Low Boolean degree d functions in Grassmann graphs

Finite Geometry
Sixth Irsee Conference, Germany

(joint work with Jan De Beule, Jozefien D'haeseleer and Ferdinand Ihringer)

Jonathan Mannaert Vrije Universiteit Brussel

2 September, 2022

Notations

Let $n \geq 2k \geq 2d \geq 1$ in \mathbb{F}_q^n . suppose that Π_i be the set of i-spaces in \mathbb{F}_q^n .

Gauss coefficient

$${n \brack k}_q = \frac{(q^n - 1) \cdots (q^{n-k+1} - 1)}{(q^k - 1) \cdots (q - 1)}$$

equals the number of k-spaces in \mathbb{F}_q^n .

d-space to k-space incidence matrix

Order the *d*- and *k*-spaces as the rows and columns of a matrix *A* and define

$$A_{ij} = \begin{cases} 1 & \text{if } D_i \subseteq K_j \\ 0 & \text{if } D_i \not\subseteq K_j \end{cases}$$

What are Boolean degree *d* functions?

Boolean function and characteristic vectors

Definition

A Boolean function f on the k-spaces of \mathbb{F}_q^n , is a $\{0,1\}$ -valued function on these subspaces.

Boolean function and characteristic vectors

Definition

A Boolean function f on the k-spaces of $\mathbb{F}_{q^r}^n$ is a $\{0,1\}$ -valued function on these subspaces.

For Boolean functions f:

$$\mathcal{L}_f := \{K \mid f(K) = 1\}.$$

In particular the characteristic vector of this set χ_f are the values of f.

▶ Conversely for a characteristic vector $\chi_{\mathcal{L}}$, we can consider the Boolean function

$$\chi_{\mathcal{L}}^+: \ell \mapsto \chi_{\mathcal{L}}(\ell).$$

Example (d-space pencil)

► Fix *d*-space *D* and denote *x*_{*D*} as a Boolean function on the *k*-spaces such that

$$x_D(K) = \begin{cases} 1 & \text{if } D \subseteq K \\ 0 & \text{if } D \not\subseteq K \end{cases}$$

Example (d-space pencil)

► Fix d-space D and denote x_D as a Boolean function on the k-spaces such that

$$x_D(K) = \begin{cases} 1 & \text{if } D \subseteq K \\ 0 & \text{if } D \not\subseteq K \end{cases}$$

Remark

For every *d*-space $D = \langle p_1, ..., p_d \rangle$, we have that

$$x_D(K) = x_{p_1}(K) \cdots x_{p_d}(K),$$

for every K.

Definition

A Boolean degree d function f in \mathbb{F}_q^n is $\{0,1\}$ -valued function on the lines such that

$$f = \sum_{D \in \Pi_D} c_D x_D,$$

where $c_D \in \mathbb{R}$ and x_D are Boolean functions for *d*-space pencils.

Remark: Clearly all unions, differences and complements of degree *d* functions are still degree *d*.

Definition

A Boolean degree d function f in \mathbb{F}_q^n is $\{0,1\}$ -valued function on the lines such that

$$f = \sum_{D \in \Pi_D} c_D x_D = \sum_{D \in \Pi_D} c_D x_{p_1} \cdots x_{p_d},$$

where $c_D \in \mathbb{R}$ and x_D are Boolean functions for *d*-space pencils.

Remark: Clearly all unions, differences and complements of degree *d* functions are still degree *d*.

Trivial examples

Definition

For every d-space D and every (n-d)-space S, let us denote

- ▶ $x_{D,i}$ as the boolean degree d function that describes all k-spaces K with $\dim(K \cap D) = d i$
- ▶ $x_{S,i}^{\perp}$ as the boolean degree d function that describes all k-spaces K with $\dim(K \cap S) = d i$

for $i \in \{0, ..., d\}$.

Then all unions, differences, and complements of these are called *trivial* examples.

Connection with Association schemes

Definition

Definition

Let X be a finite set. A d-class symmetrical association scheme is a pair (X, \mathcal{R}) , where $\mathcal{R} = \{\mathcal{R}_0, \mathcal{R}_1, ..., \mathcal{R}_d\}$ is a set of binary symmetrical relations such that:

- 1. $\{\mathcal{R}_0, \mathcal{R}_1, ..., \mathcal{R}_d\}$ is a partition of $X \times X$.
- 2. \mathcal{R}_0 is the identity relation.
- 3. There exist constants p_{ij}^l such that for $x, y \in X$, with $(x,y) \in \mathcal{R}_l$, there are exactly p_{ij}^l elements z with $(x,z) \in \mathcal{R}_i$ and $(z,y) \in \mathcal{R}_j$. These constants are called the *intersection numbers* of the association scheme.

