Calculating the minimum distance of Polar Hermitian Grassmann Codes with elementary methods

Sarah Gregory ${ }^{1}$, Fernando Piñero ${ }^{2}$, Doel Rivera ${ }^{3}$, Lani Southern ${ }^{4}$
${ }^{1}$ University of Richmond
${ }^{2}$ University of Puerto Rico, Ponce
${ }^{3}$ Pontifical Catholic University of Puerto Rico, Ponce
${ }^{4}$ Willamette University

August 28, 2022
Sixth Irsee Conference on Finite Geometries
Irsee, Germany

The Grassmannian

Definition

The Grassmannian, $\mathcal{G}_{\ell, m}(V)$ is the collection of all subspaces of dimension ℓ of a vector space V of length m.
In particular, we take $V=\mathbb{F}_{q}^{m}$.

Hermitian Matrix

Definition

A matrix H is Hermitian if $H=\overline{H^{T}}$.
This gives the property that the entries on the main diagonal are over \mathbb{F}_{q} and the others are over $\mathbb{F}_{q^{2}}$, with the entries opposite each other across the main diagonal being conjugates of each other.

For example, over $\mathbb{F}_{q^{2}}, H$ is a 3×3 Hermitian matrix where $a, b, c \in \mathbb{F}_{q}$ and $x, y, z \in \mathbb{F}_{q^{2}}$.

$$
H=\left[\begin{array}{ccc}
a & x & y \\
x^{q} & b & z \\
y^{q} & z^{q} & c
\end{array}\right]
$$

Over $\mathbb{F}_{q^{2}}$, the conjugate is equal to taking $\bar{x}=x^{q}$.

Hermitian Form

Definition

Let V be a vector space over \mathbb{F}. Let $B: V \times V \rightarrow \mathbb{F}$ satisfying:

- $B\left(x+x^{\prime}, y\right)=B(x, y)+B\left(x^{\prime}, y\right)$
- $B\left(x, y+y^{\prime}\right)=B(x, y)+B\left(x, y^{\prime}\right)$
- $B(\alpha x, y)=\alpha B(x, y)$
- $B(x, \alpha y)=\bar{\alpha} B(x, y)$

We say that B is a sesquilinear or Hermitian form.
Any Hermitian form B is represented B by a map

$$
B(x, y)=x H \bar{y}^{T}
$$

where $x, y \in V$ and H is a Hermitian matrix.

Polar Hermitian Grassmannian

Definition

Let V be a vector space of dimension m over the field \mathbb{F}. Let B be a Hermitian form. Let W be a subspace of V. We say W is totally isotropic with respect to the Hermitian form B if W is a maximal subspace of V satisfying

$$
B(v, w)=0, \forall v, w \in W
$$

Definition

Let V be a vector space of dimension m over the field \mathbb{F}. Let B be a Hermitian form. Let $\ell \leq \frac{m}{2}$. The Polar Hermitian Grassmannian $\mathbb{H}_{\ell, m}$ is defined as the set of isotropic spaces of $\mathcal{G}_{\ell, m}$. That is

$$
\mathbb{H}_{\ell, m}:=\left\{W \in \mathcal{G}_{\ell, m} \mid B(v, w)=0 \forall v, w \in W\right\}
$$

Minors

To construct our code, we will use minors. For example, consider the following generic 3×6 matrix X and its corresponding minors of the form $\operatorname{det}_{l}(X)$ where we take I to be a subset of size 3 of the columns of X.

$$
X=\left[\begin{array}{llllll}
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\
x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36}
\end{array}\right]
$$

The set $\{1,2,3\} \subseteq\{1,2,3,4,5,6\}$ is denoted by 123 and its corresponding minor would be

$$
\operatorname{det}_{123}(X)=\left|\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right|
$$

What is a Code?

Linear Code

A linear code is a subspace $C \leq \mathbb{F}_{q}^{n}$.

- n is the length of the code
- $k=\operatorname{dim}_{\mathbb{F}_{q}}(C)$ is the dimension of the code
- d is the minimum distance of the code

We say C is an $[n, k, d]_{q}$ code.

Minimum Distance

The minimum distance of a code is the smallest distance (Hamming distance) between any two codewords. The Hamming distance counts the number of characters which differ between the corresponding positions of two codewords. So if we had ($0,1, \mathbf{0}, 0, \mathbf{1}$) and $(0,1, \mathbf{1}, 0,0)$, the distance is 2 .

