ERDŐS-KO-RADO FOR FLAGS IN SPHERICAL BUILDINGS

joint work with Jan De Beule and Klaus Metsch

Sam Mattheus

Sixth Irsee Conference September 2, 2022

Context

Theorem (Erdős-Ko-Rado 1938)

Let C be a family in $\binom{[n]}{d}$ such that any two elements in C intersect non-trivially. If $n \ge 2d$ then

$$|C| \leq \binom{n-1}{d-1}.$$

Context

Theorem (Erdős-Ko-Rado 1938)

Let C be a family in $\binom{[n]}{d}$ such that any two elements in C intersect non-trivially. If $n \ge 2d$ then

$$|C| \leq \binom{n-1}{d-1}$$

General EKR-problem

Describe in different contexts the largest sets of objects such that no two are "far away".

1. Rephrase the problem Construct a graph:

- vertex set = finite set Ω
- adjacency = "far-awayness"

1. Rephrase the problem Construct a graph:

- vertex set = finite set Ω
- adjacency = "far-awayness"
- \longrightarrow find the largest cocliques.

1. Rephrase the problem

2. The ratio bound

Let Γ be a *k*-regular graph on *n* vertices whose adjacency matrix $A(\Gamma)$ has smallest eigenvalue λ . Then if *C* is a coclique we have

$$|C| \leq \frac{n}{1-\frac{k}{\lambda}}.$$

Finding the eigenvalues

Objective Find a 'nice' matrix algebra A containing $A(\Gamma)$.

Finding the eigenvalues

Objective

Find a 'nice' matrix algebra \mathcal{A} containing $A(\Gamma)$.

Commutative is nice

There exists a unitary matrix U such that

$$U^*\mathcal{A}U = \{U^*\mathcal{A}U \mid \mathcal{A} \in \mathcal{A}\}$$

is an algebra of diagonal matrices.

Erdős-Ko-Rado results in finite geometry

Theorem (Hsieh 1975)

Let C be a set of d-dimensional subspaces of \mathbb{F}_q^n such that any two elements in C intersect non-trivially. If $n \ge 2d$ then

$$|C| \leq {n-1 \brack d-1}_q$$

Erdős-Ko-Rado results in finite geometry

Theorem (Hsieh 1975)

Let C be a set of d-dimensional subspaces of \mathbb{F}_q^n such that any two elements in C intersect non-trivially. If $n \ge 2d$ then

$$|C| \leq {n-1 \brack d-1}_q$$

Theorem (Pepe-Storme-Vanhove 2011)

Let C be a set of generators in a rank d polar space such that any two elements in C intersect non-trivially. Then in most cases

 $|C| \leq |star|.$

The lattice of subspaces

The lattice of subspaces

The lattice of subspaces

Use the lattice structure

We will focus on vector spaces.

Use the lattice structure

We will focus on vector spaces.

Definition

A flag in \mathbb{F}_q^n is a set of subspaces $\{V_0, \ldots, V_k\}$, such that $V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_k$. It is **maximal** if it cannot be extended.

Use the lattice structure

We will focus on vector spaces.

Definition

A flag in \mathbb{F}_q^n is a set of subspaces $\{V_0, \ldots, V_k\}$, such that $V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_k$. It is **maximal** if it cannot be extended.

Definition

Two maximal flags $\{V_0, \ldots, V_n\}$ and $\{W_0, \ldots, W_n\}$ are **opposite** if $V_i \cap W_{n-i} = \{0\}$.

Buildings for dummies

Buildings for dummies explained by a dummy

Buildings for dummies explained by a dummy

Fact

For any two maximal flags ${\cal F}$ and ${\cal F}'$ there exists a basis $\{e_1,e_2,e_3,e_4\}$ of \mathbb{F}_q^4 such that

$$\mathcal{F} = (\{0\}, \langle e_1 \rangle, \langle e_1, e_2 \rangle, \langle e_1, e_2, e_3 \rangle, \langle e_1, e_2, e_3, e_4 \rangle)$$

and

$$\mathcal{F}' = (\{0\}, \langle e_i \rangle, \langle e_i, e_j \rangle, \langle e_i, e_j, e_k \rangle, \langle e_i, e_j, e_k, e_l \rangle),$$

where $\{i, j, k, l\} = \{1, 2, 3, 4\}.$

Corollary Every relation corresponds to an element in Sym(4).

For example: (12) \leftrightarrow "change the one-dimensional space"

$$(\{0\}, \langle e_1 \rangle, \langle e_1, e_2 \rangle, \langle e_1, e_2, e_3 \rangle, \langle e_1, e_2, e_3, e_4 \rangle)$$

Corollary Every relation corresponds to an element in Sym(4).

For example: (12) \leftrightarrow "change the one-dimensional space"

 $(\{0\}, \langle e_2\rangle, \langle e_2, e_1\rangle, \langle e_2, e_1, e_3\rangle, \langle e_2, e_1, e_3, e_4\rangle)$

Chevalley groups

diagram geometry

spherical buildings

Coxeter groups

Towards eigenvalues

Each partition $\mu \vdash n$ gives rise to an eigenvalue $q^{e_{\mu}}$.

Towards eigenvalues

Each partition $\mu \vdash n$ gives rise to an eigenvalue $q^{e_{\mu}}$.

Towards eigenvalues

Each partition $\mu \vdash n$ gives rise to an eigenvalue $q^{e_{\mu}}$.

Summary

Theorem (De Beule-M.-Metsch 2022)

We can compute the eigenvalues of opposition of

- maximal flags in projective and polar spaces,
- partial flags in polar spaces.

Summary

Theorem (De Beule-M.-Metsch 2022)

We can compute the eigenvalues of opposition of

- maximal flags in projective and polar spaces,
- partial flags in polar spaces.

Corollary

We can derive EKR bounds for all these cases.

1. A computer can do the work!

- 1. A computer can do the work!
- 2. We did not achieve our initial goal.

- 1. A computer can do the work!
- 2. We did not achieve our initial goal.
- 3. Life without commutativity is fine.

- 1. A computer can do the work!
- 2. We did not achieve our initial goal.
- 3. Life without commutativity is fine.
- 4. Not the end of the story: eigenvalues are everywhere!

Thank you for your attention!

sammattheus.wordpress.com sam.mattheus@vub.be Finite Geometry and Friends 18-22 September 2023 summerschool.fining.org