Strong t mod q arcs in PG(k-1,q)

Sascha Kurz sascha.kurz@uni-bayreuth.de, University of Bayreuth

joint work with

Ivan Landjev i.landjev@nbu.bg, New Bulgarian University

and

Assia Rousseva

assia@fmi.uni-sofia.bg, Sofia University

Finite Geometries 2022 - Sixth Irsee Conference, Irsee, 28.08-03.09.2022

Assia and Ivan

Some literature

- I. Landjev and A. Rousseva. On the extendability of Griesmer arcs. Annual of Sofia University "St. Kliment Ohridski" – Faculty of Mathematics and Informatics, 101:183–192, 2013.
- I. Landjev and A. Rousseva. The non-existence of (104, 22; 3, 5)-arcs. Advances in Mathematics of Communications, 10(3):601–611, 2016.
- ► I. Landjev and A. Rousseva. On the characterization of (3 mod 5) arcs. Electronic Notes in Discrete Mathematics, 57:187–192, 2017.
- I. Landjev and A. Rousseva. Divisible arcs, divisible codes, and the extension problem for arcs and codes. Problems of Information Transmission, 55(3):226–240, 2019.
- I. Landjev, A. Rousseva, and L. Storme. On the extendability of quasidivisible Griesmer arcs. Designs, Codes and Cryptography, 79(3):535–547, 2016.
- ► A. Rousseva. On the structure of (t mod q)-arcs in finite projective geometries. Annuaire de l'Univ. de Sofia, 102:16pp., 2015.

The Griesmer bound for linear codes

 $[n, k, d]_q$ code: $n \ge \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil =: g_q(k, d)$ tight for sufficiently large d

Known results

The minimum possible length $n_q(k, d)$ of an $[n, k, d]_q$ code is known for:

- ▶ k ≤ 8 if q = 2;
- ▶ $k \le 5$ if q = 3;
- ▶ $k \le 4$ if q = 4;
- ▶ k ≤ 3 if q ≤ 9;
- ▶ k = 4 if q = 5 except $d \in \{81, 161, 162\}$.

The talk reports techniques used to determine $n_5(4, 82) = 105$.

Extendability results

- ► adding a parity check bit to an [n, k, d]₂ code of odd minimum distance d yields an even [n + 1, k, d + 1]₂ code
- Theorem of Hill–Lizak: if all weights of codewords in an [n, k, d]_q code are ≡ 0 or d modulo q, where gcd(d, q) = 1, then the code is extendable to an [n + 1, k, d + 1]_q code
 - ► Hill R.: An extension theorem for linear codes. Des. Codes Cryptogr. 17, 151–157 (1999).
 - Hill R., Lizak P.: Extensions of linear codes. In: Proceedings of International Symposium on Information Theory, Whistler (1995).

Extendability results (cont.)

- further generalized by Tatsuya Maruta
 - Maruta T.: On the extendability of linear codes. Finite Fields Appl. 7, 350–354 (2001).
 - Maruta T.: Extendability of linear codes over GF(q). Discret. Math. 266, 377–385 (2003).
 - Maruta T.: A new extension theorem for linear codes. Finite Fields Appl. 10, 674–685 (2004).
 - Maruta T.: Extension theorems for linear codes over finite fields. J. Geom. 101, 173–183 (2011).
 - ➤ Yoshida Y., Maruta T.: An extension theorem for [n, k, d]q. Australas. J. Comb. 48, 117–131 (2010).

Arcs – geometric view on linear codes

- A multiset in PG(k 1, q) is a mapping $\mathcal{K} \colon \mathcal{P} \to \mathbb{N}_0$, $P \mapsto \mathcal{K}(P)$.
- $\mathcal{K}(P)$ multiplicity of the point *P*.
- ▶ $Q \subseteq P$: $K(Q) = \sum_{P \in Q} K(P)$ multiplicity of the set Q.
- $\mathcal{K}(\mathcal{P})$ the cardinality of \mathcal{K} .
- a_i the number of hyperplanes H with $\mathcal{K}(H) = i$.
- $(a_i)_{i\geq 0}$ the spectrum of \mathcal{K} .
- (n, \overline{s}) -arc in PG(k 1, q): a multiset \mathcal{K} with
 - $\mathcal{K}(\mathcal{P}) = n;$
 - for every hyperplane $H: \mathcal{K}(H) \leq s;$
 - there exists a hyperplane H_0 : $\mathcal{K}(H_0) = s$.
- An (n, s)-arc in PG(k − 1, q) K is called *t*-extendable if there exists an (n + t, s)-arc K' in PG(k − 1, q) with K'(P) ≥ K(P) for all P ∈ P. An arc is called extendable if it is 1-extendable.

