# On linear codes associated with the Desarguesian ovoids in $Q^{+}(7, q)$ 

Michael Kiermaier

Mathematisches Institut
Universität Bayreuth
Finite Geometries (Irsee 6)
August 30, 2022
Kloster Irsee, Germany
joint work with Tao Feng, Peixian Lin and Kai-Uwe Schmidt

## Points and linear codes

- Let $\mathcal{P}$ spanning multiset of $n$ points in $\operatorname{PG}\left(\mathbb{F}_{q}^{k}\right) \cong \operatorname{PG}(k-1, q)$.
- Write $\mathcal{P}=\left\{\left\{\left\langle v_{1}\right\rangle, \ldots,\left\langle v_{n}\right\rangle\right\}\right.$.
- Generator matrix $G=\left(v_{1} \cdots v_{n}\right) \in \mathbb{F}_{q}^{k \times n}$ yields $\mathbb{F}_{q}$-linear $[n, k]_{q}$-code $C$.
- $C$ well-defined up to linear equivalence of codes.
- $C$ full-length, i.e. no all-zero position.
- For codeword $c=x^{\top} G \neq \mathbf{0}$, define hyperplane $H=x^{\perp}$.

Then $w_{\text {Ham }}(c)=n-\#\{\{P \in \mathcal{P} \mid P \in H\}$.
( $=\#$ of points in $\mathcal{P}$ outside of $H$ )

## Conclusion

- We get correspondence

Spanning multisets $\mathcal{P}$ of points
$\longleftrightarrow$ full-length linear codes $C$.

- Weights of $C \longleftrightarrow$ hyperplane intersections of $\mathcal{P}$.
- Corresponding notions on geometric side: arc, minihyper.
- Strong link between finite geometry and coding theory.
- First (?) published in 1964 in PhD thesis of Burton.

Plan

- Take your favorite point set $\mathcal{P}$.
- Compute the hyperplane intersections.
- Hope for a good code!


## Ovoids in $Q^{+}(7, q)$

- Ovoid in polar space = set of points covering every generator exactly once.
- Kantor (1982): two series of ovoids in $Q^{+}(7, q)$.
- Unitary ovoid for $q \equiv 0,2 \bmod 3$. stabilized by PGU(3, q).

Hyperplane intersections determined by Cooperstein (1995) $(q \equiv-1 \bmod 6)$.
$\rightsquigarrow\left[q^{3}+1,8, q^{3}-q^{2}-2 q\right]_{q}$-code.

- Desarguesian ovoid for $q$ even. stabilized by PGL( $2, q^{3}$ ).
Goal: Determine its hyperplane intersections. $\rightsquigarrow\left[q^{3}+1,8, q^{3}-q^{2}-q\right]_{q}$-code.


## The Desarguesian ovoid

- Let $V=\mathbb{F}_{q} \times \mathbb{F}_{q^{3}} \times \mathbb{F}_{q^{3}} \times \mathbb{F}_{q}$ vector space over $\mathbb{F}_{q}$ of dim. 8 .
- fix nondegenerate quadratic form on $V$

$$
Q((x, y, z, w))=x w+\operatorname{Tr}(y z)
$$

$\rightsquigarrow$ polar space $Q^{+}(7, q)$.

- group operation of $\operatorname{PGL}\left(2, q^{3}\right)$ on $\mathrm{PG}(V)$ induced by

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot(x y z w)^{\top}= \\
& \mathrm{N}(d) x+\mathrm{N}(c) w+\operatorname{Tr}\left(c d q^{2}+q_{y}+d c^{q^{2}}+q_{z}\right) \\
& b d^{q^{2}+q_{x}}+a c^{q^{2}+q_{w}}+a d^{q^{2}+q} y+b d q^{2} c^{q} y^{q}+b d^{q} c^{q^{2}} y q^{q^{2}}+b c^{q^{2}}+q_{z+d} a c^{q^{2}} z^{q}+d q^{2} a c^{q} z q^{2} \\
& d b^{q^{2}+q_{X}}+c a^{q^{2}}+q_{w+c b^{q^{2}}+q_{y}}+d b^{q^{2}} a^{q} y y^{q}+d b^{q} a^{q^{2}} y y^{q^{2}}+d a^{q^{2}}+q_{z+b} b^{q} c a^{q^{2}} z^{q}+b^{q^{2}} c a^{q} z^{q^{2}} \\
& N(b) x+N(a) w+\operatorname{Tr}\left(a b q^{2}+q y+b a^{q^{2}+q_{z}}\right)
\end{aligned}
$$

- $q$ even: Orbit $O$ of $\langle(1,0,0,0)\rangle$ is Desarguesian ovoid. $q$ odd: $O$ complete partial ovoid in $W(7, q)$ (Cossidente 2011)
- We consider $O$ for all values of $q$.


