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The Griesmer bound for linear codes

[n, k ,d ]q code: n ≥
k−1∑
i=0

⌈
d
q i

⌉
=: gq(k ,d) tight for sufficiently large d



Known results

The minimum possible length nq(k ,d) of an [n, k ,d ]q code is
known for:
I k ≤ 8 if q = 2;
I k ≤ 5 if q = 3;
I k ≤ 4 if q = 4;
I k ≤ 3 if q ≤ 9;
I k = 4 if q = 5 except d ∈ {81,161,162}.

The talk reports techniques used to determine n5(4,82) = 105.



Extendability results

I adding a parity check bit to an [n, k ,d ]2 code of odd
minimum distance d yields an even [n + 1, k ,d + 1]2 code

I Theorem of Hill–Lizak: if all weights of codewords in an
[n, k ,d ]q code are ≡ 0 or d modulo q, where gcd(d ,q) = 1,
then the code is extendable to an [n + 1, k ,d + 1]q code

I Hill R.: An extension theorem for linear codes. Des. Codes
Cryptogr. 17, 151–157 (1999).

I Hill R., Lizak P.: Extensions of linear codes. In: Proceedings
of International Symposium on Information Theory, Whistler
(1995).



Extendability results (cont.)

I further generalized by Tatsuya Maruta
I Maruta T.: On the extendability of linear codes. Finite Fields

Appl. 7, 350–354 (2001).
I Maruta T.: Extendability of linear codes over GF(q). Discret.

Math. 266, 377–385 (2003).
I Maruta T.: A new extension theorem for linear codes. Finite

Fields Appl. 10, 674–685 (2004).
I Maruta T.: Extension theorems for linear codes over finite

fields. J. Geom. 101, 173–183 (2011).
I Yoshida Y., Maruta T.: An extension theorem for [n, k, d]q .

Australas. J. Comb. 48, 117–131 (2010).



Arcs – geometric view on linear codes
I A multiset in PG(k − 1,q) is a mapping K : P → N0,

P 7→ K(P).
I K(P) – multiplicity of the point P.
I Q ⊆ P: K(Q) =

∑
P∈QK(P) – multiplicity of the set Q.

I K(P) – the cardinality of K.
I ai – the number of hyperplanes H with K(H) = i .
I (ai)i≥0 – the spectrum of K.
I (n, s)-arc in PG(k − 1,q): a multiset K with

I K(P) = n;
I for every hyperplane H: K(H) ≤ s;
I there exists a hyperplane H0: K(H0) = s.

I An (n, s)-arc in PG(k − 1,q) K is called t-extendable if there
exists an (n + t , s)-arc K′ in PG(k − 1,q) with K′(P) ≥ K(P)
for all P ∈ P. An arc is called extendable if it is 1-extendable.



Quasidivisible arcs
Definition
An (n, s)-arc in PG(k − 1,q) is called t-quasidivisible with divisor
∆ ∈ N if ai = 0 for all i 6≡ n,n + 1, . . . ,n + t (mod ∆),
1 ≤ t ≤ q − 1. If we speak of a t-quasidivisible arc, then ∆ := q.

Definition
Let K be a t-quasidivisible (n, s)-arc with divisor q in
PG(k − 1,q), where 1 ≤ t < q. By K̃ we denote the σ-dual

K̃ :

{
H → {0,1, . . . , t}
H 7→ K̃(H) ≡ n + t −K(H) (mod q)

(1)

Hyperplanes of multiplicity congruent to n + a (mod q) become
(t − a)-points in the dual geometry; s-hyperplanes become 0-points
with respect to K̃.



The link to extendability

Theorem Landjev/Rousseva
Let K be an (n, s)-arc in PG(k − 1,q), which is t-quasidivisible
modulo q with 1 ≤ t < q. Let K̃ defined by Equation (1). If

K̃ =
c∑

i=1

χP̃i
+K′ (2)

for some multiset K′ in PG⊥(k − 1,q) and c not necessarily
different hyperplanes P̃1, . . . , P̃c in PG⊥(k − 1,q), then K is
c-extendable. In particular, if K̃ contains a hyperplane in its
support, then K is extendable.



