Low Boolean degree d functions in Grassmann graphs

Finite Geometry
Sixth Irsee Conference, Germany
(joint work with Jan De Beule, Jozefien D'haeseleer and Ferdinand Ihringer)

Jonathan Mannaert
Vrije Universiteit Brussel 2 September, 2022

Notations

Let $n \geq 2 k \geq 2 d \geq 1$ in \mathbb{F}_{q}^{n}. suppose that Π_{i} be the set of i-spaces in \mathbb{F}_{q}^{n}.

Gauss coefficient

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right) \cdots(q-1)}
$$

equals the number of k-spaces in \mathbb{F}_{q}^{n}.
d-space to k-space incidence matrix
Order the d - and k-spaces as the rows and columns of a matrix A and define

$$
A_{i j}= \begin{cases}1 & \text { if } D_{i} \subseteq K_{j} \\ 0 & \text { if } D_{i} \nsubseteq K_{j}\end{cases}
$$

What are

Boolean degree d functions?

Boolean degree d functions

Boolean function and characteristic vectors

Definition
A Boolean function f on the k-spaces of \mathbb{F}_{q}^{n}, is a $\{0,1\}$-valued function on these subspaces.

Boolean degree d functions

Boolean function and characteristic vectors

Definition

A Boolean function f on the k-spaces of \mathbb{F}_{q}^{n}, is a $\{0,1\}$-valued function on these subspaces.

- For Boolean functions f :

$$
\mathcal{L}_{f}:=\{K \mid f(K)=1\} .
$$

In particular the characteristic vector of this set χ_{f} are the values of f.

- Conversely for a characteristic vector $\chi_{\mathcal{L}}$, we can consider the Boolean function

$$
\chi_{\mathcal{L}}^{+}: \ell \mapsto \chi_{\mathcal{L}}(\ell)
$$

Boolean degree d functions

Example (d-space pencil)

- Fix d-space D and denote x_{D} as a Boolean function on the k-spaces such that

$$
x_{D}(K)= \begin{cases}1 & \text { if } D \subseteq K \\ 0 & \text { if } D \nsubseteq K\end{cases}
$$

Boolean degree d functions

Example (d-space pencil)

- Fix d-space D and denote x_{D} as a Boolean function on the k-spaces such that

$$
x_{D}(K)= \begin{cases}1 & \text { if } D \subseteq K \\ 0 & \text { if } D \nsubseteq K\end{cases}
$$

Remark

For every d-space $D=\left\langle p_{1}, \ldots, p_{d}\right\rangle$, we have that

$$
x_{D}(K)=x_{p_{1}}(K) \cdots x_{p_{d}}(K),
$$

for every K.

Boolean degree d functions

Definition

A Boolean degree d function f in \mathbb{F}_{q}^{n} is $\{0,1\}$-valued function on the lines such that

$$
f=\sum_{D \in \Pi_{D}} c_{D} x_{D},
$$

where $c_{D} \in \mathbb{R}$ and x_{D} are Boolean functions for d-space pencils.

Remark: Clearly all unions, differences and complements of degree d functions are still degree d.

Boolean degree d functions

Definition

A Boolean degree d function f in \mathbb{F}_{q}^{n} is $\{0,1\}$-valued function on the lines such that

$$
f=\sum_{D \in \Pi_{D}} c_{D} x_{D}=\sum_{D \in \Pi_{D}} c_{D} x_{P_{1}} \cdots x_{P_{d}},
$$

where $c_{D} \in \mathbb{R}$ and x_{D} are Boolean functions for d-space pencils.

Remark: Clearly all unions, differences and complements of degree d functions are still degree d.

Boolean degree d functions:

Trivial examples

Definition

For every d-space D and every ($n-d$)-space S, let us denote

- $x_{D, i}$ as the boolean degree d function that describes all k-spaces K with $\operatorname{dim}(K \cap D)=d-i$
- $x_{S, j}^{\perp}$ as the boolean degree d function that describes all k-spaces K with $\operatorname{dim}(K \cap S)=d-i$
for $i \in\{0, \ldots, d\}$.
Then all unions, differences, and complements of these are called trivial examples.

