Strong $t \bmod q$ arcs in PG(k-1,q)

Sascha Kurz
sascha.kurz@uni-bayreuth. de, University of Bayreuth

joint work with

Ivan Landjev

i. landjev@nbu.bg, New Bulgarian University
and

Assia Rousseva

assia@fmi.uni-sofia.bg, Sofia University

Assia and Ivan

Some literature

- I. Landjev and A. Rousseva. On the extendability of Griesmer arcs. Annual of Sofia University "St. Kliment Ohridski" - Faculty of Mathematics and Informatics, 101:183-192, 2013.
- I. Landjev and A. Rousseva. The non-existence of (104, 22; 3, 5)-arcs. Advances in Mathematics of Communications, 10(3):601-611, 2016.
- I. Landjev and A. Rousseva. On the characterization of (3 mod 5) arcs. Electronic Notes in Discrete Mathematics, 57:187-192, 2017.
- I. Landjev and A. Rousseva. Divisible arcs, divisible codes, and the extension problem for arcs and codes. Problems of Information Transmission, 55(3):226-240, 2019.
- I. Landjev, A. Rousseva, and L. Storme. On the extendability of quasidivisible Griesmer arcs. Designs, Codes and Cryptography, 79(3):535-547, 2016.
- A. Rousseva. On the structure of $(t \bmod q)$-arcs in finite projective geometries. Annuaire de l'Univ. de Sofia, 102:16pp., 2015.

The Griesmer bound for linear codes

[$n, k, d]_{q}$ code: $\quad n \geq \sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil=: g_{q}(k, d) \quad$ tight for sufficiently large d

Known results

The minimum possible length $n_{q}(k, d)$ of an $[n, k, d]_{q}$ code is known for:

- $k \leq 8$ if $q=2$;
- $k \leq 5$ if $q=3$;
- $k \leq 4$ if $q=4$;
- $k \leq 3$ if $q \leq 9$;
- $k=4$ if $q=5$ except $d \in\{81,161,162\}$.

The talk reports techniques used to determine $n_{5}(4,82)=105$.

Extendability results

- adding a parity check bit to an $[n, k, d]_{2}$ code of odd minimum distance d yields an even $[n+1, k, d+1]_{2}$ code
- Theorem of Hill-Lizak: if all weights of codewords in an $[n, k, d]_{q}$ code are $\equiv 0$ or d modulo q, where $\operatorname{gcd}(d, q)=1$, then the code is extendable to an $[n+1, k, d+1]_{q}$ code
- Hill R.: An extension theorem for linear codes. Des. Codes Cryptogr. 17, 151-157 (1999).
- Hill R., Lizak P.: Extensions of linear codes. In: Proceedings of International Symposium on Information Theory, Whistler (1995).

Extendability results (cont.)

- further generalized by Tatsuya Maruta
- Maruta T.: On the extendability of linear codes. Finite Fields Appl. 7, 350-354 (2001).
- Maruta T.: Extendability of linear codes over GF(q). Discret. Math. 266, 377-385 (2003).
- Maruta T.: A new extension theorem for linear codes. Finite Fields Appl. 10, 674-685 (2004).
- Maruta T.: Extension theorems for linear codes over finite fields. J. Geom. 101, 173-183 (2011).
- Yoshida Y., Maruta T.: An extension theorem for [n, k, d]q . Australas. J. Comb. 48, 117-131 (2010).

Arcs - geometric view on linear codes

- A multiset in $\mathrm{PG}(k-1, q)$ is a mapping $\mathcal{K}: \mathcal{P} \rightarrow \mathbb{N}_{0}$, $P \mapsto \mathcal{K}(P)$.
- $\mathcal{K}(P)$ - multiplicity of the point P.
- $\mathcal{Q} \subseteq \mathcal{P}: \mathcal{K}(\mathcal{Q})=\sum_{P \in \mathcal{Q}} \mathcal{K}(P)$ - multiplicity of the set \mathcal{Q}.
- $\mathcal{K}(\mathcal{P})$ - the cardinality of \mathcal{K}.
- a_{i} - the number of hyperplanes H with $\mathcal{K}(H)=i$.
- $\left(a_{i}\right)_{i \geq 0}$ - the spectrum of \mathcal{K}.
- (n, s)-arc in $\operatorname{PG}(k-1, q)$: a multiset \mathcal{K} with
- $\mathcal{K}(\mathcal{P})=n$;
- for every hyperplane $H: \mathcal{K}(H) \leq s$;
- there exists a hyperplane $H_{0}: \mathcal{K}\left(H_{0}\right)=s$.
- An (n, s)-arc in PG $(k-1, q) \mathcal{K}$ is called t-extendable if there exists an $(n+t, s)$-arc \mathcal{K}^{\prime} in $\operatorname{PG}(k-1, q)$ with $\mathcal{K}^{\prime}(P) \geq \mathcal{K}(P)$ for all $P \in \mathcal{P}$. An arc is called extendable if it is 1 -extendable.

