
Low Boolean degree d functions in
Grassmann graphs

Finite Geometry
Sixth Irsee Conference, Germany

(joint work with Jan De Beule, Jozefien D’haeseleer and
Ferdinand Ihringer)

Jonathan Mannaert
Vrije Universiteit Brussel
2 September, 2022



Notations
Let n ≥ 2k ≥ 2d ≥ 1 in Fn

q. suppose that Πi be the set of
i-spaces in Fn

q.

Gauss coefficient[
n
k

]
q

=
(qn − 1) · · · (qn−k+1 − 1)

(qk − 1) · · · (q− 1)

equals the number of k-spaces in Fn
q.

d-space to k-space incidence matrix
Order the d- and k-spaces as the rows and columns of a
matrix A and define

Aij =

{
1 if Di ⊆ Kj
0 if Di 6⊆ Kj



What are
Boolean degree d functions?



Boolean degree d functions
Boolean function and characteristic vectors

Definition
A Boolean function f on the k-spaces of Fn

q, is a
{0, 1}-valued function on these subspaces.

I For Boolean functions f :

Lf := {K | f(K) = 1}.

In particular the characteristic vector of this set χf are the
values of f.

I Conversely for a characteristic vector χL, we can consider
the Boolean function

χ+
L : ` 7→ χL(`).
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Boolean degree d functions

Example (d-space pencil)
I Fix d-space D and denote xD as a Boolean function on the

k-spaces such that

xD(K) =

{
1 if D ⊆ K
0 if D 6⊆ K

Remark
For every d-space D = 〈p1, ..., pd〉, we have that

xD(K) = xp1(K) · · · xpd(K),

for every K.
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Boolean degree d functions

Definition
A Boolean degree d function f in Fn

q is {0, 1}-valued
function on the lines such that

f =
∑
D∈ΠD

cDxD,

where cD ∈ R and xD are Boolean functions for d-space
pencils.

Remark: Clearly all unions, differences and complements of
degree d functions are still degree d.
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Boolean degree d functions:
Trivial examples

Definition
For every d-space D and every (n− d)-space S, let us
denote
I xD,i as the boolean degree d function that describes

all k-spaces K with dim(K ∩ D) = d− i
I x⊥S,i as the boolean degree d function that describes

all k-spaces K with dim(K ∩ S) = d− i
for i ∈ {0, ..., d}.
Then all unions, differences, and complements of these
are called trivial examples.



Connection with Association
schemes



Association schemes
Definition

Definition
Let X be a finite set. A d-class symmetrical association
scheme is a pair (X,R), whereR = {R0,R1, ...,Rd} is a
set of binary symmetrical relations such that:
1. {R0,R1, ...,Rd} is a partition of X × X.
2. R0 is the identity relation.
3. There exist constants pl

ij such that for x, y ∈ X, with
(x, y) ∈ Rl, there are exactly pl

ij elements z with
(x, z) ∈ Ri and (z, y) ∈ Rj. These constants are
called the intersection numbers of the association
scheme.



Association schemes
Definition

We can define d + 1 adjacency matrices B0, ...,Bd of dimension
n× n, such that

(Bk)ij =

{
1, if (xi, xj) ∈ Rk

0, if (xi, xj) 6∈ Rk.

Remark
We obtain pairwise orthogonal common (right)
eigenspaces V0, ...,Vd. In fact

R|X| = V0 + V1 + · · ·+ Vd.
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Association schemes
Grassmann scheme or q-Johnson scheme Jq(n, k)

Let X = Πk in Fn
q, with n ≥ 3. Consider now the following set of

relationsR′ = {R0,R1, · · · ,Rk}, where two k-spaces K1 and K2
are in relationRi if and only if

dim(K1 ∩ K2) = k − i.

Then (Π1,R′) is an k-class symmetrical association scheme.



Association schemes
Distribution of the eigenspaces

I Again we obtain pairwise orthogonal common (right)
eigenspaces V0, ...,Vk

I R|Πk| = V0 + V1 + V2 + · · ·+ Vk

Lemma
Let n ≥ 2k and consider Jq(n, k), then we have for every
0 ≤ d ≤ k that V0 + . . .+ Vd = 〈xD : dimD = d〉.

Conclusion: Boolean degree d functions are those functions
that arise from vectors in the first d eigenspaces of the
association scheme.
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Why study these objects?