## Theorem

There are four orbits on $\mathrm{PG}(V)$, with the following properties.

| orbit | size | representative $v$ | $\#\left(v^{\perp} \cap O\right)$ |
| :---: | :---: | :---: | :---: |
| $O$ | $q^{3}+1$ | $\langle(1,0,0,0)\rangle$ | 1 |
| $O_{2}$ | $q\left(q^{2}+q+1\right)\left(q^{3}+1\right)$ | $\langle(0,0,1,0)\rangle$ | $q^{2}+1$ |
| $O_{3}$ | $\frac{1}{2} q^{3}\left(q^{3}+1\right)(q-1)$ | $\langle(1,0,0,1)\rangle$ | $q^{2}+q+1$ |
| $O_{4}$ | $\frac{1}{2} q^{3}\left(q^{3}-1\right)(q+1)$ | $\langle(1,0, \alpha, \alpha)\rangle$ | $q^{2}-q+1$ |

Where $\alpha \in \mathbb{F}_{q}$ such that $x^{2}-x-\alpha \in \mathbb{F}_{q}[x]$ is irreducible.
Proof (sketch).

- Enough to compute \#( $\left.v^{\perp} \cap O\right)$ for single representative $v$.
- Use orbit-stabilizer-theorem for ( $\# \mathrm{O}$ ), $\# \mathrm{O}_{2}, \# \mathrm{O}_{3}$.
- Show that $\mathrm{PG}(\mathrm{V}) \backslash\left(\mathrm{O} \cup \mathrm{O}_{2} \cup \mathrm{O}_{3}\right)$ is a single orbit. (longest part; count solutions of certain equations in $\mathbb{F}_{q^{3}}$ ).
- several pages of computations.

Let $C_{O}$ be the $\mathbb{F}_{q}$-linear code associated to $O$.
Corollary
The code $C_{O}$ has the parameters $\left[q^{3}+1,8, q^{3}-q^{2}-q\right]_{q}$ and the weight enumerator

| weight | multiplicity |
| :---: | :---: |
| 0 | 1 |
| $q\left(q^{2}-q-1\right)$ | $\frac{1}{2} q^{3}\left(q^{3}+1\right)(q-1)^{2}$ |
| $q^{2}(q-1)$ | $q\left(q^{6}-1\right)$ |
| $q\left(q^{2}-q+1\right)$ | $\frac{1}{2} q^{3}\left(q^{3}-1\right)\left(q^{2}-1\right)$ |
| $q^{3}$ | $\left(q^{3}+1\right)(q-1)$ |

Proof.
Correspondence "points $\leftrightarrow$ linear codes".

## Corollary

The code $C_{O}^{\perp}$ has the parameters $\left[q^{3}+1, q^{3}-7, d\right]_{q}$ with

$$
d= \begin{cases}9 & \text { if } q=2 \\ 6 & \text { if } q=3 \\ 5 & \text { otherwise. }\end{cases}
$$

Proof.
Apply MacWilliams to the weight enumerator of $C_{O}$.

## Remark

For $q=2$ :

- $C_{O}$ is the $[9,8,2]$ parity check code.
- $C_{O}^{\perp}$ is the $[9,1,9]$ repetition code.

Question
How good are the codes $C_{O}$ and $C_{O}^{\perp}$ ?

Interlude: Optimality of linear codes
When should we call a linear code optimal?
First approach: parametric optimality

- Parameters of linear code $C$ usually given as $[n, k, d]$.
- We want: $n$ small, $k$ large, $d$ large.
- parametric optimality: Fix two parameters.

C optimal $\Longleftrightarrow$ third parameter is best possible

- C distance-optimal ( $d$-optimal) $\Longleftrightarrow \nexists[n, k, d+1]$-code.
- C dimension-optimal ( $k$-optimal) $\Longleftrightarrow \nexists[n, k+1, d]$-code.
- C length-optimal ( $n$-optimal) $\Longleftrightarrow \nexists[n-1, k, d]$-code.


## Parametric optimality (continued)

- Dependencies among $n$-, $k$ - and $d$-optimality?
- Yes!
$C$ n-optimal $\Longrightarrow C k$-optimal and $C d$-optimal.
Proof: via shortening / puncturing
- $n$-optimality: interesting!
- $d$-optimality and $k$-optimality: pretty weak. Unfortunately: Used a lot in the literature.
- Flaw of concept of parametric optimality: Optimality notions depend on chosen basis ( $n, k, d$ ) of the parameter space.

Second approach: wish list
What do we expect of an optimal code?

- "better than others":

Cannot be constructed in an elementary way from other linear codes.

- "building blocks":

Every realizable parameter set should be constructible in an elementary way from optimal codes.