Quasidivisible arcs

(1)

Definition

An (n, s)-arc in PG(k - 1, q) is called *t*-quasidivisible with divisor $\Delta \in \mathbb{N}$ if $a_i = 0$ for all $i \neq n, n + 1, \dots, n + t \pmod{\Delta}$, $1 \leq t \leq q - 1$. If we speak of a *t*-quasidivisible arc, then $\Delta := q$.

Definition

Let \mathcal{K} be a *t*-quasidivisible (n, s)-arc with divisor q in PG(k - 1, q), where $1 \le t < q$. By $\widetilde{\mathcal{K}}$ we denote the σ -dual

$$\widetilde{\mathcal{K}}: \begin{cases} \mathcal{H} \to \{0, 1, \dots, t\} \\ H \mapsto \widetilde{\mathcal{K}}(H) \equiv n + t - \mathcal{K}(H) \pmod{q} \end{cases}$$

Hyperplanes of multiplicity congruent to $n + a \pmod{q}$ become (t - a)-points in the dual geometry; *s*-hyperplanes become 0-points with respect to $\widetilde{\mathcal{K}}$.

The link to extendability

Theorem Landjev/Rousseva

Let \mathcal{K} be an (n, s)-arc in PG(k - 1, q), which is *t*-quasidivisible modulo q with $1 \le t < q$. Let $\widetilde{\mathcal{K}}$ defined by Equation (1). If

$$\widetilde{\mathcal{K}} = \sum_{i=1}^{c} \chi_{\widetilde{P}_i} + \mathcal{K}'$$
⁽²⁾

for some multiset \mathcal{K}' in $\mathrm{PG}^{\perp}(k-1,q)$ and *c* not necessarily different hyperplanes $\widetilde{P}_1, \ldots, \widetilde{P}_c$ in $\mathrm{PG}^{\perp}(k-1,q)$, then \mathcal{K} is *c*-extendable. In particular, if $\widetilde{\mathcal{K}}$ contains a hyperplane in its support, then \mathcal{K} is extendable.

Strong ($t \mod q$)-arcs

Theorem Landjev/Rousseva

Let \mathcal{K} be an (n, s)-arc in PG(k - 1, q) which is *t*-quasidivisible modulo q with $1 \le t < q$. For every subspace \widetilde{S} , with dim $\left(\widetilde{S}\right) \ge 2$, in the dual geometry PG^{\perp}(k - 1, q) we have

$$\widetilde{\mathcal{K}}(\widetilde{S}) \equiv t \pmod{q}.$$
 (3)

Definition

An arc \mathcal{K} in PG(k - 1, q) is called a $(t \mod q)$ -arc, where $t \in \mathbb{N}$, if we have $\mathcal{K}(S) \equiv t \pmod{q}$ for all subspaces S with dim $(S) \ge 2$ and $\mathcal{K}(P) < q$ for all points $P \in \mathcal{P}$. We speak of a strong $(t \mod q)$ -arc if the maximum point multiplicity is at most t.

Strong ($t \mod q$)-arcs (cont.)

Remark

An equivalent version of the previous definition is to require the condition $\mathcal{K}(S) \equiv t \pmod{q}$ just for all lines *S* in PG(*k* - 1, *q*).

The importance of $(t \mod q)$ -arcs is due to the fact that every *t*-quasidivisible arc \mathcal{K} gives a unique strong $(t \mod q)$ -arc $\widetilde{\mathcal{K}}$.

Corollary

If \mathcal{K} is a *t*-quasidivisible arc in PG(k - 1, q), then $\widetilde{\mathcal{K}}$, defined by Equation (1), is a strong ($t \mod q$)-arc.

- different t-quasidivisible arcs can produce the same strong (t mod q)-arc;
- strong (t mod q)-arcs without 0-points and 1 ≤ t < q cannot be obtained by (1) from t-quasidivisible arcs;</p>

Constructions for strong $(t \mod q)$ -arcs

Theorem Landjev/Rousseva

Let $t_1 < q$ and $t_2 < q$ be positive integers. The sum of a strong $(t_1 \mod q)$ -arc and a $(t_2 \mod q)$ -arc in PG(k - 1, q) is a $(t \mod q)$ -arc with $t = t_1 + t_2 \pmod{q}$ provided the multiplicities of all points do not exceed *t*. In particular, the sum of *t* hyperplanes in PG(k - 1, q) is a $(t \mod q)$ -arc.

Constructions for strong (*t* mod *q*)-arcs (cont.)

