ERDÖS-KO-RADO FOR FLAGS IN SPHERICAL BUILDINGS

joint work with Jan De Beule and Klaus Metsch

Sam Mattheus
Sixth Irsee Conference September 2, 2022

UNIVERSITEIT
BRUSSEL

Context

Theorem (Erdős-Ko-Rado 1938)
Let C be a family in $\binom{[n]}{d}$ such that any two elements in C intersect non-trivially. If $n \geq 2 d$ then

$$
|C| \leq\binom{ n-1}{d-1} .
$$

Context

Theorem (Erdős-Ko-Rado 1938)
Let C be a family in $\binom{[n]}{d}$ such that any two elements in C intersect non-trivially. If $n \geq 2 d$ then

$$
|C| \leq\binom{ n-1}{d-1} .
$$

General EKR-problem
Describe in different contexts the largest sets of objects such that no two are "far away".

A successful strategy

Erdös-Ko-Rado
Theorems:
Algebraic
Approaches

> CHRISTOPHER GODSIL KAREN MEAGHER

A successful strategy

1. Rephrase the problem

Construct a graph:

- vertex set $=$ finite set Ω
- adjacency = "far-awayness"

Cambridge studies in advanced mathematics

> Erdós-Ko-Rado Theorems:
> Algebraic
> Approaches

CHRISTOPHER GODSIL KAREN MEAGHER

A successful strategy

1. Rephrase the problem

Construct a graph:

- vertex set $=$ finite set Ω
- adjacency = "far-awayness"
\longrightarrow find the largest cocliques.

Cambridge studies in advanced mathematics

Erdős-Ko-Rado Theorems:
 Algebraic
 Approaches

CHRISTOPHER GODSIL KAREN MEAGHER

A successful strategy

1. Rephrase the problem
2. The ratio bound

Let Γ be a k-regular graph on n vertices whose adjacency matrix $A(\Gamma)$ has smallest eigenvalue λ. Then if C is a coclique we have

$$
|C| \leq \frac{n}{1-\frac{k}{\lambda}} .
$$

Finding the eigenvalues

Objective
Find a 'nice' matrix algebra \mathcal{A} containing $A(\Gamma)$.

Finding the eigenvalues

Objective
Find a 'nice' matrix algebra \mathcal{A} containing $A(\Gamma)$.

Commutative is nice

There exists a unitary matrix U such that

$$
U^{*} \mathcal{A} U=\left\{U^{*} A U \mid A \in \mathcal{A}\right\}
$$

is an algebra of diagonal matrices.

Erdós-Ko-Rado results in finite geometry

Theorem (Hsieh 1975)
Let C be a set of d-dimensional subspaces of \mathbb{F}_{q}^{n} such that any two elements in C intersect non-trivially. If $n \geq 2 d$ then

$$
|C| \leq\left[\begin{array}{l}
n-1 \\
d-1
\end{array}\right]_{q} .
$$

Erdós-Ko-Rado results in finite geometry

Theorem (Hsieh 1975)
Let C be a set of d-dimensional subspaces of \mathbb{F}_{q}^{n} such that any two elements in C intersect non-trivially. If $n \geq 2 d$ then

$$
|C| \leq\left[\begin{array}{l}
n-1 \\
d-1
\end{array}\right]_{q} .
$$

Theorem (Pepe-Storme-Vanhove 2011)
Let C be a set of generators in a rank d polar space such that any two elements in C intersect non-trivially. Then in most cases

$$
|C| \leq|s t a r| .
$$

The lattice of subspaces

The lattice of subspaces

The lattice of subspaces

Use the lattice structure

We will focus on vector spaces.

Use the lattice structure

We will focus on vector spaces.

Definition

A flag in \mathbb{F}_{q}^{n} is a set of subspaces $\left\{V_{0}, \ldots, V_{k}\right\}$, such that $V_{0} \subsetneq V_{1} \subsetneq \cdots \subsetneq V_{k}$.
It is maximal if it cannot be extended.

Use the lattice structure

We will focus on vector spaces.