Quasidivisible arcs

Definition

An (n, s)-arc in $\mathrm{PG}(k-1, q)$ is called t-quasidivisible with divisor $\Delta \in \mathbb{N}$ if $a_{i}=0$ for all $i \not \equiv n, n+1, \ldots, n+t(\bmod \Delta)$, $1 \leq t \leq q-1$. If we speak of a t-quasidivisible arc, then $\Delta:=q$.

Definition

Let \mathcal{K} be a t-quasidivisible (n, s)-arc with divisor q in $\operatorname{PG}(k-1, q)$, where $1 \leq t<q$. By $\widetilde{\mathcal{K}}$ we denote the σ-dual

$$
\widetilde{\mathcal{K}}:\left\{\begin{array}{l}
\mathcal{H} \rightarrow\{0,1, \ldots, t\} \tag{1}\\
H \mapsto \widetilde{\mathcal{K}}(H) \equiv n+t-\mathcal{K}(H) \quad(\bmod q)
\end{array}\right.
$$

Hyperplanes of multiplicity congruent to $n+a(\bmod q)$ become $(t-a)$-points in the dual geometry; s-hyperplanes become 0-points with respect to $\widetilde{\mathcal{K}}$.

The link to extendability

Theorem Landjev/Rousseva

Let \mathcal{K} be an (n, s)-arc in $\mathrm{PG}\left(k_{\sim}-1, q\right)$, which is t-quasidivisible modulo q with $1 \leq t<q$. Let $\widetilde{\mathcal{K}}$ defined by Equation (1). If

$$
\begin{equation*}
\widetilde{\mathcal{K}}=\sum_{i=1}^{c} \chi_{\widetilde{P}_{i}}+\mathcal{K}^{\prime} \tag{2}
\end{equation*}
$$

for some multiset \mathcal{K}^{\prime} in $\mathrm{PG}^{\perp}(k-1, q)$ and c not necessarily different hyperplanes $\widetilde{P}_{1}, \ldots, \widetilde{P}_{c}$ in $\mathrm{PG}^{\perp}(k-1, q)$, then \mathcal{K} is c-extendable. In particular, if $\widetilde{\mathcal{K}}$ contains a hyperplane in its support, then \mathcal{K} is extendable.

Strong ($t \bmod q$)-arcs

Theorem Landjev/Rousseva

Let \mathcal{K} be an (n, s)-arc in $\operatorname{PG}(k-1, q)$ which is t-quasidivisible modulo q with $1 \leq t<q$. For every subspace \widetilde{S}, with $\operatorname{dim}(\widetilde{S}) \geq 2$, in the dual geometry $\mathrm{PG}^{\perp}(k-1, q)$ we have

$$
\begin{equation*}
\tilde{\mathcal{K}}(\tilde{S}) \equiv t \quad(\bmod q) . \tag{3}
\end{equation*}
$$

Definition

An arc \mathcal{K} in $\mathrm{PG}(k-1, q)$ is called a $(t \bmod q)$-arc, where $t \in \mathbb{N}$, if we have $\mathcal{K}(S) \equiv t(\bmod q)$ for all subspaces S with $\operatorname{dim}(S) \geq 2$ and $\mathcal{K}(P)<q$ for all points $P \in \mathcal{P}$. We speak of a strong $(t$ $\bmod q)$-arc if the maximum point multiplicity is at most t.

Strong (t mod q)-arcs (cont.)