Questions and potential complications

- What should be considered as an elementary construction?
- Conditions might be contradictory (circular dependencies).
- What about computability?


## Compromise

- We consider the following "local" elementary constructions:
- Extend by a zero position: $[n, k, d] \rightsquigarrow[n+1, k, d]$.
- Shorten: $[n, k, d] \rightsquigarrow[n-1, k-1, d]$.
- Puncture: $[n, k, d] \rightsquigarrow[n-1, k, d-1]$.
- "better than others"-property yields
the following notions of optimality for $[n, k, d]$ code $C$.
- Again: $C$ length-optimal ( $n$-opt.) $\Longleftrightarrow \nexists[n-1, k, d]$-code.
- C shortening-optimal (S-opt.) $\Longleftrightarrow \nexists[n+1, k+1, d]$-code.
- C puncturing-optimal ( $P$-opt.) $\Longleftrightarrow \nexists[n+1, k, d+1]$-code.
- $C$ strongly optimal $\Longleftrightarrow n$-opt. and $S$-opt. and $P$-opt.
(Dodunekov, Simonis 2000)


## Remarks

- $n$-, $S$ - and $P$-optimality are independent properties.
- strongly regular codes satisfy "building block"-property for all codes $C$ except border cases. (repetition \& parity-check codes, full/empty space)
- $n$-, $S$ - and $P$-optimality are parametric optimality wrt representation of parameters as $[s, k, d]$, where $s=n-k-d+1 \geq 0$ is Singleton defect of $C$.

Conclusion

- $d$ - and $k$-optimality are weak concepts of optimality. Forget about them!
- Instead: Think in terms of $n$-, $S$ - and $P$-optimality.

Back to the codes $C_{O}$ and $C_{O}^{\perp} \ldots$
Theorem
All codes $C_{O}$ and all codes $C_{O}^{\perp}$ are n-optimal.
Proof.

- For $C^{\perp}$ : sphere packing bound.
- For $C_{0}$ : linear programming bound ...

Proof ( $n$-optimaliy of $C_{o}$ via LP-bound).

- Assume there exists $[n, k, d]_{q}=\left[q^{3}, 8, q^{3}-q^{2}-q\right]_{q}$ code.
- Let $f(x)=\left(x-z_{1}\right)\left(x-z_{2}\right)\left(x-z_{3}\right)(x-n)$ where

$$
z_{1}=q^{3}-q^{2}-q, \quad z_{2}=q^{3}-q^{2}+q-2, \quad z_{3}=q^{3}-q^{2}+q-1 .
$$

- Then $f(i) \leq 0$ for all $i \in\{d, d+1, \ldots, n\}$.
- Krawchouk expansion of $f$ is $f(x)=\sum_{i=0}^{4} f_{i} K_{i}(x)$ where

$$
\begin{aligned}
K_{i} & =i \text { th Krawchouk polynomial } \\
f_{0} & =2 / q \cdot(q-1)\left(q^{4}-2 q^{3}-q^{2}+3\right) \\
f_{1} & =2 / q^{4} \cdot(q-1)\left(q^{6}+q^{5}-10 q^{3}+3 q+12\right) \\
f_{2} & =2 / q^{4} \cdot\left(q^{5}+5 q^{4}-9 q^{3}-6 q^{2}-18 q+36\right) \\
f_{3} & =6 / q^{4} \cdot\left(q^{3}+q^{2}+3 q-12\right) \\
f_{4} & =24 / q^{4}
\end{aligned}
$$

- For $q \geq 3: f_{i} \geq 0$.
- LP-bound $\Longrightarrow \# C \leq f(0) / f_{0}<q^{8}$. Contradiction.


## Parameters for small $q$

| $C_{O}$ | $[n, k, d]$ | $n$-opt | $S$-opt | $P$-opt | strongly opt |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $q=2$ | $[9,8,2]$ | yes | (no) | yes | (no) |
| $q=3$ | $[28,8,15]$ | yes | yes | yes | yes |
| $q=4$ | $[65,8,44]$ | yes | yes | yes | yes |
| $q=5$ | $[126,8,95]$ | yes | yes | $?$ | $?$ |
| $C_{O}^{\perp}$ | $[n, k, d]$ | $n$-opt | $S$-opt | $P$-opt | strongly opt |
| $q=2$ | $[9,1,9]$ | yes | yes | (no) | (no) |
| $q=3$ | $[28,20,6]$ | yes | $?$ | yes | $?$ |
| $q=4$ | $[65,57,5]$ | yes | no | $?$ | no |
| $q=5$ | $[126,118,5]$ | yes | $?$ | $?$ | $?$ |

Optimistic conjecture
The codes $C_{O}$ are strongly optimal for all $q \geq 3$.

## Thank you!

Slides will be uploaded at
https://mathe2.uni-bayreuth.de/michaelk/

