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Context

Theorem (Erdős-Ko-Rado 1938)
Let C be a family in

([n]
d
)
such that any two elements in C

intersect non-trivially. If n ≥ 2d then

|C| ≤
(
n− 1
d− 1

)
.

General EKR-problem
Describe in different contexts the largest sets of objects
such that no two are “far away”.
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A successful strategy

1. Rephrase the problem
Construct a graph:

▶ vertex set = finite set Ω

▶ adjacency = “far-awayness”

−→ find the largest cocliques.



A successful strategy

1. Rephrase the problem
Construct a graph:

▶ vertex set = finite set Ω

▶ adjacency = “far-awayness”

−→ find the largest cocliques.



A successful strategy

1. Rephrase the problem
Construct a graph:

▶ vertex set = finite set Ω

▶ adjacency = “far-awayness”

−→ find the largest cocliques.



A successful strategy

1. Rephrase the problem

2. The ratio bound
Let Γ be a k-regular graph on n
vertices whose adjacency matrix
A(Γ) has smallest eigenvalue λ.
Then if C is a coclique we have

|C| ≤ n
1− k

λ

.



Finding the eigenvalues

Objective
Find a ‘nice’ matrix algebra A containing A(Γ).

Commutative is nice
There exists a unitary matrix U such that

U∗AU = {U∗AU | A ∈ A}

is an algebra of diagonal matrices.
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Erdős-Ko-Rado results in finite geometry

Theorem (Hsieh 1975)
Let C be a set of d-dimensional subspaces of Fn

q such that
any two elements in C intersect non-trivially. If n ≥ 2d then

|C| ≤
[
n− 1
d− 1

]
q
.

Theorem (Pepe-Storme-Vanhove 2011)
Let C be a set of generators in a rank d polar space such
that any two elements in C intersect non-trivially. Then in
most cases

|C| ≤ |star|.
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Use the lattice structure

We will focus on vector spaces.

Definition
A flag in Fn

q is a set of subspaces {V0, . . . ,Vk}, such that
V0 ⊊ V1 ⊊ · · · ⊊ Vk.
It is maximal if it cannot be extended.

Definition
Two maximal flags {V0, . . . ,Vn} and {W0, . . . ,Wn} are
opposite if Vi ∩Wn−i = {0}.
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Buildings for dummies



Buildings for dummies explained by a dummy



Buildings for dummies explained by a dummy

Fact
For any two maximal flags F and F ′ there exists a basis
{e1, e2, e3, e4} of F4

q such that

F = ({0}, ⟨e1⟩, ⟨e1, e2⟩, ⟨e1, e2, e3⟩, ⟨e1, e2, e3, e4⟩)

and

F ′ = ({0}, ⟨ei⟩, ⟨ei, ej⟩, ⟨ei, ej, ek⟩, ⟨ei, ej, ek, el⟩),

where {i, j, k, l} = {1,2,3,4}.



A matrix algebra?

Corollary
Every relation corresponds to an element in Sym(4).

For example: (12) ↔ “change the one-dimensional space”

({0}, ⟨e1⟩, ⟨e1, e2⟩, ⟨e1, e2, e3⟩, ⟨e1, e2, e3, e4⟩)
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Corollary
Every relation corresponds to an element in Sym(4).

For example: (12) ↔ “change the one-dimensional space”

({0}, ⟨e2⟩, ⟨e2, e1⟩, ⟨e2, e1, e3⟩, ⟨e2, e1, e3, e4⟩)



A matrix algebra!

Coxeter groups
spherical buildings

Chevalley groups
diagram geometry

Iwahori-Hecke algebra

eigenvalues

Sym(n)
An(q)

PGL(n,q)
PG(n− 1,q)

HAn(q)

representation theory

HAn(1) = C[Sym(n)]
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Towards eigenvalues

Each partition µ ⊢ n gives rise to an eigenvalue qeµ .

Eigenvalue for (6,3,3,2, 1) ⊢ 15
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Towards eigenvalues

Each partition µ ⊢ n gives rise to an eigenvalue qeµ .

Eigenvalue for (6,3,3,2, 1) ⊢ 15

eµ =
(15
2

)
+

0 1 2 3 4 5
0 1 2
0 1 2
0 1
0

−

0 0 0 0 0 0
1 1 1
2 2 2
3 3
4

= 109.



Summary

Theorem (De Beule-M.-Metsch 2022)
We can compute the eigenvalues of opposition of
▶ maximal flags in projective and polar spaces,
▶ partial flags in polar spaces.

Corollary
We can derive EKR bounds.



Summary

Theorem (De Beule-M.-Metsch 2022)
We can compute the eigenvalues of opposition of
▶ maximal flags in projective and polar spaces,
▶ partial flags in polar spaces.

Corollary
We can derive EKR bounds for all these cases.
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Conclusion

1. A computer can do the work!

2. We did not achieve our initial goal.

3. Life without commutativity is fine.

4. Not the end of the story: eigenvalues are everywhere!
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Thank you for your attention!

sammattheus.wordpress.com
sam.mattheus@vub.be



Finite Geometry and FriendsFinite Geometry and Friends
18-22 September 202318-22 September 2023

summerschool.fining.orgsummerschool.fining.org


