this situation “typical”?

There are ∼ qm matrices of rank 1 up to multiples in F2×m
q

If A is a uniformly random set of projective points in F2×m
q of size ∼ qm, what is

the density of m-dimensional avoiders of A for q large?

Theorem (Gruica, R., Sheekey, Zullo, 2022)

The average density is precisely 1/e for q →+∞.

In other words, the asymptotic density of 2×m MRD codes of distance 2 is quite typical,
given the number of projective points to be avoided.
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The asymptotic density of MRD codes

Question

What is the asymptotic behavior of δq(n×m,d) as q →+∞?

MRD codes are the rank-analogues of MDS codes, which are dense for q →+∞. But...

Theorem (Gruica, R., 2020)

We have
δq(n×m,d) ∈O

(
q−(d−1)(n−d+1)+1

)
as q →+∞.

This results uses the interpretation of MRD codes as “avoiders” (Crapo&Rota, 1970).
Tools in the proof: graph theory.

Note: non-density of MRD codes is known from 2018 (Antrobus&Gluesing-Luerssen,
Byrne&R.)

Corollary (Antrobus, Gluesing-Luerssen, Gruica, R., 2018/20)

lim
q→+∞

δq(n×m,d) =


1 if d = 1,

∑
m
i=0

(−1)i

i! if n = d = 2,

0 otherwise.
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What is the “exact” asymptotic density?

This is known only in very few cases (we have seen one already: 2×m, distance 2).

Some cases can be studied using the link between MRD codes and semifields:

Theorem (various authors, various forms)

There is a 1-to-1 correspondence between equivalence classes of n×n full-rank MRD
codes and isotopy classes of semifields.

De la Cruz, Kiermaier, Wassermann, Willems, Algebraic structures of MRD codes,
Advances in Mathematics of Communications, 2016.

Using the connection with semifields:

Theorem (Gluesing-Luerssen, 2019)

δq(3×3,3) =
(q−1)(q3−1)(q3−q)3 (q3−q2)2 (q3−q2−q−1)

3(q7−1)(q9−1)(q9−q)
.

For q large, this number is ∼ 1
3q

−3.
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The number of n×n full-rank MRD codes

Building on results by Menichetti and Biliotti&Jha&Johnson:

Theorem (Gruica, R., Sheekey, Zullo, 2022)

The number of full-rank MRD codes C ≤ Fn×n
q is at least

|GLn(q)|2

n(qn−1)2

(
1+

(
n−1

2

)
(qn−1)(q−2)

q−1

)
.

Moreover, the bound is sharp for n prime and q sufficiently large (and for any q if n= 3).

This recovers the sparseness result for 3×3 full-rank MRD codes.

The connection between spaces of matrices and semifields is based on:

(Ln,q ,+,◦) ∼= (EndFq
(Fnq),+,◦) ∼= (Fn×n

q ,+, ·)
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The number of n×n full-rank MRD codes

Corollary (Gruica, R., Sheekey, Zullo, 2022)

For n prime we have

δ
rk
q (n×n,n)∼ (n−1)(n−2)

2n
q−n3+3n2−n as q →+∞.

Is this “typical”?

There are ∼ qn
2−2 matrices of rank ≤ n−1 up to multiples in Fn×n

q

If A is a uniformly random set of projective points in Fn×n
q of size ∼ qn

2−2, what is
the density of n-dimensional avoiders of A for q large?

Theorem (Gruica, R., Sheekey, Zullo, 2022)

The average density is

∼ 1

eq
n−2 for q →+∞.

Conclusions

For n prime, full-rank n×n MRD codes are sparse, but way less sparse than “average”.
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The Average Critical Problem

The previous results have been obtained by specializing:

Theorem (Gruica, R., Sheekey, Zullo, 2022)

Let X = FNq . The average density of the k-dimensional avoiders of a uniformly random

set of projective points in FN
q of size ∼ qs is

∼ e−qk+s−N
.

The case of 2×m, distance 2, MRD codes corresponds to s = N−k ⇝ e−1.

Question

Which properties of the points to be avoided play a role? How does the “dependency” on
these properties look like?
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The Average Critical Problem

Fixing both cardinality and dimension of the span:

Theorem (Gruica, R., Sheekey, Zullo, 2022)

Let X = FNq . The average density of the k-dimensional avoiders of a uniformly random

set of projective points in FNq of size ∼ qs and spanning a space of dimension 2≤ ρ ≤N is

λq(N,k, ℓ,ρ)

λq(N,0, ℓ,ρ)
,

where

λq(N,s, ℓ,ρ) =
ρ

∑
i=0

(−1)ρ−i q(
ρ−i
2 )

[
N− i

ρ − i

]
q

s

∑
t=0

( qi−qt

q−1

ℓ

) [
s

t

]
q

[
N− s

i − t

]
q

q(s−t)(i−t).

Experimentally: On average, sets of points that span larger spaces have more avoiders
than those spanning small spaces. But only on average (counterexamples).
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To find out more: arXiv 2201.07193

Thank you!
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