Strong (t mod q)-arcs
Theorem Landjev/Rousseva
Let K be an (n, s)-arc in PG(k − 1,q) which is t-quasidivisible
modulo q with 1 ≤ t < q. For every subspace S̃, with
dim

(
S̃
)
≥ 2, in the dual geometry PG⊥(k − 1,q) we have

K̃
(

S̃
)
≡ t (mod q). (3)

Definition
An arc K in PG(k − 1,q) is called a (t mod q)-arc, where t ∈ N,
if we have K(S) ≡ t (mod q) for all subspaces S with dim(S) ≥ 2
and K(P) < q for all points P ∈ P. We speak of a strong (t
mod q)-arc if the maximum point multiplicity is at most t .



Strong (t mod q)-arcs (cont.)
Remark
An equivalent version of the previous definition is to require the
condition K(S) ≡ t (mod q) just for all lines S in PG(k − 1,q).

The importance of (t mod q)-arcs is due to the fact that every
t-quasidivisible arc K gives a unique strong (t mod q)-arc K̃.

Corollary

If K is a t-quasidivisible arc in PG(k − 1,q), then K̃, defined by
Equation (1), is a strong (t mod q)-arc.

I different t-quasidivisible arcs can produce the same strong (t
mod q)-arc;

I strong (t mod q)-arcs without 0-points and 1 ≤ t < q cannot be
obtained by (1) from t-quasidivisible arcs;



Constructions for strong (t mod q)-arcs

Theorem Landjev/Rousseva
Let t1 < q and t2 < q be positive integers. The sum of a strong
(t1 mod q)-arc and a (t2 mod q)-arc in PG(k − 1,q) is a (t
mod q)-arc with t = t1 + t2 (mod q) provided the multiplicities of
all points do not exceed t . In particular, the sum of t hyperplanes
in PG(k − 1,q) is a (t mod q)-arc.



Constructions for strong (t mod q)-arcs
(cont.)

Theorem Landjev/Rousseva
Let F0 be a strong (t mod q)-arc in a hyperplane
H ' PG(k − 2,q) of Σ = PG(k − 1,q). For a fixed point
P ∈ Σ\H, define an arc F in Σ as follows:
I F(P) = t ;
I for each point Q 6= P : F(Q) = F0(R) where R = 〈P,Q〉∩H.

Then the arc F is a strong (t mod q)-arc in PG(k − 1,q) of size
q|F0|+ t .

Strong (t mod q)-arcs obtained by this theorem are called lifted
arcs.



Lifted arcs



Classification of strong (1 mod q)-arcs

A plane (1 mod q)-arc is easily seen to be either a line, or the
complete plane for all q. In higher dimensions such an arc is
either a hyperplane or the complete space. Therefore every
1-quasidivisible arc K is extendable Hill–Lizak Theorem



Class. of plane strong (2 mod q)-arcs
Proposition

Let q ≥ 5 be odd. For a strong (2 mod q)-arc K in PG(2, q) we have the
following possibilities:

(I) A lifted arc from a 2-line with #K = 2q + 2. There exist two possibilities:

(I-1) a double line; or
(I-2) a sum of two different lines.

(II) A lifted arc from a (q + 2)-line L with #K = q2 + 2q + 2 points. The line L
has i double points, q − 2i + 2 single points, and i − 1 0-points, where
1 ≤ i ≤ q+1

2 . We say that such an arc is of type (II-i) if it is lifted from a
line with i double points.

(III) A lifted arc from a (2q + 2)-line, which is the same as two copies of the
plane. Such an arc has 2(q2 + q + 1) points.

(IV) An exceptional (2 mod q)-arc for q odd. It consists of the points of an
oval, a fixed tangent to this oval, and two copies of each internal point of
the oval.