Theorem Landjev/Rousseva

Let \mathcal{F}_0 be a strong $(t \mod q)$ -arc in a hyperplane $H \simeq PG(k-2, q)$ of $\Sigma = PG(k-1, q)$. For a fixed point $P \in \Sigma \setminus H$, define an arc \mathcal{F} in Σ as follows:

• $\mathcal{F}(P) = t;$

► for each point $Q \neq P$: $\mathcal{F}(Q) = \mathcal{F}_0(R)$ where $R = \langle P, Q \rangle \cap H$. Then the arc \mathcal{F} is a strong $(t \mod q)$ -arc in PG(k - 1, q) of size $q|\mathcal{F}_0| + t$.

Strong ($t \mod q$)-arcs obtained by this theorem are called lifted arcs.

Lifted arcs

Classification of strong $(1 \mod q)$ -arcs

A plane (1 mod q)-arc is easily seen to be either a line, or the complete plane for all q. In higher dimensions such an arc is either a hyperplane or the complete space. Therefore every 1-quasidivisible arc \mathcal{K} is extendable \rightsquigarrow Hill–Lizak Theorem

Class. of plane strong $(2 \mod q)$ -arcs

Proposition

Let $q \ge 5$ be odd. For a strong (2 mod q)-arc \mathcal{K} in PG(2, q) we have the following possibilities:

- (I) A lifted arc from a 2-line with $\#\mathcal{K} = 2q + 2$. There exist two possibilities:
 - (I-1) a double line; or
 - (I-2) a sum of two different lines.
- (II) A lifted arc from a (q+2)-line *L* with $\#\mathcal{K} = q^2 + 2q + 2$ points. The line *L* has *i* double points, q 2i + 2 single points, and i 1 0-points, where $1 \le i \le \frac{q+1}{2}$. We say that such an arc is of type (II-i) if it is lifted from a line with *i* double points.
- (III) A lifted arc from a (2q + 2)-line, which is the same as two copies of the plane. Such an arc has $2(q^2 + q + 1)$ points.
- (IV) An exceptional (2 mod q)-arc for q odd. It consists of the points of an oval, a fixed tangent to this oval, and two copies of each internal point of the oval.

The exceptional strong $(2 \mod q)$ -arc

Proof

Follows from the standard equations (a.k.a. first three MacWilliams identities).

Classification of strong $(2 \mod q)$ -arcs

Theorem Landjev/Rousseva

Let \mathcal{K} be a strong (2 mod q)-arc in PG(k - 1, q), where $k \ge 4$ and q is odd. Then, \mathcal{K} is a lifted arc. In particular, for $k \ge 3$ every (2 mod q)-arc in PG(k - 1, q) has a hyperplane in its support.

Corollary

For $k \ge 4$ each 2-quasidivisible arc in PG(k - 1, q) is extendable.

→ Theorem of Maruta

Class. of plane strong (3 mod 5)-arcs

$\#\mathcal{K}$	line mult.	# isomorphism types
18	0, 1, 2, 3	4
23	1, 2, 3, 4	1
28	2, 3, 4, 5	1
33	3, 4, 5, 6	10
38	4, 5, 6, 7	23
43	5, 6, 7, 8	53
48	6,7,8,9	49
53	7, 8, 9, 10	17
58	8,9,10,11	11
63	9, 10, 11, 12	9
68	10, 11, 12, 13	6
73	11, 12, 13, 14	0
78	12, 13, 14, 15	0
83	13, 14, 15, 16	0
88	14, 15, 16, 17	0
93	15, 16, 17, 18	1

Classification of strong $(3 \mod 5)$ -arcs in PG(3, 5)

Conjecture Landjev/Rousseva

A ($t \mod q$)-arc in PG(r, q), $r \ge 3$, is a lifted arc or the sum of lifted arcs.

Theorem Landjev/Rousseva

Every (3 mod 5)-arc \mathcal{F} in PG(3,5) with $\#\mathcal{F} \leq 168$ is a lifted arc.

Remark

- ► used in the non-existence proof of a [104, 4, 82]₅ code;
- unfortunately wrong

Classification of strong $(3 \mod 5)$ -arcs in PG(3,5)

Theorem K./Landjev/Rousseva

Let \mathcal{K} be a strong (3 mod 5)-arc in PG(3,5) that is neither lifted nor contains a full hyperplane. Then $\#\mathcal{K} \in \{128, 143, 168\}$ and \mathcal{K} is isomorphic to one of the following three possibilities:

(1) $\#\mathcal{K} = 128$: Generator matrix given by the concatenation of

and

with a corresponding automorphism group of order 7680.