Remark

An equivalent version of the previous definition is to require the condition $\mathcal{K}(S) \equiv t(\bmod q)$ just for all lines S in $\operatorname{PG}(k-1, q)$.

The importance of $(t \bmod q)$-arcs is due to the fact that every t-quasidivisible $\operatorname{arc} \mathcal{K}$ gives a unique strong $(t \bmod q)-\operatorname{arc} \widetilde{\mathcal{K}}$.

Corollary

If \mathcal{K} is a t-quasidivisible arc in $\operatorname{PG}(k-1, q)$, then $\widetilde{\mathcal{K}}$, defined by Equation (1), is a strong $(t \bmod q)$-arc.

- different t-quasidivisible arcs can produce the same strong (t mod q)-arc;
- strong $(t \bmod q)$-arcs without 0-points and $1 \leq t<q$ cannot be obtained by (1) from t-quasidivisible arcs;

Constructions for strong (t mod q)-arcs

Theorem Landjev/Rousseva

Let $t_{1}<q$ and $t_{2}<q$ be positive integers. The sum of a strong $\left(t_{1} \bmod q\right)$-arc and a $\left(t_{2} \bmod q\right)$-arc in PG $(k-1, q)$ is a $(t$ $\bmod q)$-arc with $t=t_{1}+t_{2}(\bmod q)$ provided the multiplicities of all points do not exceed t. In particular, the sum of t hyperplanes in $\mathrm{PG}(k-1, q)$ is a $(t \bmod q)$-arc.

Constructions for strong (t mod q)-arcs (cont.)

Theorem Landjev/Rousseva

Let \mathcal{F}_{0} be a strong $(t \bmod q)$-arc in a hyperplane $H \simeq \operatorname{PG}(k-2, q)$ of $\Sigma=\operatorname{PG}(k-1, q)$. For a fixed point
$P \in \Sigma \backslash H$, define an arc \mathcal{F} in Σ as follows:

- $\mathcal{F}(P)=t$;
- for each point $Q \neq P: \mathcal{F}(Q)=\mathcal{F}_{0}(R)$ where $R=\langle P, Q\rangle \cap H$. Then the $\operatorname{arc} \mathcal{F}$ is a strong $(t \bmod q)$-arc in $\mathrm{PG}(k-1, q)$ of size $q\left|\mathcal{F}_{0}\right|+t$.

Strong $(t \bmod q)$-arcs obtained by this theorem are called lifted arcs.

Lifted arcs

Classification of strong $(1 \bmod q)$-arcs

A plane $(1 \bmod q)$-arc is easily seen to be either a line, or the complete plane for all q. In higher dimensions such an arc is either a hyperplane or the complete space. Therefore every 1 -quasidivisible arc \mathcal{K} is extendable \rightsquigarrow Hill-Lizak Theorem

Class. of plane strong (2 mod q)-arcs

Proposition

Let $q \geq 5$ be odd. For a strong $(2 \bmod q)$-arc \mathcal{K} in $\operatorname{PG}(2, q)$ we have the following possibilities:
(I) A lifted arc from a 2 -line with $\# \mathcal{K}=2 q+2$. There exist two possibilities:
(I-1) a double line; or
($1-2$) a sum of two different lines.
(II) A lifted arc from a $(q+2)$-line L with $\# \mathcal{K}=q^{2}+2 q+2$ points. The line L has i double points, $q-2 i+2$ single points, and $i-10$-points, where $1 \leq i \leq \frac{q+1}{2}$. We say that such an arc is of type (II-i) if it is lifted from a line with i double points.
(III) A lifted arc from a $(2 q+2)$-line, which is the same as two copies of the plane. Such an arc has $2\left(q^{2}+q+1\right)$ points.
(IV) An exceptional $(2 \bmod q)$-arc for q odd. It consists of the points of an oval, a fixed tangent to this oval, and two copies of each internal point of the oval.

The exceptional strong $(2 \bmod q)$-arc

- 2-points
- 1-points

Proof

Follows from the standard equations (a.k.a. first three MacWilliams identities).

Classification of strong $(2 \bmod q)$-arcs

Theorem Landjev/Rousseva

Let \mathcal{K} be a strong $(2 \bmod q)$-arc in $P G(k-1, q)$, where $k \geq 4$ and q is odd. Then, \mathcal{K} is a lifted arc. In particular, for $k \geq 3$ every $(2 \bmod q)$-arc in $\operatorname{PG}(k-1, q)$ has a hyperplane in its support.