The exceptional strong (2 mod q)-arc

Proof
Follows from the standard equations (a.k.a. first three
MacWilliams identities).



Classification of strong (2 mod q)-arcs

Theorem Landjev/Rousseva
Let K be a strong (2 mod q)-arc in PG(k − 1,q), where k ≥ 4
and q is odd. Then, K is a lifted arc. In particular, for k ≥ 3 every
(2 mod q)-arc in PG(k − 1,q) has a hyperplane in its support.

Corollary
For k ≥ 4 each 2-quasidivisible arc in PG(k − 1,q) is extendable.

 Theorem of Maruta



Class. of plane strong (3 mod 5)-arcs
#K line mult. # isomorphism types
18 0, 1, 2, 3 4
23 1, 2, 3, 4 1
28 2, 3, 4, 5 1
33 3, 4, 5, 6 10
38 4, 5, 6, 7 23
43 5, 6, 7, 8 53
48 6, 7, 8, 9 49
53 7, 8, 9, 10 17
58 8, 9, 10, 11 11
63 9, 10, 11, 12 9
68 10, 11, 12, 13 6
73 11, 12, 13, 14 0
78 12, 13, 14, 15 0
83 13, 14, 15, 16 0
88 14, 15, 16, 17 0
93 15, 16, 17, 18 1



Classification of strong (3 mod 5)-arcs
in PG(3,5)

Conjecture Landjev/Rousseva
A (t mod q)-arc in PG(r ,q), r ≥ 3, is a lifted arc or the sum of
lifted arcs.

Theorem Landjev/Rousseva
Every (3 mod 5)-arc F in PG(3,5) with #F ≤ 168 is a lifted arc.

Remark
I used in the non-existence proof of a [104,4,82]5 code;
I unfortunately wrong



Classification of strong (3 mod 5)-arcs
in PG(3,5)

Theorem K./Landjev/Rousseva
Let K be a strong (3 mod 5)-arc in PG(3,5) that is neither lifted
nor contains a full hyperplane. Then #K ∈ {128,143,168} and
K is isomorphic to one of the following three possibilities:
(1) #K = 128: Generator matrix given by the concatenation of(

0000000000000000000000000000000001111111111111111111111111111111
0001111111111111111111111111111110000000000000000000011111111111
1110001111111122222222333333334440001111111122233344400011122233
1140130112233311233344011122232240221112344400113311123333302300

)
and (

1111111111111111111111111111111111111111111111111111111111111111
1111111112222222222222223333333333333333333344444444444444444444
3333334440001112223334440001112223334444444400011111111222333444
1112334441240120132440330244440443330111224412201113334002111144

)
with a corresponding automorphism group of order 7680.



Classification of strong (3 mod 5)-arcs
in PG(3,5)

Theorem K./Landjev/Rousseva
Let K be a strong (3 mod 5)-arc in PG(3,5) that is neither lifted
nor contains a full hyperplane. Then #K ∈ {128,143,168} and
K is isomorphic to one of the following three possibilities:
(2) #K = 143: Generator matrix given by the concatenation of(

000000000000000000000000000000000111111111111111111111111111111111111111
000000001111111111111111111111111000000000000000000001111111111111111111
011111110000000112222222334444444000000011223344444440000000112233333334
100033340122234020111444030123334000122223030111123330123334043400012341

)
and (

11111111111111111111111111111111111111111111111111111111111111111111111
11111122222222222222222222333333333333333333333333344444444444444444444
44444400000001122222223344001122222223333333444444400112222222333333344
11222402223331200011131302043400012341112224012333403011112333000122223

)
with a corresponding automorphism group of order 62400.