Connection with Association schemes

Association schemes

Definition

Definition

Let X be a finite set. A d-class symmetrical association scheme is a pair (X, \mathcal{R}), where $\mathcal{R}=\left\{\mathcal{R}_{0}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{d}\right\}$ is a set of binary symmetrical relations such that:

1. $\left\{\mathcal{R}_{0}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{d}\right\}$ is a partition of $X \times X$.
2. \mathcal{R}_{0} is the identity relation.
3. There exist constants $p_{i j}^{\prime}$ such that for $x, y \in X$, with $(x, y) \in \mathcal{R}_{l}$, there are exactly $p_{i j}^{l}$ elements z with $(x, z) \in \mathcal{R}_{i}$ and $(z, y) \in \mathcal{R}_{j}$. These constants are called the intersection numbers of the association scheme.

Association schemes

Definition

We can define $d+1$ adjacency matrices B_{0}, \ldots, B_{d} of dimension $n \times n$, such that

$$
\left(B_{k}\right)_{i j}=\left\{\begin{array}{l}
1, \text { if }\left(x_{i}, x_{j}\right) \in \mathcal{R}_{k} \\
0, \text { if }\left(x_{i}, x_{j}\right) \notin \mathcal{R}_{k} .
\end{array}\right.
$$

Association schemes

Definition

We can define $d+1$ adjacency matrices B_{0}, \ldots, B_{d} of dimension $n \times n$, such that

$$
\left(B_{k}\right)_{i j}=\left\{\begin{array}{l}
1, \text { if }\left(x_{i}, x_{j}\right) \in \mathcal{R}_{k} \\
0, \text { if }\left(x_{i}, x_{j}\right) \notin \mathcal{R}_{k} .
\end{array}\right.
$$

Remark

We obtain pairwise orthogonal common (right) eigenspaces V_{0}, \ldots, V_{d}. In fact

$$
\mathbb{R}^{|X|}=V_{0}+V_{1}+\cdots+V_{d} .
$$

Association schemes

Grassmann scheme or q-Johnson scheme $J_{q}(n, k)$

Let $X=\Pi_{k}$ in \mathbb{F}_{q}^{n}, with $n \geq 3$. Consider now the following set of relations $\mathcal{R}^{\prime}=\left\{\mathcal{R}_{0}, \mathcal{R}_{1}, \cdots, \mathcal{R}_{k}\right\}$, where two k-spaces K_{1} and K_{2} are in relation \mathcal{R}_{i} if and only if

$$
\operatorname{dim}\left(K_{1} \cap K_{2}\right)=k-i
$$

Then $\left(\Pi_{1}, \mathcal{R}^{\prime}\right)$ is an k-class symmetrical association scheme.

Association schemes

Distribution of the eigenspaces

- Again we obtain pairwise orthogonal common (right) eigenspaces V_{0}, \ldots, V_{k}
$-\mathbb{R}^{\left|\Pi_{k}\right|}=V_{0}+V_{1}+V_{2}+\cdots+V_{k}$

Association schemes

Distribution of the eigenspaces

- Again we obtain pairwise orthogonal common (right) eigenspaces V_{0}, \ldots, V_{k}
$-\mathbb{R}^{\left|\Pi_{k}\right|}=V_{0}+V_{1}+V_{2}+\cdots+V_{k}$

Lemma

Let $n \geq 2 k$ and consider $J_{q}(n, k)$, then we have for every

$$
0 \leq d \leq k \text { that } V_{0}+\ldots+V_{d}=\left\langle x_{D}: \operatorname{dim} D=d\right\rangle .
$$

Association schemes

Distribution of the eigenspaces

- Again we obtain pairwise orthogonal common (right) eigenspaces V_{0}, \ldots, V_{k}
$-\mathbb{R}^{\left|\Pi_{k}\right|}=V_{0}+V_{1}+V_{2}+\cdots+V_{k}$

Lemma

Let $n \geq 2 k$ and consider $J_{q}(n, k)$, then we have for every
$0 \leq d \leq k$ that $V_{0}+\ldots+V_{d}=\left\langle x_{D}: \operatorname{dim} D=d\right\rangle$.

