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Networks and Rules of the Game
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Networks are finite directed acyclic multigraphs,
The (single) source S wants to send symbols from a certain alphabet,
All terminals want all the messages (multicast),

Each edge can carry exactly one symbol from an alphabet A,

An adversary can corrupt up to t edges of the network (the dashed
edges). t is called the adversarial power.



Some definitions

Let A be a finite alphabet (a finite set with |A| > 2).

Definition
The vertices which are neither the source nor the terminals are called
intermediate nodes.

Definition
A network code (inner code) F for a network N is a family of functions
{Fyv | V is an intermediate node in N'}, where

Fy o ANy glout(V)]|

Definition

An (outer) code C for a network A is a non-empty subset C C Al°ut(S)I,

v,
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The adversary is omniscent!
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Unambiguity

INNER CODE

Intuitive definition
Given x € C, denote all possible outcomes that can appear in the blue
region as Q;(x) C Aln(TI,

A pair (C, F) is called unambiguous for T; if Q1(x) N Q1(x’) = for all
x,x" € C with x #£ x'.

It is called unambiguous if it is unambiguous for all terminals.




An Example

A=T,, t=1, C=1{000,111}, F asin the picture.

©(000) = {00,10,01} and (111) = {00,11}. So,
Q(000) N Q(111) # 0

and the pair (C, F) is not unambiguous.



1-shot capacity

Definition

The (1-shot) capacity of A is the largest real number « for which there
exists an unambiguous pair (C, F) with a = log 4 [C]|.
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best known bound.
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Restricting the adversary (U # E)

The Singleton Cut-Set Bound is not sharp in general, although often the
best known bound.

The Diamond Network (with t = 1):

If U = {e1, e, e3}, then the Singleton Cut-Set Bound is the best known
upper bound and it gives Ci(N) <1 = log 4 |A|.
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Restricting the adversary (U # E)

The Singleton Cut-Set Bound is not sharp in general.

Main Interest

Find/Bound the value max{|C| : (C, F) is unambiguous for N'}.

Natural candidate: C = {(a,a,a) | a € A}.

Issue: One can globally encode, but not globally decode.



The Diamond Network

Theorem (Beemer, Ravagnani '21)
For the Diamond Network N/,

G (V) = logp4 (I = 1).
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Theorem (Beemer, Ravagnani '21)
For the Diamond Network N/,

G (V) = logp4 (I = 1).

Capacity-achieving scheme:
o sacrifice an alphabet symbol * € A for adversary detection
o Fyl(a)=aforac A
o Fu,(a,b) = {a !f a=»>b
x if a£b
o T looks at the symbol on the outgoing edge of V5. If it is not %, T

decodes to that symbol. If it is *, then T decodes to the symbol on
the outgoing edge of V;.



Sacrifice an alphabet symbol *



Simple 2-level networks




From examples to a more general theory

Theorem (Beemer, K., Ravagnani '22)
Ci(any network) < Ci(simple 2-level induced from it) J
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From examples to a more general theory

Theorem (Beemer, K., Ravagnani '22)
Ci(any network) < Ci(simple 2-level induced from it)

Idea behind our approach

A possibly complicated network — 3-level network — 2-level network
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We prove a Double Cut-Set Bound (Beemer, K., Ravagnani '22)
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Explaining via pictures
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Explaining via pictures

Observe that we end up in a simple 2-level network. We can now derive an
upper bound for the capacity of the original more complicated network.



Simple 2-level networks

a; = |in(V;)| and b; = |out(V;)].
We also denote the network code by F = (Fi,...,Fp).