Corollary

For $k \geq 4$ each 2-quasidivisible arc in $\mathrm{PG}(k-1, q)$ is extendable.
\rightsquigarrow Theorem of Maruta

Class. of plane strong (3 mod 5)-arcs

$\# \mathcal{K}$	line mult.	\# isomorphism types
18	$0,1,2,3$	4
23	$1,2,3,4$	1
28	$2,3,4,5$	1
33	$3,4,5,6$	10
38	$4,5,6,7$	23
43	$5,6,7,8$	53
48	$6,7,8,9$	49
53	$7,8,9,10$	17
58	$8,9,10,11$	11
63	$9,10,11,12$	9
68	$10,11,12,13$	6
73	$11,12,13,14$	0
78	$12,13,14,15$	0
83	$13,14,15,16$	0
88	$14,15,16,17$	0
93	$15,16,17,18$	1

Classification of strong (3 mod 5)-arcs in PG(3,5)

Conjecture Landjev/Rousseva

$\mathrm{A}(t \bmod q)$-arc in $\mathrm{PG}(r, q), r \geq 3$, is a lifted arc or the sum of lifted arcs.

Theorem Landjev/Rousseva

Every $(3 \bmod 5)-\operatorname{arc} \mathcal{F}$ in $\operatorname{PG}(3,5)$ with $\# \mathcal{F} \leq 168$ is a lifted arc.
Remark

- used in the non-existence proof of a $[104,4,82]_{5}$ code;
- unfortunately wrong

Classification of strong (3 mod 5)-arcs in PG(3,5)

Theorem K./Landjev/Rousseva

Let \mathcal{K} be a strong $(3 \bmod 5)$-arc in $\mathrm{PG}(3,5)$ that is neither lifted nor contains a full hyperplane. Then $\# \mathcal{K} \in\{128,143,168\}$ and \mathcal{K} is isomorphic to one of the following three possibilities:
(1) $\# \mathcal{K}=128$: Generator matrix given by the concatenation of

$$
\left.\begin{array}{l}
00000000000000000000000000000000011111111111111111111111111111111 \\
00011111111111111111111111111110000000000000000000011111111111 \\
111000111111112222222233333333444000111111122233344400011122233 \\
1140130112233311233344011122232240221112344400113311123333302300
\end{array}\right)
$$

and

$$
\left(\begin{array}{l}
11 \\
111111111222222222222223333333333333333333344444444444444444444 \\
3333334440001112223334440001112223334444444400011111111222333444 \\
1112334441240120132440330244440443330111224412201113334002111144
\end{array}\right)
$$

with a corresponding automorphism group of order 7680.

Classification of strong (3 mod 5)-arcs in PG(3,5)

Theorem K./Landjev/Rousseva

Let \mathcal{K} be a strong $(3 \bmod 5)$-arc in $\mathrm{PG}(3,5)$ that is neither lifted nor contains a full hyperplane. Then $\# \mathcal{K} \in\{128,143,168\}$ and \mathcal{K} is isomorphic to one of the following three possibilities:
(2) $\# \mathcal{K}=143$: Generator matrix given by the concatenation of

$$
\left.\begin{array}{l}
00000000000000000000000000000000011 \\
00000001111111111111111111111100000000000000000000111111111111111111 \\
011111110000000112222222334444444000000011223344444440000000112233333334 \\
100033340122234020111444030123334000122223030111123330123334043400012341
\end{array}\right)
$$

and

$$
\left(\begin{array}{l}
111 \\
111111222222222222222222333333333333333333333333344444444444444444444 \\
44444400000001122222223344001122222223333333444444400112222222333333344 \\
11222402223331200011131302043400012341112224012333403011112333000122223
\end{array}\right)
$$

with a corresponding automorphism group of order 62400.