Conclusion: Boolean degree d functions are those functions that arise from vectors in the first d eigenspaces of the association scheme.

Why study these objects?

Connecting with Blocks lemma

Lemma

Let G be a group acting on two finite sets X and X^{\prime}, with sizes n and m. Let O_{1}, \ldots, O_{s}, respectively $O_{1}^{\prime}, \ldots, O_{t}^{\prime}$ be the orbits of the action on X, respectively X^{\prime}. Suppose that $R \subseteq X \times X^{\prime}$ is a G-invariant relation and call $A=\left(a_{i j}\right)$ the $n \times m$ matrix of this relation, i.e. $a_{i j}=1$ if and only if $x_{i} R x_{j}^{\prime}$ and $a_{i j}=0$.
(i) The vectors $A^{T} \chi_{o_{i}} i=1, \ldots, s$, are linear combinations of the vectors $\chi_{O_{j}^{\prime}}$.
(ii) If A has full row rank, then $s \leq t$. If $s=t$, then all vectors $\chi_{0_{j}^{\prime}}$ are linear combinations of the vectors $A^{T} \chi_{o_{i},}$, hence $\chi_{o_{j}^{\prime}} \in \operatorname{Im}\left(A^{T}\right)$.

Connecting with Blocks lemma

- Let X and X^{\prime} be the d-spaces, respectively k-spaces of \mathbb{F}_{q}^{n}.
- Consider A to be the d-space-to- k-space incidence matrix. Then for the characteristic $\chi_{o_{j}^{\prime}}$ vector of the orbits of X^{\prime} it holds that

$$
\chi_{o_{j}^{\prime}} \in \operatorname{Im}\left(A^{T}\right)
$$

Connecting with Cameron-Liebler problems

Lemma

Let $n \geq 2 k$. For f a real function on $J_{q}(n, k)$ the following are equivalent:
(a) The function f has degree d.
(b) The function f lies in $V_{0}+\cdots+V_{d}$.
(c) The function f is orthogonal to $V_{d+1}+\cdots+V_{n}$.
(d) The function f lies in the image of the d-space-to-k-space incidence matrix.

Connecting with Cameron-Liebler problems

Lemma

Let $n \geq 2 k$. For f a real function on $J_{q}(n, k)$ the following are equivalent:
(a) The function f has degree d.
(b) The function f lies in $V_{0}+\cdots+V_{d}$.
(c) The function f is orthogonal to $V_{d+1}+\cdots+V_{n}$.
(d) The function f lies in the image of the d-space-to-k-space incidence matrix.

Connecting with Cameron-Liebler problems

Lemma

Let $n \geq 2 k$. For f a real function on $J_{q}(n, k)$ the following are equivalent:
(a) The function f has degree d.
(b) The function f lies in $V_{0}+\cdots+V_{d}$.
(c) The function f is orthogonal to $V_{d+1}+\cdots+V_{n}$.
(d) The function f lies in the image of the d-space-to-k-space incidence matrix.

Remark: property (d) is equivalent with \mathcal{L}_{f} being a Cameron-Liebler set of k-spaces (for $d=1$).

How to study

Boolean degree d functions?

Common problems

A main problem for Boolean degree d functions

- Do there exist non-trivial examples?

Common problems

A main problem for Boolean degree d functions

- Do there exist non-trivial examples?

嗇 J. De Beule, J. D’haeseleer, J. Mannaert, and F. Ihringer Degree 2 Boolean Functions on Grassmann Graphs arXiv:2202.03940, submitted.

