The direct sum of q-matroids

Relinde Jurrius

Netherlands Defence Academy

Finite geometries, 6th Irsee conference
September 1, 2022

Matroid: a pair (E, r) with

- E finite set;
- $r: 2^{E} \rightarrow \mathbb{N}_{0}$ a function, the rank function, with for all $A, B \in E$:
(r1) $0 \leq r(A) \leq|A|$
(r2) If $A \subseteq B$ then $r(A) \leq r(B)$.
(r3) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$ (semimodular)

Example

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Example

But: most matroids don't come from a matrix or graph.

Independent set: subset with rank equal to cardinality
Loop: singleton of rank 0

Restriction $\left.M\right|_{X}$: only consider elements in $X \subseteq E$
Contraction M / X : only consider elements containing $X \subseteq E$ and remove X

Example

Matroid \Longleftrightarrow only the following diamonds:

one

zero

mixed

prime
red means rank +1 , green means rank +0

q-Analogues

lattice	Boolean	subspace lattice of \mathbb{F}_{q}^{n}
atom	element	1-dim subspace
height	size	dimension
$\#$ atoms	n	$[n]_{q}:=\frac{q^{n}-1}{q-1}$
meet \wedge	intersection	intersection
join \vee	union	sum

From q-analogue to 'normal': let $q \rightarrow 1$.
q-Matroid \Longleftrightarrow only the following "diamonds":

one

mixed

zero

prime

Example

Definition
The direct sum of the matroids $M_{1}=\left(E_{1}, r_{1}\right)$ and $M_{2}=\left(E_{2}, r_{2}\right)$ is the matroid M on ground set $E=E_{1} \sqcup E_{2}$ with for all $A \subseteq E$,

$$
r(A)=r_{1}\left(A \cap E_{1}\right)+r_{2}\left(A \cap E_{2}\right)
$$

Its independent sets are union of independent set in M_{1} and M_{2}.

Definition
The direct sum of the matroids $M_{1}=\left(E_{1}, r_{1}\right)$ and $M_{2}=\left(E_{2}, r_{2}\right)$ is the matroid M on ground set $E=E_{1} \sqcup E_{2}$ with

$$
\left.M\right|_{E_{1}}=M / E_{2}=M_{1} \text { and }\left.M\right|_{E_{2}}=M / E_{1}=M_{2}
$$

Sets: let $E=E_{1} \sqcup E_{2}$.
For all $A \subseteq E$ we have $A=A_{1} \sqcup A_{2}$ with $A_{1} \subseteq E_{1}, A_{2} \subseteq E_{2}$.
Not true for vector spaces!

Example
Let $E_{1}=\langle 100,010\rangle$ and $E_{2}=\langle 001\rangle$. Then $A=\langle 111\rangle$ has trivial intersection with both E_{1} and E_{2}.

Definition (Naive attempt)
The direct sum of the q-matroids $M_{1}=\left(E_{1}, r_{1}\right)$ and $M_{2}=\left(E_{2}, r_{2}\right)$ is a q-matroid M on ground space $E=E_{1} \oplus E_{2}$ such that

$$
\left.M\right|_{E_{1}}=M / E_{2}=M 1 \text { and }\left.M\right|_{E_{2}}=M / E_{1}=M_{2}
$$

Let's hope the rank axioms take care of the rest of the subspaces!

Example $\left(U_{1,1} \oplus U_{1,2}\right.$ over $\left.\mathbb{F}_{2}\right)$

Example $\left(U_{1,1} \oplus U_{1,2}\right.$ over $\left.\mathbb{F}_{2}\right)$

Unfortunately, this construction becomes not unique already in dimension 4...

Goal: find some equivalent description of the direct sum that does allow for a q-analogue.

Definition

The matroid union $M_{1} \vee M_{2}$ of two matroids $M_{1}=\left(E_{1}, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E_{2}, \mathcal{I}_{2}\right)$ is a matroid on ground set $E_{1} \cup E_{2}$ with independent sets

$$
\mathcal{I}=\left\{I_{1} \cup I_{2}: I_{1} \in \mathcal{I}_{1}, I_{2} \in \mathcal{I}_{2}\right\} .
$$

Its rank function is, for all $A \subseteq E_{1} \cup E_{2}$:

$$
r(A)=\min _{X \subseteq E}\left\{r_{M_{1}}(X)+r_{M_{2}}(X)+|A \backslash X|\right\} .
$$

How to make the direct sum of the matroids $M_{1}=\left(E_{1}, r_{1}\right)$ and $M_{2}=\left(E_{2}, r_{2}\right)$, using matroid union?

- Let $E=E_{1} \sqcup E_{2}$.
- Let M_{1}^{\prime} be the matroid on E such that $\left.M_{1}^{\prime}\right|_{E_{1}}=M_{1}$ and $M_{1}^{\prime} \mid E_{2}$ consists of only loops.
- Let M_{2}^{\prime} be the matroid on E such that $\left.M_{2}^{\prime}\right|_{E_{2}}=M_{2}$ and $\left.M_{2}^{\prime}\right|_{E_{1}}$ consists of only loops.
- Now $M_{1} \oplus M_{2}=M_{1}^{\prime} \vee M_{2}^{\prime}$.

Definition (Ceria \& J., 2021)
The direct sum of the q-matroids $M_{1}=\left(E_{1}, r_{1}\right)$ and $M_{2}=\left(E_{2}, r_{2}\right)$ is constructed as follows:

- Let $E=E_{1} \oplus E_{2}$ (such that $E_{1}^{\perp}=E_{2}$).
- Let M_{1}^{\prime} be the q-matroid on E such that $\left.M_{1}^{\prime}\right|_{E_{1}}=M_{1}$ and $\left.M_{1}^{\prime}\right|_{E_{2}}$ consists of only loops.
- Let M_{2}^{\prime} be the q-matroid on E such that $\left.M_{2}^{\prime}\right|_{E_{2}}=M_{2}$ and $\left.M_{2}^{\prime}\right|_{E_{1}}$ consists of only loops.
- Now $M_{1} \oplus M_{2}=M_{1}^{\prime} \vee M_{2}^{\prime}$.

Theorem (Ceria \& J., 2021)
The direct sum has M_{1} and M_{2} both twice as minors:

$$
\left.M\right|_{E_{1}}=M / E_{2}=M_{1} \text { and }\left.M\right|_{E_{2}}=M / E_{1}=M_{2}
$$

Theorem (Ceria \& J., 2021)
The dual of the direct sum is the direct sum of the duals:
$\left(M_{1} \oplus M_{2}\right)^{*}=M_{1}^{*} \oplus M_{2}^{*}$.

Thank you for your attention!

M. Ceria \& R. Jurrius
The direct sum of q-matroids arXiv:2109.13637