Definition

We can define d+1 adjacency matrices $B_0,...,B_d$ of dimension $n \times n$, such that

$$(B_k)_{ij} = \begin{cases} 1, & \text{if } (x_i, x_j) \in \mathcal{R}_k \\ 0, & \text{if } (x_i, x_j) \notin \mathcal{R}_k. \end{cases}$$

Definition

We can define d+1 adjacency matrices $B_0,...,B_d$ of dimension $n \times n$, such that

$$(B_k)_{ij} = \begin{cases} 1, & \text{if } (x_i, x_j) \in \mathcal{R}_k \\ 0, & \text{if } (x_i, x_j) \notin \mathcal{R}_k. \end{cases}$$

Remark

We obtain pairwise orthogonal common (right) eigenspaces $V_0, ..., V_d$. In fact

$$\mathbb{R}^{|X|} = V_0 + V_1 + \cdots + V_d.$$

Grassmann scheme or q-Johnson scheme $J_q(n,k)$

Let $X = \Pi_k$ in \mathbb{F}_q^n , with $n \geq 3$. Consider now the following set of relations $\mathcal{R}' = \{\mathcal{R}_0, \mathcal{R}_1, \cdots, \mathcal{R}_k\}$, where two k-spaces K_1 and K_2 are in relation \mathcal{R}_i if and only if

$$\dim(K_1\cap K_2)=k-i.$$

Then (Π_1, \mathcal{R}') is an k-class symmetrical association scheme.

Distribution of the eigenspaces

- Again we obtain pairwise orthogonal common (right) eigenspaces $V_0, ..., V_k$
- $ightharpoonup \mathbb{R}^{|\Pi_k|} = V_0 + V_1 + V_2 + \cdots + V_k$

Distribution of the eigenspaces

- Again we obtain pairwise orthogonal common (right) eigenspaces $V_0, ..., V_k$
- $ightharpoonup \mathbb{R}^{|\Pi_k|} = V_0 + V_1 + V_2 + \cdots + V_k$

Lemma

Let $n \ge 2k$ and consider $J_q(n,k)$, then we have for every $0 \le d \le k$ that $V_0 + \ldots + V_d = \langle x_D : \dim D = d \rangle$.

Distribution of the eigenspaces

- Again we obtain pairwise orthogonal common (right) eigenspaces $V_0, ..., V_k$
- $ightharpoonup \mathbb{R}^{|\Pi_k|} = V_0 + V_1 + V_2 + \cdots + V_k$

Lemma

Let $n \ge 2k$ and consider $J_q(n,k)$, then we have for every $0 \le d \le k$ that $V_0 + \ldots + V_d = \langle x_D : \dim D = d \rangle$.

Conclusion: Boolean degree *d* functions are those functions that arise from vectors in the first *d* eigenspaces of the association scheme.

Why study these objects?

Connecting with Blocks lemma

Lemma

Let G be a group acting on two finite sets X and X', with sizes n and m. Let O_1, \ldots, O_s , respectively O'_1, \ldots, O'_t be the orbits of the action on X, respectively X'. Suppose that $R \subseteq X \times X'$ is a G-invariant relation and call $A = (a_{ij})$ the $n \times m$ matrix of this relation, i.e. $a_{ij} = 1$ if and only if $x_i R x'_j$ and $a_{ij} = 0$.

- (i) The vectors $A^T \chi_{O_{i'}}$ i = 1, ..., s, are linear combinations of the vectors $\chi_{O'_{i'}}$.
- (ii) If A has full row rank, then $s \le t$. If s = t, then all vectors $\chi_{O'_j}$ are linear combinations of the vectors $A^T\chi_{O_{i'}}$ hence $\chi_{O'_i} \in \operatorname{Im}(A^T)$.

Connecting with Blocks lemma

- ▶ Let X and X' be the d-spaces, respectively k-spaces of \mathbb{F}_q^n .
- ► Consider A to be the *d*-space-to-*k*-space incidence matrix.

Then for the characteristic $\chi_{O'_j}$ vector of the orbits of X' it holds that

$$\chi_{\mathbf{0}'_j} \in \operatorname{Im}(\mathsf{A}^T).$$

Connecting with Cameron-Liebler problems

Lemma

Let $n \ge 2k$. For f a real function on $J_q(n,k)$ the following are equivalent:

- (a) The function f has degree d.
- (b) The function f lies in $V_0 + \cdots + V_d$.
- (c) The function f is orthogonal to $V_{d+1} + \cdots + V_n$.
- (d) The function f lies in the image of the d-space-to-k-space incidence matrix.

