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Networks and Rules of the Game
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Networks are finite directed acyclic multigraphs,

The (single) source S wants to send symbols from a certain alphabet,

All terminals want all the messages (multicast),

Each edge can carry exactly one symbol from an alphabet A,
An adversary can corrupt up to t edges of the network (the dashed
edges). t is called the adversarial power.



Some definitions

Let A be a finite alphabet (a finite set with |A| ≥ 2).

Definition

The vertices which are neither the source nor the terminals are called
intermediate nodes.

Definition

A network code (inner code) F for a network N is a family of functions
{FV | V is an intermediate node in N}, where

FV : A|in(V )| → A|out(V )|.

Definition

An (outer) code C for a network N is a non-empty subset C ⊆ A|out(S)|.

The adversary is omniscent!
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Unambiguity
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Intuitive definition

Given x ∈ C, denote all possible outcomes that can appear in the blue
region as Ω1(x) ⊆ A|in(T1)|.

A pair (C,F) is called unambiguous for T1 if Ω1(x) ∩ Ω1(x
′) = ∅ for all

x , x ′ ∈ C with x ̸= x ′.

It is called unambiguous if it is unambiguous for all terminals.
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An Example

A = F2, t = 1, C = {000, 111}, F as in the picture.

S

→

+

T

0

1

1

0

0

Ω(000) = {00, 10, 01} and Ω(111) = {00, 11}. So,

Ω(000) ∩ Ω(111) ̸= ∅

and the pair (C,F) is not unambiguous.



1-shot capacity

Definition

The (1-shot) capacity of N is the largest real number α for which there
exists an unambiguous pair (C,F) with α = log|A| |C|.

Singleton Cut-Set Bound (Kschischang, Ravagnani ’18)

Let N be a network, E be the set of edges in N . If an adversary can act
on U ⊆ E with adversarial power t, then

C1(N ) ≤ min
Ti

min
E ′

(
|E ′ \ U|+max{0, |E ′ ∩ U| − 2t}

)
,

where E ′ ⊆ E ranges over the edge-cuts between S and Ti .

Theorem (Silva, Kschischang, Kötter ’08)

If U = E and [[assumptions on A]], then the Singleton Cut-Set Bound is
sharp. ← rank-metric codes
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Restricting the adversary (U ̸= E )

The Singleton Cut-Set Bound is not sharp in general, although often the
best known bound.

The Diamond Network (with t = 1):
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If U = {e1, e2, e3}, then the Singleton Cut-Set Bound is the best known
upper bound and it gives C1(N ) ≤ 1 = log|A| |A|.
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Restricting the adversary (U ̸= E )

The Singleton Cut-Set Bound is not sharp in general.

Main Interest

Find/Bound the value max{|C| : (C,F) is unambiguous for N}.
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Natural candidate: C = {(a, a, a) | a ∈ A}.

Issue: One can globally encode, but not globally decode.



Restricting the adversary (U ̸= E )

The Singleton Cut-Set Bound is not sharp in general.

Main Interest

Find/Bound the value max{|C| : (C,F) is unambiguous for N}.

S

V1

V2

T

a

a

a

e4

e5

Natural candidate: C = {(a, a, a) | a ∈ A}.

Issue: One can globally encode, but not globally decode.



The Diamond Network

Theorem (Beemer, Ravagnani ’21)

For the Diamond Network N ,

C1(N ) = log|A|(|A| − 1).

Capacity-achieving scheme:

sacrifice an alphabet symbol ∗ ∈ A for adversary detection

FV1(a) = a for a ∈ A

FV2(a, b) =

{
a if a = b

∗ if a ̸= b

T looks at the symbol on the outgoing edge of V2. If it is not ∗, T
decodes to that symbol. If it is ∗, then T decodes to the symbol on
the outgoing edge of V1.
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Sacrifice an alphabet symbol ∗
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Simple 2-level networks
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From examples to a more general theory

Theorem (Beemer, K., Ravagnani ’22)

C1(any network) ≤ C1(simple 2-level induced from it)

Idea behind our approach

A possibly complicated network → 3-level network → 2-level network
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We prove a Double Cut-Set Bound (Beemer, K., Ravagnani ’22)
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Explaining via pictures
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Observe that we end up in a simple 2-level network. We can now derive an
upper bound for the capacity of the original more complicated network.
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Simple 2-level networks
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ai = |in(Vi )| and bi = |out(Vi )|.

We also denote the network code by F = (F1, . . . ,Fn).



First Packing Bound

Given an outer code C ⊆ Aa1+a2+...+an , we let πi (C) be the projection of C
onto the ai coordinates corresponding to the edges to intermediate node Vi

Theorem (First Packing Bound) (Beemer, K., Ravagnani ’22)

Consider a simple 2-level network with ai ≤ bi for all 1 ≤ i ≤ r . Let
(C,F) be unambiguous. Then

∑
t1,...,tr≥0
t1+...+tr≤t

r∏
i=1

(
ai
ti

)
(|A|−1)ti

∑
x∈C

n∏
j=r+1

∣∣Fj

(
Bt−(t1+...+tr )(πj(x))

)∣∣ ≤ |A|b1+b2+...+bn

Proof Idea

Whenever ai ≤ bi , we can assume ai = bi and take the corresponding
function Fi to be identity (ignoring extraneous outgoing edges),

Bt(x) =
⊔

t1+...+tn≤t [St1(π1(x))× · · · × Stn(πn(x))],∑
x∈C |F(Bt(x))| ≤ |A|b1+b2+...+bn .
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Simple 2-level Networks with n = 2

Corollary (Beemer, K., Ravagnani ’22)

Consider a simple 2-level network with n = 2 and a1 ≤ b1. Let (C,F) be
unambiguous. Then,

t∑
t1=0

(
a1
t1

)
(|A| − 1)t1

∑
x∈C
|F2 (Bt−t1(π2(x))))| ≤ |A|b1+b2 .

Corollary of the above corollary

The Singleton Cut-Set Bound for the Diamond Network is not met.

Using a similar idea, we can get a Hamming-type bound.

Lemma (Beemer, K., Ravagnani ’22)

Let (C,F) be unambiguous for the simple 2-level network N . Then,
F−1(F(Bt(x))) ∩ F−1(F(Bt(x

′))) = ∅ for all distinct x , x ′ ∈ C.
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Second Packing Bound

Corollary (Beemer, K., Ravagnani ’22)

Consider a simple 2-level network with n = 2 and a1 ≤ b1. Let (C,F) be
unambiguous. Then,

t∑
t1=0

(
a1
t1

)
(|A| − 1)t1

∑
x∈C

∣∣F−1
2 (F2 (Bt−t1(π2(x))))

)
| ≤ |A|a1+a2 .

To be compared with:

Theorem (Hamming Bound)

Let (C,F) be unambiguous for a simple 2-level network with n = 2 and
a1 ≤ b1. Then, |C| ·

∑t
t1=0

(a1+a2
t1

)
(|A| − 1)t1 ≤ |A|a1+a2 .

We expect the corollary to beat the Hamming bound for some classes of
networks.



Future work

For example, compute the exact 1-shot capacity of all simple 2-level
networks. Open:
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t = 1 =⇒ s − 1 ≤ C1(N ) < s, but what is the exact value?
→ started collaboration at TU/e using combinatorial optimization.
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