(Non-)embeddings of the Ree unitals in finite projective planes

Gábor P. Nagy

Budapest University of Technology and Economics (Hungary)
University of Szeged (Hungary)

Finite Geometry 2022 Sixth Irsee Conference 28 August - 3 September 2022

Outline

- 1 Unital designs
- 2 Projective embeddings
- 3 Ree unitals
- 4 Non-embedding results

Outline

- 1 Unital designs
- 2 Projective embeddings
- 3 Ree unitals
- 4 Non-embedding results

Steiner systems; t-(v, k, λ) designs

Definition: Incidence structure

- We call the triple $(\mathcal{P}, \mathcal{B}, |)$ an incidence structure, provided \mathcal{P} , \mathcal{B} are disjoint sets and $|\subseteq \mathcal{P} \times \mathcal{B}$.
- The incidence structure is called simple, if each block can be identified with the set of points with which it is incident.

Definition: Steiner system: t-designs

A t- (v, k, λ) design, or equivalently a Steiner system $S_{\lambda}(t, k, v)$, is a finite simple incidence structure consisting of v **points**

- such that every block is incident with k points
- **and every** t-subset of points is incident with exactly λ blocks.

Steiner systems; t- (v, k, λ) designs

Definition: Incidence structure

- We call the triple $(\mathcal{P}, \mathcal{B}, |)$ an incidence structure, provided \mathcal{P} , \mathcal{B} are disjoint sets and $|\subseteq \mathcal{P} \times \mathcal{B}$.
- The incidence structure is called simple, if each block can be identified with the set of points with which it is incident.

Definition: Steiner system; t-designs

A t- (v, k, λ) design, or equivalently a Steiner system $S_{\lambda}(t, k, v)$, is a finite simple incidence structure consisting of v points

- such that every block is incident with k points
- **and every** t-subset of points is incident with exactly λ blocks.

Examples of 2-designs: Affine planes, unitals

Definition

- A projective plane of order n is a 2- $(n^2 + n + 1, n + 1, 1)$ design.
- An affine plane of order n is a 2- $(n^2, n, 1)$ design.
- An abstract unital of order n is a 2- $(n^3 + 1, n + 1, 1)$ design.

Examples of 2-designs: Affine planes, unitals

Definition

- A projective plane of order n is a 2- $(n^2 + n + 1, n + 1, 1)$ design.
- An affine plane of order n is a 2- $(n^2, n, 1)$ design.
- An abstract unital of order n is a 2- $(n^3 + 1, n + 1, 1)$ design.

{1,2,3} {1,5,9} {4,5,6} {2,6,7} {7,8,9} {3,4,8} {1,4,7} {1,6,8} {2,5,8} {2,4,9} {3,6,9} {3,5,7}

Classical Hermitian unitals

■ In PG(2, q^2), **Hermitian curve** is given by the equation

$$\mathcal{H}_q: X^{q+1} + Y^{q+1} + Z^{q+1} = 0.$$

- The number of rational points is $|\mathcal{H}_q| = q^3 + 1$.
- There is a unique tangent at each point of \mathcal{H}_q .
- Any **non-tangent line** intersects \mathcal{H}_q in q + 1 points.

Definition: Classical Hermitian unital of order q

The classical Hermitian unital \mathcal{H}_q of order q is given by the set of rational points of the Hermitian curves, and non-tangents lines in $PG(2, q^2)$.

■ The group of projective linear transformations, fixing \mathcal{H}_q is PGU(3, q). It acts 2-**transitively** on \mathcal{H}_q .

Classical Hermitian unitals

■ In PG(2, q^2), **Hermitian curve** is given by the equation

$$\mathcal{H}_q: X^{q+1} + Y^{q+1} + Z^{q+1} = 0.$$

- The number of rational points is $|\mathcal{H}_q| = q^3 + 1$.
- There is a unique tangent at each point of \(\mathcal{H}_q \).
- Any **non-tangent line** intersects \mathcal{H}_q in q + 1 points.

Definition: Classical Hermitian unital of order q

The classical Hermitian unital \mathcal{H}_q of order q is given by the set of rational points of the Hermitian curves, and non-tangents lines in $PG(2, q^2)$.

■ The group of projective linear transformations, fixing \mathcal{H}_q is PGU(3, q). It acts 2-**transitively** on \mathcal{H}_q .