Definition

A flag in \mathbb{F}_{q}^{n} is a set of subspaces $\left\{V_{0}, \ldots, V_{k}\right\}$, such that $V_{0} \subsetneq V_{1} \subsetneq \cdots \subsetneq V_{k}$.
It is maximal if it cannot be extended.

Definition

Two maximal flags $\left\{V_{0}, \ldots, V_{n}\right\}$ and $\left\{W_{0}, \ldots, W_{n}\right\}$ are opposite if $V_{i} \cap W_{n-i}=\{0\}$.

Buildings for dummies

Buildings for dummies explained by a dummy

Fact

For any two maximal flags \mathcal{F} and \mathcal{F}^{\prime} there exists a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of \mathbb{F}_{q}^{4} such that

$$
\mathcal{F}=\left(\{0\},\left\langle e_{1}\right\rangle,\left\langle e_{1}, e_{2}\right\rangle,\left\langle e_{1}, e_{2}, e_{3}\right\rangle,\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle\right)
$$

and

$$
\mathcal{F}^{\prime}=\left(\{0\},\left\langle e_{i}\right\rangle,\left\langle e_{i}, e_{j}\right\rangle,\left\langle e_{i}, e_{j}, e_{k}\right\rangle,\left\langle e_{i}, e_{j}, e_{k}, e_{l}\right\rangle\right)
$$

where $\{i, j, k, I\}=\{1,2,3,4\}$.

A matrix algebra?

Corollary

Every relation corresponds to an element in Sym(4).

For example: (12) \leftrightarrow "change the one-dimensional space"

$$
\left(\{0\},\left\langle e_{1}\right\rangle,\left\langle e_{1}, e_{2}\right\rangle,\left\langle e_{1}, e_{2}, e_{3}\right\rangle,\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle\right)
$$

A matrix algebra?

Corollary

Every relation corresponds to an element in Sym(4).

For example: (12) \leftrightarrow "change the one-dimensional space"

$$
\left(\{0\},\left\langle e_{2}\right\rangle,\left\langle e_{2}, e_{1}\right\rangle,\left\langle e_{2}, e_{1}, e_{3}\right\rangle,\left\langle e_{2}, e_{1}, e_{3}, e_{4}\right\rangle\right)
$$

A matrix algebra!

Chevalley groups
diagram geometry
spherical buildings
Coxeter groups

A matrix algebra!

Chevalley groups
spherical buildings
diagram geometry

Coxeter groups

A matrix algebra!

A matrix algebra!

A matrix algebra!

$$
\mathcal{H}_{A_{n}}(1)=\mathbb{C}[\operatorname{Sym}(n)]
$$

Towards eigenvalues

Each partition $\mu \vdash n$ gives rise to an eigenvalue $q^{e_{\mu}}$.

Towards eigenvalues

Each partition $\mu \vdash n$ gives rise to an eigenvalue $q^{e_{\mu}}$.

Eigenvalue for $(6,3,3,2,1) \vdash 15$

Towards eigenvalues

Each partition $\mu \vdash n$ gives rise to an eigenvalue $q^{e_{\mu}}$.

Eigenvalue for $(6,3,3,2,1) \vdash 15$

Summary

Theorem (De Beule-M.-Metsch 2022)
We can compute the eigenvalues of opposition of

- maximal flags in projective and polar spaces,
- partial flags in polar spaces.

Summary

Theorem (De Beule-M.-Metsch 2022)
We can compute the eigenvalues of opposition of

- maximal flags in projective and polar spaces,
- partial flags in polar spaces.

Corollary

We can derive EKR bounds for all these cases.

Conclusion

Conclusion

1. A computer can do the work!

Conclusion

1. A computer can do the work!
2. We did not achieve our initial goal.

Conclusion

1. A computer can do the work!
2. We did not achieve our initial goal.
3. Life without commutativity is fine.

Conclusion

1. A computer can do the work!
2. We did not achieve our initial goal.
3. Life without commutativity is fine.
4. Not the end of the story: eigenvalues are everywhere!

Thank you for your attention!

sammattheus.wordpress.com sam.mattheus@vub.be

Finite Geonetry and Friends 18-22 Septennber 2023 sunnnerschooliningorg