Classification of strong $(3 \mod 5)$ -arcs in PG(3,5)

Theorem K./Landjev/Rousseva

Let \mathcal{K} be a strong (3 mod 5)-arc in PG(3,5) that is neither lifted nor contains a full hyperplane. Then $\#\mathcal{K} \in \{128, 143, 168\}$ and \mathcal{K} is isomorphic to one of the following three possibilities:

(2) $\#\mathcal{K} = 143$: Generator matrix given by the concatenation of

and

with a corresponding automorphism group of order 62400.

Class. of s. (3 mod 5)-arcs in PG(3,5)

Theorem K./Landjev/Rousseva

Let \mathcal{K} be a strong (3 mod 5)-arc in PG(3,5) that is neither lifted nor contains a full hyperplane. Then $\#\mathcal{K} \in \{128, 143, 168\}$ and \mathcal{K} is isomorphic to one of the following three possibilities: (3) $\#\mathcal{K} = 168$: Generator matrix given by the concatenation of

and

with a corresponding automorphism group of order 57600.

Classification of strong (3 mod 5)-arcs in PG(3,5)

Conjecture K./Landjev/Rousseva

Every strong (3 mod 5)-arc in PG(k - 1, 5) is lifted for $k \ge 5$.

Theorem K./Landjev/Rousseva

No [104, 4, 82]₅ code exists.

S. K., I. Landjev, and A. Rousseva: *Classification of* (3 mod 5) *arcs in* PG(3,5), to appear in *Advances in Mathematics of Communications*.

Open problems

- classify all strong (3 mod 5) arcs
- give a geometric construction of the three exceptional non-lifted strong (3 mod 5) arcs in PG(3,5) and generalize to other field sizes

- construct more non-lifted strong (t mod q) arcs
- use non-lifted strong $(t \mod q)$ arcs to find good codes
- classify all strong (3 mod 7) arcs in PG(3,7)

Open problems

- classify all strong (3 mod 5) arcs
- $\#\mathcal{K} = 128$ 2-points are given by the maximal 20-cap in PG(3,5) with collineation group of size 1920 (see K_1 in Abatangelo, Korchmaros, Larato 1996: Classification of maximal caps in PG(3,5) different from elliptic quadrics.
- $\#\mathcal{K} = 143$ 3-points are given by the elliptic quadric in PG(3,5)
- $\#\mathcal{K} = 168$ 3-points are given by the hyperbolic quadric in PG(3,5)
 - construct more non-lifted strong (t mod q) arcs
 - use non-lifted strong $(t \mod q)$ arcs to find good codes
 - classify all strong (3 mod 7) arcs in PG(3,7)

Thank you very much for your attention!

Appendix: Output for $\#\mathcal{K} = 128$

6 line types remain. 16 point-line types remain. 4 residual arcs remain. Remaining line 0 with cardinality 3: 5 0 0 1 Remaining line 2 with cardinality 3: 4 1 1 0 Remaining line 5 with cardinality 3: 3 3 0 0 Remaining line 6 with cardinality 8: 0 4 2 0 Remaining line 7 with cardinality 8: 2 1 2 1 Remaining line 8 with cardinality 8: 2 2 0 2 Remaining point-line configuration 9: 2 2 2 2 2 6 6 Remaining point-line configuration 10: 1 2 5 5 5 5 6 Remaining point-line configuration 11: 0 2 2 2 5 5 5 Remaining point-line configuration 12: 3 0 0 7 7 8 8 Remaining point-line configuration 13: 2 2 2 2 7 7 7 Remaining point-line configuration 14: 0 0 0 2 2 5 7 Remaining point-line configuration 15: 1 2 2 5 5 7 8 Remaining point-line configuration 16: 0 0 2 2 2 2 8 Remaining point-line configuration 17: 3 0 8 8 8 8 8 Remaining point-line configuration 18: 0 0 0 5 5 8 8 Remaining point-line configuration 19: 1 5 5 5 8 8 8 Remaining point-line configuration 21: 2 2 6 7 7 7 7 Remaining point-line configuration 25: 0 2 2 5 7 7 8 Remaining point-line configuration 35: 1 5 5 6 7 7 8 Remaining point-line configuration 38: 3 7 7 7 8 8 8 Remaining point-line configuration 55: 1 2 2 6 6 8 8 Remaining hyperplane 3 with cardinality 18: 9 10 11 Remaining hyperplane 4 with cardinality 23: 12 13 14 15 16 Remaining hyperplane 5 with cardinality 28: 17 18 19 Remaining hyperplane 9 with cardinality 33: 21 25 38 35 55