Connecting with Cameron-Liebler problems

Lemma

Let $n \ge 2k$. For f a real function on $J_q(n,k)$ the following are equivalent:

- (a) The function f has degree d.
- (b) The function f lies in $V_0 + \cdots + V_d$.
- (c) The function f is orthogonal to $V_{d+1} + \cdots + V_n$.
- (d) The function f lies in the image of the d-space-to-k-space incidence matrix.

Connecting with Cameron-Liebler problems

Lemma

Let $n \ge 2k$. For f a real function on $J_q(n,k)$ the following are equivalent:

- (a) The function f has degree d.
- (b) The function f lies in $V_0 + \cdots + V_d$.
- (c) The function f is orthogonal to $V_{d+1} + \cdots + V_n$.
- (d) The function f lies in the image of the d-space-to-k-space incidence matrix.

Remark: property (d) is equivalent with \mathcal{L}_f being a Cameron-Liebler set of k-spaces (for d=1).

How to study Boolean degree *d* functions?

A main problem for Boolean degree d functions

▶ Do there exist non-trivial examples?

A main problem for Boolean degree d functions

Do there exist non-trivial examples?

A main problem for Boolean degree d functions

Do there exist non-trivial examples?

J. De Beule, J. D'haeseleer, J. Mannaert, and F. Ihringer Degree 2 Boolean Functions on Grassmann Graphs arXiv:2202.03940, submitted.

Can we classify these examples?

A main problem for Boolean degree d functions

Do there exist non-trivial examples?

J. De Beule, J. D'haeseleer, J. Mannaert, and F. Ihringer Degree 2 Boolean Functions on Grassmann Graphs arXiv:2202.03940, submitted.

Can we classify these examples?

???

Non-existence conditions

Connecting Designs

Corollary

Let $n \geq 2k$. Consider a d- (n,k,λ) design $\mathcal D$ of $J_q(n,k)$. If $\mathcal F$ is a degree d subset of $J_q(n,k)$, then $|\mathcal F \cap \mathcal D| = |\mathcal F| \cdot |\mathcal D|/{n \brack k}_q$.

Proof.

Use the fact that

$$\chi_D \in V_0 + V_{d+1} + \ldots + V_k$$

and,

$$\chi_F \in V_0 + V_1 + \ldots + V_d.$$

Non-existence conditions

Suzuki's construction and others

Lemma

Let \mathcal{F} be a degree 2 family of 3-spaces in \mathbb{F}_q^n . Then $(q^3-1)|\mathcal{F}|$ is divisible by $q^{n-2}-1$.

Lemma

Let $m \geq 3$. Suppose that \mathcal{F} is a set of 3-spaces in \mathbb{F}_2^n of degree 2, then the following holds:

- (a) If n=8m, then $C|\mathcal{F}|$ is divisible by $2^{8m-2}-1$, where $C\in\{42,312\}$.
- (b) If n = 9m, then $42 \cdot |\mathcal{F}|$ is divisible by $2^{9m-2} 1$.
- (c) If n = 10m, then $210 \cdot |\mathcal{F}|$ is divisible by $2^{10m-2} 1$.
- (d) If n = 13m, then $42 \cdot |\mathcal{F}|$ is divisible by $2^{13m-2} 1$.

Non-trivial example

$$(n,k) = (6,3)$$
 of size $(q^2 + 1)q^3(q + 1)$

Pick a point P, a plane Π , and a hyperplane H such that $P \subseteq \Pi \subseteq H$.

- Let Π_1 be the set of all planes not in H which meet Π in a line through P.
- Let Π_2 the set of all planes in *H* whose meet with Π is a point different from *P*.

Non-trivial example

Other examples

(n,k,q)	size
n = 8, k = 4	$(q^4+1)(q^3+1)(q^2+1)\frac{q^5-1}{q-1}$
n = 6, k = 3	$(q+1)(q^2+1)(q^3+1)$
n = 6, k = 3	$(q^2+1)q^2(q+1)$
n = 6, k = 3, q = 2	55, 75, 195
n = 6, k = 3, q = 2	80, 85, 177, 420

References

J. De Beule, J. D'haeseleer, J. Mannaert, and F. Ihringer Degree 2 Boolean Functions on Grassmann Graphs arXiv:2202.03940, submitted.

Y. Filmus and F. Ihringer.

Boolean degree 1 functions on some classical association schemes.

J. Combin. Theory Ser. A, 162:241-270, 2019.

Thank you for your attention! Are there any questions?

Or send me an e-mail: Jonathan.Mannaert@vub.be