Common problems

A main problem for Boolean degree d functions

- Do there exist non-trivial examples?
(J. De Beule, J. D’haeseleer, J. Mannaert, and F. Ihringer Degree 2 Boolean Functions on Grassmann Graphs arXiv:2202.03940, submitted.
- Can we classify these examples?

Common problems

A main problem for Boolean degree d functions

- Do there exist non-trivial examples?
(J. De Beule, J. D’haeseleer, J. Mannaert, and F. Ihringer Degree 2 Boolean Functions on Grassmann Graphs arXiv:2202.03940, submitted.
- Can we classify these examples?
???

Non-existence conditions

Connecting Designs

Corollary

Let $n \geq 2 k$. Consider a $d-(n, k, \lambda)$ design \mathcal{D} of $J_{q}(n, k)$. If \mathcal{F} is a degree d subset of $J_{q}(n, k)$, then

$$
|\mathcal{F} \cap \mathcal{D}|=|\mathcal{F}| \cdot|\mathcal{D}| /\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Proof.

Use the fact that

$$
\chi_{D} \in V_{0}+V_{d+1}+\ldots+V_{k}
$$

and,

$$
\chi_{F} \in V_{0}+V_{1}+\ldots+V_{d} .
$$

Non-existence conditions

Suzuki's construction and others

Lemma

Let \mathcal{F} be a degree 2 family of 3 -spaces in \mathbb{F}_{q}^{n}. Then $\left(q^{3}-1\right)|\mathcal{F}|$ is divisible by $q^{n-2}-1$.

Lemma

Let $m \geq 3$. Suppose that \mathcal{F} is a set of 3 -spaces in \mathbb{F}_{2}^{n} of degree 2, then the following holds:
(a) If $n=8 m$, then $C|\mathcal{F}|$ is divisible by $2^{8 m-2}-1$, where $C \in\{42,312\}$.
(b) If $n=9 m$, then $42 \cdot|\mathcal{F}|$ is divisible by $2^{9 m-2}-1$.
(c) If $n=10 m$, then $210 \cdot|\mathcal{F}|$ is divisible by $2^{10 m-2}-1$.
(d) If $n=13 m$, then $42 \cdot|\mathcal{F}|$ is divisible by $2^{13 m-2}-1$.

Boolean degree 2 functions

Non-trivial example

$$
(n, k)=(6,3) \text { of size }\left(q^{2}+1\right) q^{3}(q+1)
$$

Pick a point P, a plane Π, and a hyperplane H such that $P \subseteq \Pi \subseteq H$.

- Let Π_{1} be the set of all planes not in H which meet Π in a line through P.
- Let Π_{2} the set of all planes in H whose meet with Π is a point different from P.

Non-trivial example

Other examples

(n, k, q)	size
$n=8, k=4$	$\left(q^{4}+1\right)\left(q^{3}+1\right)\left(q^{2}+1\right) \frac{q^{5}-1}{q-1}$
$n=6, k=3$	$(q+1)\left(q^{2}+1\right)\left(q^{3}+1\right)$
$n=6, k=3$	$\left(q^{2}+1\right) q^{2}(q+1)$
$n=6, k=3, q=2$	$55,75,195$
$n=6, k=3, q=2$	$80,85,177,420$

References

(1) A. E. Brouwer, A. M. Cohen, and A. Neumaier.

Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1989.
嗇 J. De Beule, J. D’haeseleer, J. Mannaert, and F. Ihringer Degree 2 Boolean Functions on Grassmann Graphs arXiv:2202.03940, submitted.

围 Y. Filmus and F. Ihringer.
Boolean degree 1 functions on some classical association schemes.
J. Combin. Theory Ser. A, 162:241-270, 2019.

Thank you for your attention!

Are there any questions?

Or send me an e-mail: Jonathan.Mannaert@vub.be