Classical Hermitian unitals

■ In PG(2, q^2), **Hermitian curve** is given by the equation

$$\mathcal{H}_q: X^{q+1} + Y^{q+1} + Z^{q+1} = 0.$$

- The number of rational points is $|\mathcal{H}_q| = q^3 + 1$.
- There is a unique tangent at each point of \(\mathcal{H}_q \).
- Any **non-tangent line** intersects \mathcal{H}_q in q + 1 points.

Definition: Classical Hermitian unital of order q

The classical Hermitian unital \mathcal{H}_q of order q is given by the set of rational points of the Hermitian curves, and non-tangents lines in $PG(2, q^2)$.

■ The group of projective linear transformations, fixing \mathcal{H}_q is PGU(3, q). It acts 2-transitively on \mathcal{H}_q .

Outline

- Unital designs
- 2 Projective embeddings
- 3 Ree unitals
- 4 Non-embedding results

Embedding of unitals in projective planes

Definition: Embedding of unitals

Let $\mathscr{U}=(\mathcal{P},\mathcal{B},|)$ be an abstract unital and $\Pi=(\mathcal{P}',\mathcal{B}',|')$ a projective plane.

- The map $\varrho : \mathcal{P} \cup \mathcal{B} \to \mathcal{P}' \cup \mathcal{B}'$ is an embedding of \mathcal{U} , provided it is injective, $\varrho(\mathcal{P}) \subseteq \mathcal{P}'$, $\varrho(\mathcal{B}) \subseteq \mathcal{B}'$,
- and for all $P \in \mathcal{P}$, $B \in \mathcal{B}$

$$P \mid B \Leftrightarrow \varrho(P) \mid' \varrho(B)$$
.

■ The embedding ϱ is admissible, if any automorphism α of \mathscr{U} is induced by a collineation β of Π :

$$\varrho(\mathsf{P}^\alpha)=\varrho(\mathsf{P})^\beta.$$

Remark. Special attention is paid to the embeddings of unitals of order n into planes of order n^2 .

General embedding results

Results

- [Buekenhout 1976] Unitals embedded in various translation planes. Buekenhout-Tits unitals of order $q = 2^{2n+1}$ in $PG(2, q^2)$, $n \ge 1$.
- [Buekenhout 1976, Metz 1979] BM-unitals embedded in $PG(2, q^2)$ for all q > 2.
- [Korchmáros, Siciliano, Szőnyi 2018], [Grundhöfer, Stroppel, Van Maldeghem 2019] The embedding of \mathcal{H}_q in PG(2, q^2) is unique up to projective equivalence.

Outline

- Unital designs
- 2 Projective embeddings
- 3 Ree unitals
- 4 Non-embedding results

- Let Ree $(q) = {}^2G_2(q)$ be the **Ree group** of order $(q^3 + 1)q^3(q 1), \qquad q = 3^{2n+1}.$
- \blacksquare Ree(q) has a unique conjugacy class of involutions.
- The Sylow 2-subgroups are elementary abelian of order 8.
- For q > 3, Ree(q) is simple.
- Ree(3) is isomorphic to

$$P\Gamma O(3,8) \cong P\Gamma L(2,8) \cong PSL(2,8) \times C_{5}$$

- Let Ree $(q) = {}^2G_2(q)$ be the **Ree group** of order $(q^3 + 1)q^3(q 1), \qquad q = 3^{2n+1}.$
- \blacksquare Ree(q) has a unique conjugacy class of involutions.
- The Sylow 2-subgroups are elementary abelian of order 8.
- For q > 3, Ree(q) is simple.
- Ree(3) is isomorphic to

$$\mathsf{PFO}(3,8) \cong \mathsf{PFL}(2,8) \cong \mathsf{PSL}(2,8) \rtimes C_{5}$$

- Let Ree $(q) = {}^2G_2(q)$ be the **Ree group** of order $(q^3 + 1)q^3(q 1), \qquad q = 3^{2n+1}.$
- \blacksquare Ree(q) has a unique conjugacy class of involutions.
- The Sylow 2-subgroups are elementary abelian of order 8.
- For q > 3, Ree(q) is simple.
- Ree(3) is isomorphic to

$$\mathsf{PFO}(3,8) \cong \mathsf{PFL}(2,8) \cong \mathsf{PSL}(2,8) \rtimes C_{5}$$