Connecting with Blocks lemma

Lemma
Let G be a group acting on two finite sets X and X′, with
sizes n and m. Let O1, . . . ,Os, respectively O′1, . . . ,O

′
t be

the orbits of the action on X, respectively X′. Suppose that
R ⊆ X × X′ is a G-invariant relation and call A = (aij) the
n×m matrix of this relation, i.e. aij = 1 if and only if xiRx′j
and aij = 0.
(i) The vectors ATχOi , i = 1, . . . , s, are linear

combinations of the vectors χO′
j
.

(ii) If A has full row rank, then s ≤ t. If s = t, then all
vectors χO′

j
are linear combinations of the vectors

ATχOi , hence χO′
j
∈ Im(AT).



Connecting with Blocks lemma

I Let X and X′ be the d-spaces, respectively k-spaces of Fn
q.

I Consider A to be the d-space-to-k-space incidence matrix.
Then for the characteristic χO′

j
vector of the orbits of X′ it holds

that
χO′

j
∈ Im(AT).



Connecting with Cameron-Liebler problems

Lemma
Let n ≥ 2k. For f a real function on Jq(n, k) the following
are equivalent:
(a) The function f has degree d.
(b) The function f lies in V0 + · · ·+ Vd.
(c) The function f is orthogonal to Vd+1 + · · ·+ Vn.
(d) The function f lies in the image of the

d-space-to-k-space incidence matrix.



Connecting with Cameron-Liebler problems

Lemma
Let n ≥ 2k. For f a real function on Jq(n, k) the following
are equivalent:
(a) The function f has degree d.
(b) The function f lies in V0 + · · ·+ Vd.
(c) The function f is orthogonal to Vd+1 + · · ·+ Vn.
(d) The function f lies in the image of the

d-space-to-k-space incidence matrix.

Remark: property (d) is equivalent with Lf being a
Cameron-Liebler set of k-spaces (for d = 1).
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How to study

Boolean degree d functions?



Common problems
A main problem for Boolean degree d functions

I Do there exist non-trivial examples?

J. De Beule, J. D’haeseleer, J. Mannaert, and F. Ihringer
Degree 2 Boolean Functions on Grassmann Graphs
arXiv:2202.03940, submitted.

I Can we classify these examples?
???
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Non-existence conditions
Connecting Designs

Corollary
Let n ≥ 2k. Consider a d-(n, k, λ) design D of Jq(n, k). If F
is a degree d subset of Jq(n, k), then
|F ∩ D| = |F| · |D|/

[n
k
]
q.

Proof.
Use the fact that

χD ∈ V0 + Vd+1 + . . .+ Vk

and,
χF ∈ V0 + V1 + . . .+ Vd.

�



Non-existence conditions
Suzuki’s construction and others

Lemma
Let F be a degree 2 family of 3-spaces in Fn

q. Then
(q3 − 1)|F| is divisible by qn−2 − 1.

Lemma
Let m ≥ 3. Suppose that F is a set of 3-spaces in Fn

2 of
degree 2, then the following holds:
(a) If n = 8m, then C|F| is divisible by 28m−2 − 1, where

C ∈ {42,312}.
(b) If n = 9m, then 42 · |F| is divisible by 29m−2 − 1.
(c) If n = 10m, then 210 · |F| is divisible by 210m−2 − 1.
(d) If n = 13m, then 42 · |F| is divisible by 213m−2 − 1.



Boolean degree 2 functions



Non-trivial example
(n, k) = (6,3) of size (q2 + 1)q3(q+ 1)
Pick a point P, a plane Π, and a hyperplane H such that
P ⊆ Π ⊆ H.
I Let Π1 be the set of all planes not in H which meet Π in a

line through P.
I Let Π2 the set of all planes in H whose meet with Π is a

point different from P.

Figure: The planes of Π1 and Π2 correspond to the planes with dashed
border.



Non-trivial example
Other examples

(n, k,q) size
n = 8, k = 4 (q4 + 1)(q3 + 1)(q2 + 1)q5−1

q−1
n = 6, k = 3 (q + 1)(q2 + 1)(q3 + 1)
n = 6, k = 3 (q2 + 1)q2(q + 1)

n = 6,k = 3, q = 2 55, 75, 195
n = 6, k = 3,q = 2 80,85, 177,420
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Thank you for your attention!
Are there any questions?

Or send me an e-mail: Jonathan.Mannaert@vub.be
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