Class. of s. (3 mod 5)-arcs in PG(3,5)

Theorem K./Landjev/Rousseva

Let \mathcal{K} be a strong $(3 \bmod 5)$-arc in $\mathrm{PG}(3,5)$ that is neither lifted nor contains a full hyperplane. Then $\# \mathcal{K} \in\{128,143,168\}$ and \mathcal{K} is isomorphic to one of the following three possibilities:
(3) $\# \mathcal{K}=168$: Generator matrix given by the concatenation of

$$
\left(\begin{array}{l}
00011 \\
0000000000000000011111111111111111111111000000000000000000000000011111111111111111 \\
00011111111111111100000111112222233333444440000011111222223333344444000001111122222333 \\
11100011122233344403444034440344403444034440222412444111340133300023000140344423334122
\end{array}\right)
$$

and

11 1111111222222222222222222222233333333333333333333333334444444444444444444444444 334444422223333333333333334444400000111112222233333444440000011111222223333344444 2301112012340001112223334440123412223233340344400014011120002301333111341244402224)
with a corresponding automorphism group of order 57600.

Classification of strong (3 mod 5)-arcs in PG(3,5)

Conjecture K./Landjev/Rousseva

Every strong $(3 \bmod 5)$-arc in $\mathrm{PG}(k-1,5)$ is lifted for $k \geq 5$.

Theorem K./Landjev/Rousseva

No $[104,4,82]_{5}$ code exists.
S. K., I. Landjev, and A. Rousseva: Classification of (3 mod 5) arcs in $\mathrm{PG}(3,5)$, to appear in Advances in Mathematics of Communications.

Open problems

- classify all strong (3 mod 5) arcs
- give a geometric construction of the three exceptional non-lifted strong $(3 \bmod 5)$ arcs in $\operatorname{PG}(3,5)$ and generalize to other field sizes
- construct more non-lifted strong $(t \bmod q)$ arcs
- use non-lifted strong (t mod q) arcs to find good codes
- classify all strong (3 mod 7) arcs in PG(3,7)

Open problems

- classify all strong (3 mod 5) arcs
- give a geometric construction of the three exceptional non-lifted strong (3 mod 5) arcs in PG(3,5) and generalize to other field sizes $\quad \longrightarrow \quad$ Francesco Pavese:
$\# \mathcal{K}=128$ 2-points are given by the maximal 20-cap in $\mathrm{PG}(3,5)$ with collineation group of size 1920 (see K_{1} in Abatangelo, Korchmaros, Larato 1996: Classification of maximal caps in $\mathrm{PG}(3,5)$ different from elliptic quadrics.)
$\# \mathcal{K}=143$ 3-points are given by the elliptic quadric in $\mathrm{PG}(3,5)$
$\# \mathcal{K}=1683$-points are given by the hyperbolic quadric in $\mathrm{PG}(3,5)$
- construct more non-lifted strong ($t \bmod q$) arcs
- use non-lifted strong (t mod q) arcs to find good codes
- classify all strong (3 mod 7) arcs in PG(3,7)

Thank you very much for your attention!

Appendix: Output for $\# \mathcal{K}=128$

6 line types remain.
16 point-line types remain.
4 residual arcs remain.
Remaining line 0 with cardinality 3: 5001
Remaining line 2 with cardinality 3: 4110
Remaining line 5 with cardinality 3: 3300
Remaining line 6 with cardinality 8: 0420
Remaining line 7 with cardinality 8: 2121
Remaining line 8 with cardinality 8: 2202
Remaining point-line configuration 9: 2222266
Remaining point-line configuration 10: 1255556
Remaining point-line configuration 11:022 2555
Remaining point-line configuration 12: 3007788
Remaining point-line configuration 13: 2222777
Remaining point-line configuration 14:0002257
Remaining point-line configuration 15: 1225578
Remaining point-line configuration 16: 0022228
Remaining point-line configuration 17: 3088888
Remaining point-line configuration 18:0005588
Remaining point-line configuration 19: 1555888
Remaining point-line configuration 21: 2267777
Remaining point-line configuration 25: 0225778
Remaining point-line configuration 35: 1556778
Remaining point-line configuration 38: 3777888
Remaining point-line configuration 55:1226688
Remaining hyperplane 3 with cardinality 18: 91011
Remaining hyperplane 4 with cardinality 23: 1213141516
Remaining hyperplane 5 with cardinality 28: 171819
Remaining hyperplane 9 with cardinality 33: 2125383555