- Let Ree $(q) = {}^2G_2(q)$ be the **Ree group** of order $(q^3 + 1)q^3(q 1), \qquad q = 3^{2n+1}.$
- \blacksquare Ree(q) has a unique conjugacy class of involutions.
- The Sylow 2-subgroups are elementary abelian of order 8.
- For q > 3, Ree(q) is **simple**.
- Ree(3) is isomorphic to

$$\mathsf{PFO}(3,8) \cong \mathsf{PFL}(2,8) \cong \mathsf{PSL}(2,8) \rtimes C_{5}$$

- Let Ree $(q) = {}^2G_2(q)$ be the **Ree group** of order $(q^3 + 1)q^3(q 1), \qquad q = 3^{2n+1}.$
- \blacksquare Ree(q) has a unique conjugacy class of involutions.
- The Sylow 2-subgroups are elementary abelian of order 8.
- For q > 3, Ree(q) is **simple**.
- Ree(3) is isomorphic to

$$\mathsf{PFO}(3,8) \cong \mathsf{PFL}(2,8) \cong \mathsf{PSL}(2,8) \rtimes C_3$$

Ree unitals (Lüneburg 1966)

- Then Ree(q) has a 2-transitive action on $q^3 + 1$ points.
- \blacksquare Ree(q) has a unique conjugacy class of involutions.
- Any involution t fixes exactly q + 1 points.

Definition: Ree unital of order $q = 3^{2n+1}$

The blocks of the Ree unital $\mathcal{R}(q)$ are the sets of fixed points of the involutions of Ree(q).

- $\mathcal{R}(q)$ admits the Ree(q) as a 2-transitive automorphism group; the full automorphism group is larger, for $n \ge 1$.
- The properties of the smallest Ree unital $\mathcal{R}(3)$ differ from the general case.

Ree unitals (Lüneburg 1966)

- Then Ree(q) has a 2-transitive action on $q^3 + 1$ points.
- \blacksquare Ree(q) has a unique conjugacy class of involutions.
- Any involution t fixes exactly q + 1 points.

Definition: Ree unital of order $q = 3^{2n+1}$

The blocks of the Ree unital $\mathcal{R}(q)$ are the sets of fixed points of the involutions of Ree(q).

- $\mathcal{R}(q)$ admits the Ree(q) as a 2-transitive automorphism group; the full automorphism group is larger, for $n \ge 1$.
- The properties of the smallest Ree unital $\mathcal{R}(3)$ differ from the general case.

Embedding results of the Ree unital

- [Lüneburg 1966] The Ree unital $\mathcal{R}(q)$ has no admissible embeddings in projective planes of order q^2 (desarguesian or not).
- [Grüning 1986] proved that $\mathcal{R}(3)$ has no embedding in a projective plane of order 9.
- [Grüning 1986] constructed an **admissible embedding** of $\mathcal{R}(3)$ in PG(2, 8). (He attributes the idea to Piper.)
- [Montinaro 2008] extended these results by showing that for $q \neq 3$ and $n \leq q^4$, $\mathcal{R}(q)$ has no admissible embedding in a projective plane of order n.
- [Montinaro 2008] If $\mathcal{R}(3)$ is embedded in a projective plane Π of order $n \leq 3^4$ in an admissible way, then either $\Pi \cong PG(2,8)$, or $n=2^6$.

Embedding results of the Ree unital

- [Lüneburg 1966] The Ree unital $\mathcal{R}(q)$ has no admissible embeddings in projective planes of order q^2 (desarguesian or not).
- [Grüning 1986] proved that $\mathcal{R}(3)$ has no embedding in a projective plane of order 9.
- [Grüning 1986] constructed an **admissible embedding** of $\mathcal{R}(3)$ in PG(2, 8). (He attributes the idea to Piper.)
- [Montinaro 2008] extended these results by showing that for $q \neq 3$ and $n \leq q^4$, $\mathcal{R}(q)$ has no admissible embedding in a projective plane of order n.
- [Montinaro 2008] If $\mathcal{R}(3)$ is embedded in a projective plane Π of order $n \leq 3^4$ in an admissible way, then either $\Pi \cong PG(2,8)$, or $n=2^6$.

The dual setting of the $\mathcal{R}(3) \to PG(2,8)$ embedding

The unital:

- Let \mathcal{K} be a non-singular conic in PG(2, 8), with nucleus N. The set $O = \mathcal{K} \cup \{N\}$ is a hyperoval.
- There are 63 external points, 28 external lines, and each external point is incident with 4 external lines.
- The external points and the external lines form a dual unital U of order 3.