First Packing Bound

Given an outer code C C A% @2F-+2n we et 7;(C) be the projection of C
onto the a; coordinates corresponding to the edges to intermediate node V;

Theorem (First Packing Bound) (Beemer, K., Ravagnani '22)

Consider a simple 2-level network with a; < b; for all 1 < < r. Let
(C, F) be unambiguous. Then

Z H <i:>(|A|_1)ti Z H |75 (Be—(ert...+2) (mi(x))) | < |A|PrFE2ttbn

ti,..., t,>0 =1 xeC j=r+1
ti+...+t. <t
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First Packing Bound

Given an outer code C C A%1taF+an "we |et ;(C) be the projection of C
onto the a; coordinates corresponding to the edges to intermediate node V;
Theorem (First Packing Bound) (Beemer, K., Ravagnani '22)

Consider a simple 2-level network with a; < b; for all 1 < < r. Let
(C, F) be unambiguous. Then

Z H < ) |~A| Z H “7::/ (Bf—(t1+...+t,)(7Tj(X)))| < |A|bl+b2+'“+bn

t1,...,t,>0 i=1 xeC j=r+1
t1+...+tr <t

v,

Proof ldea

@ Whenever a; < b;, we can assume a; = b; and take the corresponding

function F; to be identity (ignoring extraneous outgoing edges),
© Bi(x) = Ly .. ye,<e [Su(mi(x)) x -+ x St (ma(X))],
© Y xec F(Be(x))] < | AJPrtbatetbn,




Simple 2-level Networks with n = 2

Corollary (Beemer, K., Ravagnani '22)

Consider a simple 2-level network with n =2 and a; < by. Let (C,F) be
unambiguous. Then,

Z (2) (lAl — 1)f1 Z | F2 (Bt—t, (m2(x))))| < |.A|b1+b2‘

t1=0 xeC

Corollary of the above corollary
The Singleton Cut-Set Bound for the Diamond Network is not met.
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Corollary (Beemer, K., Ravagnani '22)

Consider a simple 2-level network with n =2 and a; < by. Let (C,F) be
unambiguous. Then,
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Corollary of the above corollary

The Singleton Cut-Set Bound for the Diamond Network is not met.

Using a similar idea, we can get a Hamming-type bound.

Lemma (Beemer, K., Ravagnani '22)

Let (C,F) be unambiguous for the simple 2-level network N'. Then,
FYF(B:(x))) N FYF(B:(x")) = 0 for all distinct x,x" € C.




Second Packing Bound

Corollary (Beemer, K., Ravagnani '22)

Consider a simple 2-level network with n =2 and a; < by. Let (C,F) be
unambiguous. Then,

Z <2>(|A| - 1)t1 Z ‘]—'2*1(]:2 (Bt_tl(’]'rz(x))))) | < |A|al+a2‘

t1=0 xeC

To be compared with:

Theorem (Hamming Bound)

Let (C,F) be unambiguous for a simple 2-level network with n = 2 and
ay < by. Then, |C| - Z;:o (3F2) (|4] — 1)8 < At

t1

We expect the corollary to beat the Hamming bound for some classes of
networks.



For example, compute the exact 1-shot capacity of all simple 2-level
networks. Open:

6+ 1 edges’

t=1 = s—1< G(N) <s, but what is the exact value?
— started collaboration at TU/e using combinatorial optimization.
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Thank You!
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Abstract

We consider the problem of error control in a coded, multicast network, focusing on
the scenario where the errors can oceur only on a proper subset of the network edges.
We model this problem via an adversarial noise, presenting a formal framework and a
series of technigues to obtain upper and lower bounds on the network's (1-shot) capacity,
improving on the best currently known results. In particular, we show that traditional
cut-set bounds are not tight in general in the presence of a restricted adversary, and that
the non-tightness of these is caused preeisely by the restrictions imposed on the noise (and
not, as one may expect, by the alphabet size). We also show that, in sharp contrast
with the typical situation within network coding, capacity cannot be achieved in general
by combining linear network coding with end-to-end channel coding, not even when the
underlying network has a single source and a single terminal. ‘We finally illustrate how
network decading techniques are necessary to achieve capacity in the seenarios we examine
exhibiting capacity-achieving schemes and lower bounds for various classes of networks,
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