Code Construction

We build the Polar Hermitian Grassmann Code by making use of a projective embedding called the Plücker embedding, which is performed as follows:

- For each ℓ-space, $W \in \mathbb{H}_{\ell, m}$, take a $\ell \times m$ matrix, M_{W}, whose rowspace is W.
- A codeword is given by evaluating an $\mathbb{F}_{q^{2}}$-linear combinations of ℓ-minors on each representative M_{W}.

Known Information About Polar Hermitian Grassmann Codes

Cardinali and Giuzzi[4] proved results about the Line Polar Hermitian Grassmann Codes, which are the $\ell=2$ case. For example,

$$
C\left(\mathbb{H}_{2,4}\right) \text { is a }\left[q^{4}+q^{3}+q+1,6, q^{4}-q^{2}\right] \text { code. }
$$

In fact, [4] calculates the minimum distance for $C\left(\mathbb{H}_{2, m}\right)$

Known Results

I have very recently made aware of [2]. De Bryun and Pralle [2] classified all hyperplanes of $D H(5, q)$. The geometric hyperplanes of $\mathrm{DH}(5, q)$ are in correspondence to the codewords of $\mathrm{C}\left(\mathbb{H}_{3,6}\right)$.
The weight spectrum of $C\left(\mathbb{H}_{3,6}\right)$ is known.
Our contrubution is:

- We offer an elementary approach using polynomial evaluations.
- Our approach may be generalizable to higher dimensions.
- We may also apply it to other polar Grassmannians.

Auxiliary lemmas

Lemma

Let $P(T)=T^{q+1}+a T^{q}+b T+c$ be a polynomial over $\mathbb{F}_{q^{2}}$. If $b \neq a^{q}$ then $P(T)$ has at most 2 zeroes over $\mathbb{F}_{q^{2}}$

Lemma

Let $P(T)=a T^{q}+b T+c$ be a polynomial over $\mathbb{F}_{q^{2}}$. If $b^{q+1} \neq a^{q+1}$ then $P(T)$ has at most 1 zero over $\mathbb{F}_{q^{2}}$

Lemma

Let $a, b, S, T, \lambda \in \mathbb{F}_{q^{2}}$, where
$a^{q}+a=0, b^{q}+b=0, S^{q}+S=0, T^{q}+T=0 \lambda \neq 0$. Then

- $(S+a)(T+b)=0$ has $2 q-1$ solutions over $\mathbb{F}_{q^{2}}$.
- $(S+a)(T+b)=\lambda$ where $\lambda \in \mathbb{F}_{q}^{*}$ has $q-1$ solutions over $\mathbb{F}_{q^{2}}$.
- $(S+a)(T+b)=\lambda$ where $\lambda \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ has no solutions over $\mathbb{F}_{q^{2}}$.

Choice of Hermitian form

We use the Hermitian form given by

$$
B(x, y):=x J \bar{y}^{T}
$$

where

$$
J=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Cardinali and Giuzzi $[3,5]$ and De Bruyn [1] use a different form. However, the resulting codes are equivalent.

Pivot sets

The main advantage of the Hermitian form given by J is that we may partition the matrices in L representing the totally isotropic spaces of $\mathbb{H}_{3,6}$ into 8 Schubert cells.

$$
\left\{\left[\begin{array}{llllll}
* & * & * & 0 & 0 & 1 \\
* & * & * & 0 & 1 & 0 \\
* & * & * & 1 & 0 & 0
\end{array}\right]\right\},\left\{\left[\begin{array}{llllll}
* & * & 0 & * & 0 & 1 \\
* & * & 0 & * & 1 & 0 \\
* & * & 1 & 0 & 0 & 0
\end{array}\right]\right\}, \cdots
$$

We classify the matrices according to their pivot columns (hence the name pivot sets).

Schubert cell structure

$$
P_{1}=\left\{\left[\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & 0 & 0 & 1 \\
-a_{2}^{q} & a_{4} & a_{5} & 0 & 1 & 0 \\
-a_{3}^{q} & -a_{5}^{q} & a_{6} & 1 & 0 & 0
\end{array}\right]\right\}
$$

where $a_{1}^{q}+a_{1}=a_{4}^{q}+a_{4}=a_{6}^{q}+a_{6}=0, a_{i} \in \mathbb{F}_{q^{2}}$

$$
\begin{aligned}
& P_{2}=\left\{\left[\begin{array}{cccccc}
b_{1} & b_{2} & 0 & b_{3} & 0 & 1 \\
-b_{2}^{q} & b_{4} & 0 & b_{5} & 1 & 0 \\
-b_{3}^{q} & -b_{5}^{q} & 1 & 0 & 0 & 0
\end{array}\right]\right\} \\
& \text { where } b_{1}^{q}+b_{1}=b_{4}^{q}+b_{4}=0, b_{i} \in \mathbb{F}_{q^{2}}
\end{aligned}
$$