The group:

- $G = P\Gamma O(3,8)$ is the group of projective semilinear transformations of PG(2,8), preserving O.
- *G* acts 2-transitively on the set of external lines.
- \mathcal{U} has a 2-transitive automorphism group and $\mathcal{R}(3) \cong \mathcal{U}$.

The dual setting of the $\mathcal{R}(3) \to PG(2,8)$ embedding

The unital:

- Let \mathcal{K} be a non-singular conic in PG(2, 8), with nucleus N. The set $O = \mathcal{K} \cup \{N\}$ is a hyperoval.
- There are 63 external points, 28 external lines, and each external point is incident with 4 external lines.
- The external points and the external lines form a dual unital U of order 3.

The group:

- $G = P\Gamma O(3,8)$ is the group of projective semilinear transformations of PG(2,8), preserving O.
- G acts 2-transitively on the set of external lines.
- \mathcal{U} has a 2-transitive automorphism group and $\mathcal{R}(3) \cong \mathcal{U}$.

Outline

- Unital designs
- 2 Projective embeddings
- 3 Ree unitals
- 4 Non-embedding results

Extending Montinaro's result

Theorem 1 (GN)

Let F be a field and $\varphi : \mathcal{R}(3) \to PG(2, F)$ an embedding. Then the following hold:

- **1** \mathbb{F}_8 is a **subfield** of F, and the image of φ is contained in a **subplane of order** 8.
- The embedding is **unique** up to $Aut(\mathcal{R}(3))$ and PGL(3, F).
- The embedding is admissible.

Proof

Elementary computations with External Pentagons of the conic (set of **five points**, determining **ten external lines**,

and Super O'Nan Configurations of $\mathcal{R}(3)$ (set of five pairwise intersecting blocks, in general position) (Brouwer 1981).

Extending Montinaro's result

Theorem 1 (GN)

Let F be a field and $\varphi : \mathcal{R}(3) \to \mathsf{PG}(2,F)$ an embedding. Then the following hold:

- **1** \mathbb{F}_8 is a **subfield** of F, and the image of φ is contained in a **subplane of order** 8.
- The embedding is **unique** up to $Aut(\mathcal{R}(3))$ and PGL(3, F).
- The embedding is **admissible**.

Proof.

Elementary computations with External Pentagons of the conic (set of **five points**, determining **ten external lines**,

and Super O'Nan Configurations of $\mathcal{R}(3)$ (set of **five pairwise intersecting blocks**, in general position) (Brouwer 1981).

Sylow 2-subgroups of the Ree group

Corollary

Let F be a field and $\varphi : \mathcal{R}(3) \to PG(2, F)$ an embedding. Let $S = \{1, a_1, \dots, a_7\}$ be a Sylow 2-subgroup of Ree(3). Then the lines $\varphi(a_1), \dots, \varphi(a_7)$ are **concurrent.**

Main result

Theorem 2 (GN)

Let n be a positive integer, and $q = 3^{2n+1}$. Suppose that Π is a projective plane such that for each embedding $\varphi : \mathcal{R}(3) \to \Pi$, the image $\varphi(\mathcal{R}(3))$ is **contained in a pappian subplane.**

- Then the Ree unital $\mathcal{R}(q)$ has **no embedding** in Π.
- In particular, $\mathcal{R}(q)$ has no embedding in a projective plane over a field.

Proof

Corollary + classification of maximal subgroups of $Ree(q) \Rightarrow all$ lines are concurrent.

Main result

Theorem 2 (GN)

Let *n* be a positive integer, and $q = 3^{2n+1}$. Suppose that Π is a projective plane such that for each embedding $\varphi : \mathcal{R}(3) \to \Pi$, the image $\varphi(\mathcal{R}(3))$ is **contained in a pappian subplane.**

- Then the Ree unital $\mathcal{R}(q)$ has **no embedding** in Π.
- In particular, $\mathcal{R}(q)$ has no embedding in a projective plane over a field.

Proof.

Corollary + classification of maximal subgroups of $Ree(q) \Rightarrow all$ lines are concurrent.

Final open problem

Open problem 3

Is there an **admissible embedding** of the smallest Ree unital $\mathcal{R}(3)$ in a (non-desarguesian) projective plane of **order 64?**

Final open problem

Open problem 3

Is there an **admissible embedding** of the smallest Ree unital $\mathcal{R}(3)$ in a (non-desarguesian) projective plane of **order 64?**

THANK YOU FOR YOUR ATTENTION!