Class. of s. (3 mod 5)-arcs in PG(3,5)
Theorem K./Landjev/Rousseva
Let K be a strong (3 mod 5)-arc in PG(3,5) that is neither lifted
nor contains a full hyperplane. Then #K ∈ {128,143,168} and
K is isomorphic to one of the following three possibilities:
(3) #K = 168: Generator matrix given by the concatenation of(

00000000000000000000000000000000000000000001111111111111111111111111111111111111111111
00000000000000000011111111111111111111111110000000000000000000000000111111111111111111
00011111111111111100000111112222233333444440000011111222223333344444000001111122222333
11100011122233344403444034440344403444034440222412444111340133300023000140344423334122

)
and (

1111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111222222222222222222222222233333333333333333333333334444444444444444444444444
3344444222223333333333333334444400000111112222233333444440000011111222223333344444
2301112012340001112223334440123412223233340344400014011120002301333111341244402224

)
with a corresponding automorphism group of order 57600.



Classification of strong (3 mod 5)-arcs
in PG(3,5)

Conjecture K./Landjev/Rousseva
Every strong (3 mod 5)-arc in PG(k − 1,5) is lifted for k ≥ 5.

Theorem K./Landjev/Rousseva
No [104,4,82]5 code exists.

S. K., I. Landjev, and A. Rousseva: Classification of (3 mod 5)
arcs in PG(3,5), to appear in Advances in Mathematics of

Communications.



Open problems
I classify all strong (3 mod 5) arcs
I give a geometric construction of the three exceptional

non-lifted strong (3 mod 5) arcs in PG(3,5) and generalize
to other field sizes

−→ Francesco Pavese:
#K = 128 2-points are given by the maximal 20-cap in PG(3, 5) with

collineation group of size 1920 (see K1 in Abatangelo, Korchmaros,
Larato 1996: Classification of maximal caps in PG(3, 5) different
from elliptic quadrics. )

#K = 143 3-points are given by the elliptic quadric in PG(3, 5)
#K = 168 3-points are given by the hyperbolic quadric in PG(3, 5)

I construct more non-lifted strong (t mod q) arcs
I use non-lifted strong (t mod q) arcs to find good codes
I classify all strong (3 mod 7) arcs in PG(3,7)

Thank you very much for your attention!
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Appendix: Output for #K = 128
6 line types remain.
16 point-line types remain.
4 residual arcs remain.
Remaining line 0 with cardinality 3: 5 0 0 1
Remaining line 2 with cardinality 3: 4 1 1 0
Remaining line 5 with cardinality 3: 3 3 0 0
Remaining line 6 with cardinality 8: 0 4 2 0
Remaining line 7 with cardinality 8: 2 1 2 1
Remaining line 8 with cardinality 8: 2 2 0 2
Remaining point-line configuration 9: 2 2 2 2 2 6 6
Remaining point-line configuration 10: 1 2 5 5 5 5 6
Remaining point-line configuration 11: 0 2 2 2 5 5 5
Remaining point-line configuration 12: 3 0 0 7 7 8 8
Remaining point-line configuration 13: 2 2 2 2 7 7 7
Remaining point-line configuration 14: 0 0 0 2 2 5 7
Remaining point-line configuration 15: 1 2 2 5 5 7 8
Remaining point-line configuration 16: 0 0 2 2 2 2 8
Remaining point-line configuration 17: 3 0 8 8 8 8 8
Remaining point-line configuration 18: 0 0 0 5 5 8 8
Remaining point-line configuration 19: 1 5 5 5 8 8 8
Remaining point-line configuration 21: 2 2 6 7 7 7 7
Remaining point-line configuration 25: 0 2 2 5 7 7 8
Remaining point-line configuration 35: 1 5 5 6 7 7 8
Remaining point-line configuration 38: 3 7 7 7 8 8 8
Remaining point-line configuration 55: 1 2 2 6 6 8 8
Remaining hyperplane 3 with cardinality 18: 9 10 11
Remaining hyperplane 4 with cardinality 23: 12 13 14 15 16
Remaining hyperplane 5 with cardinality 28: 17 18 19
Remaining hyperplane 9 with cardinality 33: 21 25 38 35 55
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