$$
\begin{gathered}
P_{3}=\left\{\left[\begin{array}{cccccc}
c_{1} & 0 & c_{2} & 0 & c_{3} & 1 \\
-c_{2}^{q} & 0 & c_{4} & 1 & 0 & 0 \\
-c_{3}^{q} & 1 & 0 & 0 & 0 & 0
\end{array}\right]\right\} \\
\text { where } c_{1}^{q}+c_{1}=c_{4}^{q}+c_{4}=0, c_{i} \in \mathbb{F}_{q^{2}} \\
P_{4}=\left\{\left.\left[\begin{array}{cccccc}
d_{1} & 0 & 0 & d_{2} & d_{3} & 1 \\
-d_{2}^{q} & 0 & 1 & 0 & 0 & 0 \\
-d_{3}^{q} & 1 & 0 & 0 & 0 & 0
\end{array}\right] \right\rvert\, d_{1}^{q}+d_{1}=0, d_{i} \in \mathbb{F}_{q^{2}}\right\}
\end{gathered}
$$

Note that the submatrices outside the pivot columns are skew-Hermitian.

$$
\begin{aligned}
& P_{5}=\left\{\left.\left[\begin{array}{cccccc}
0 & e_{1} & e_{2} & 0 & 1 & 0 \\
0 & -e_{2}^{q} & e_{3} & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \right\rvert\, e_{1}^{q}+e_{1}=e_{3}^{q}+e_{3}=0, e_{i} \in \mathbb{F}_{q^{2}}\right\} \\
& P_{6}=\left\{\left.\left[\begin{array}{ccccc}
0 & x_{1} & 0 & x_{2} & 1 \\
0 & -x_{2}^{q} & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1
\end{array}\right] \right\rvert\, x_{1}^{q}+x_{1}=0, x_{i} \in \mathbb{F}_{q^{2}}\right\} \\
& P_{7}=\left\{\left.\left[\begin{array}{llllll}
0 & 0 & y_{1} & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \right\rvert\, y_{1}^{q}+y_{1}=0, y_{1} \in \mathbb{F}_{q^{2}}\right\} \\
& P_{8}=\left\{\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\right\}
\end{aligned}
$$

Example

To show the usefulness of this partitioning, we show:
Lemma

$$
w t\left(\operatorname{det}_{236}-\operatorname{det}_{456}\right)=q^{9}-q^{7}
$$

Evaluating $\operatorname{det}_{236}-\operatorname{det}_{456}$ on P_{1}

The partition $P_{1}=\left\{\left.\left[\begin{array}{cccccc}a_{1} & a_{2} & a_{3} & 0 & 0 & 1 \\ -a_{2}^{q} & a_{4} & a_{5} & 0 & 1 & 0 \\ -a_{3}^{q} & -a_{5}^{q} & a_{6} & 1 & 0 & 0\end{array}\right] \right\rvert\, a_{1}^{q}+a_{1}=\right.$
$\left.a_{4}^{q}+a_{4}=a_{6}^{q}+a_{6}=0, a_{i} \in \mathbb{F}_{q^{2}}\right\}$
Note that $f\left(M_{W}\right)=\left|\begin{array}{ccc}a_{2} & a_{3} & 1 \\ a_{4} & a_{5} & 0 \\ -a_{5}^{q} & a_{6} & 0\end{array}\right|-\left|\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right|=a_{4} a_{6}+a_{5}^{q+1}-1$.
For the q^{5} values of a_{1}, a_{2} and a_{3}, f is determined by the values of a_{4}, a_{5} and a_{6}. We note that $f\left(M_{W}\right)=0$ if $a_{4} a_{6}=-a_{5}^{q+1}-1$. Through auxiliary lemmas we may prove that there are at most $q^{8}+q^{6}$ solutions to the equation. Therefore $w t_{P_{1}}(f)=q^{9}-q^{8}-q^{6}$.

Evaluating $\operatorname{det}_{236}-\operatorname{det}_{456}$ on P_{2}

Along P_{2}, the matrices look as such $P_{2}=$
$\left\{\left.\left[\begin{array}{cccccc}b_{1} & b_{2} & 0 & b_{3} & 0 & 1 \\ -b_{2}^{q} & b_{4} & 0 & b_{5} & 1 & 0 \\ -b_{3}^{q} & -b_{5}^{q} & 1 & 0 & 0 & 0\end{array}\right] \right\rvert\, b_{1}^{q}+b_{1}=b_{4}^{q}+b_{4}=0, b_{i} \in \mathbb{F}_{q^{2}}\right\}$
Note that $f\left(M_{W}\right)=\left|\begin{array}{ccc}b_{2} & 0 & 1 \\ b_{4} & 0 & 0 \\ -b_{5}^{q} & 1 & 0\end{array}\right|-\left|\begin{array}{ccc}b_{3} & 0 & 1 \\ b_{5} & 1 & 0 \\ 0 & 0 & 0\end{array}\right|=b_{4}$.
For the q^{7} values of b_{1}, b_{2}, b_{3} and b_{5}, f is determined by the value of b_{4}. For the $q-1$ nonzero values of b_{4}, f has a nonzero evaluation. Therefore $w t_{P_{2}}(f)=q^{8}-q^{7}$.

Evaluating $\operatorname{det}_{236}-\operatorname{det}_{456}$ on P_{3}

Along P_{3}, the matrices look as such
$P_{3}=\left\{\left.\left[\begin{array}{cccccc}c_{1} & 0 & c_{2} & 0 & c_{3} & 1 \\ -c_{2}^{q} & 0 & c_{4} & 1 & 0 & 0 \\ -c_{3}^{q} & 1 & 0 & 0 & 0 & 0\end{array}\right] \right\rvert\, c_{1}^{q}+c_{1}=c_{4}^{q}+c_{4}=0, c_{i} \in \mathbb{F}_{q^{2}}\right\}$
Note that $f\left(M_{W}\right)=\left|\begin{array}{ccc}0 & c_{2} & 1 \\ 0 & c_{4} & 0 \\ 1 & 0 & 0\end{array}\right|-\left|\begin{array}{ccc}0 & c_{3} & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right|=c_{4}$. For the q^{5}
values of c_{1}, c_{2}, and c_{3}, f is determined by the value of c_{4}. For the $q-1$ nonzero values of c_{4}, f has a nonzero evaluation. Therefore $w t_{P_{3}}(f)=q^{6}-q^{5}$.

Evaluating $\operatorname{det}_{236}-\operatorname{det}_{456}$ on P_{4}

Along P_{4}, the matrices look as such
$P_{4}=\left\{\left.\left[\begin{array}{cccccc}d_{1} & 0 & 0 & d_{2} & d_{3} & 1 \\ -d_{2}^{q} & 0 & 1 & 0 & 0 & 0 \\ -d_{3}^{q} & 1 & 0 & 0 & 0 & 0\end{array}\right] \right\rvert\, d_{1}^{q}+d_{1}=0, d_{i} \in \mathbb{F}_{q^{2}}\right\}$
For any matrix $M_{W} \in P_{4}$ then $f\left(M_{W}\right)=-1$ This implies that for all q^{5} values of d_{1}, d_{2} and $d_{3}, f\left(M_{W}\right)=-1 \neq 0$. Therefore $w t_{P_{4}}(f)=q^{5}$.

Evaluating $\operatorname{det}_{236}-\operatorname{det}_{456}$ on $P_{5}, P_{6}, P_{7}, P_{8}$

The evaluation is $f\left(M_{W}\right)=0$ in all remaining pivot sets.
$P_{5}=\left\{\left.\left[\begin{array}{cccccc}0 & e_{1} & e_{2} & 0 & 1 & 0 \\ 0 & -e_{2}^{q} & e_{3} & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right] \right\rvert\, e_{1}^{q}+e_{1}=e_{3}^{q}+e_{3}=0, e_{i} \in \mathbb{F}_{q^{2}}\right\}$
$P_{6}=\left\{\left.\left[\begin{array}{cccccc}0 & x_{1} & 0 & x_{2} & 1 & 0 \\ 0 & -x_{2}^{q} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right] \right\rvert\, x_{1}^{q}+x_{1}=0, x_{i} \in \mathbb{F}_{q^{2}}\right\}$
$P_{7}=\left\{\left.\left[\begin{array}{cccccc}0 & 0 & y_{1} & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right] \right\rvert\, y_{1}^{q}+y_{1}=0, y_{1} \in \mathbb{F}_{q^{2}}\right\}$
$P_{8}=\left\{\left[\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]\right\}$

Calculating the Weight

Adding all the weights, we have

$$
w t(f)=w t_{P_{1}}(f)+w t_{P_{2}}(f)+w t_{P_{3}}(f)+w t_{P_{4}}(f)=q^{9}-q^{7} .
$$

Results

Our main result is the following:
Theorem
The minimum distance of the Polar Hermitian Grassmann code $C\left(H_{3,6}\right)$ is $q^{9}-q^{7}$.

Proof Sketch and Key Ideas

Definition

For $I \subseteq\{1,2,3,4,5,6\}$ denote by

$$
I^{*}:=\{7-j \mid j \notin I\}
$$

Lemma

Let P denote the pivot set of a given partition P_{i} of $\mathbb{H}_{3,6}$. Let M_{W} be a matrix representative of $W \in P$. Then $\operatorname{det}_{I^{*}}\left(M_{W}\right)$ and $\operatorname{det}_{l}\left(M_{W}\right)$ are "transposes " of each other.

Proof Sketch and Key Ideas

On

$$
P_{1}=\left\{\left[\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & 0 & 0 & 1 \\
-a_{2}^{q} & a_{4} & a_{5} & 0 & 1 & 0 \\
-a_{3}^{q} & -a_{5}^{q} & a_{6} & 1 & 0 & 0
\end{array}\right]\right\}
$$

where $a_{1}^{q}+a_{1}=a_{4}^{q}+a_{4}=a_{6}^{q}+a_{6}=0, a_{i} \in \mathbb{F}_{q^{2}}$
Let $I=\{2,3,4\} . I^{*}=\{7-1,7-5,7-6\}=\{1,2,6\}$
$\operatorname{det}_{l}=\left|\begin{array}{ll}a_{2} & a_{3} \\ a_{4} & a_{5}\end{array}\right|, \quad$ det $t_{l^{*}}=\left|\begin{array}{cc}-a_{2}^{q} & a_{4} \\ -a_{3}^{q} & -a_{5}^{q}\end{array}\right|$
In this case $\operatorname{det}_{l^{*}}=\operatorname{det}_{1}^{q}$
On P_{2} the relation becomes $\operatorname{det}_{l^{*}}=-\operatorname{det}_{l}^{q}$

Proof Sketch and Key Ideas

Goal: take $f=f_{123} \operatorname{det}_{123}+f_{124} \operatorname{det}_{124}+\cdots+f_{456} \operatorname{det}_{456}$ and determine the least number of spaces where the evaluation is nonzero.

We sketch our proof of the minimum distance as follows:

- We use the automorphisms of $\mathbb{H}_{3,6}$ to assume that det_{123} has coefficient 1 and $\operatorname{det}_{234}, \operatorname{det}_{134}, \operatorname{det}_{136}$ have coefficient 0 .
- The auxiliary lemmas imply that if $\operatorname{det}_{126}, \operatorname{det}_{125}$, det_{235} don't have coefficient 0 then the combination has more than $q^{9}-q^{7}$ nonzero elements on the pivot sets.
- Likewise $\operatorname{det}_{124}, \operatorname{det}_{135}$, det $_{236}$ may be assumed do not appear in f.
- Studying the equation $\operatorname{det}(\mathrm{X})+\operatorname{Tr}(A \mathrm{X})+\gamma=0$ for X a 3×3 skew-Hermitian matrix, show that in order for $w t(f) \leq q^{9}-q^{7}$ then f is equivalent to a combination with only five possible minors $123,145,246,356$ and 456.

Acknowledgements

This research is supported by NSF-DMS REU 1852171: REU Site:
Combinatorics, Probability, and Algebraic Coding Theory We thank Bart, Ilaria, Luca and Sudhir Ghorpade for their help and thoughtful discussions.

UNIVERSITY OF
RICHMOND

Have an excellent week!

References

[1] Bart De Bruyn, On the Grassmann-embeddings of the Hermitian dual polar spaces, Linear and Multilinear Algebra 56 (2008), no. 6, 665-677, available at https://doi.org/10.1080/03081080701535856. $\uparrow 12$
[2] Bart De Bruyn and Harm Pralle, The hyperplanes of dh(5, q2) 20 (2008), no. 2, 239-264. $\uparrow 10$
[3] Ilaria Cardinali and Luca Giuzzi, Line Hermitian Grassmann codes and their parameters, Finite Fields and Their Applications 51 (2018May), 407-432. $\uparrow 12$
[4] \qquad Minimum distance of orthogonal line-Grassmann codes in even characteristic, Journal of Pure and Applied Algebra 222 (2018Oct), no. 10, 2975-2988. $\uparrow 9$
[5] , Implementing line-Hermitian Grassmann codes, Linear Algebra and its Applications 580 (2019), 96-120. $\uparrow 12$

