The direct sum of *q*-matroids

Relinde Jurrius

Netherlands Defence Academy

Finite geometries, 6th Irsee conference September 1, 2022 Matroid: a pair (E, r) with

- ► *E* finite set;
- $r: 2^E \to \mathbb{N}_0$ a function, the *rank function*, with for all $A, B \in E$:

(r1)
$$0 \le r(A) \le |A|$$

(r2) If $A \subseteq B$ then $r(A) \le r(B)$.
(r3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ (semimodular)

$$\left(\begin{array}{rrrrr} 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{array}\right)$$

Example

But: most matroids don't come from a matrix or graph.

Independent set: subset with rank equal to cardinality

Loop: singleton of rank 0

Restriction $M|_X$: only consider elements in $X \subseteq E$

Contraction M/X: only consider elements containing $X \subseteq E$ and remove X

Example $\{a, b, c, d\}$ ${a, b, c}{a, b, d}{a, c, d}{b, c, d}$ $\{a, b\} \{a, c\} \{a, d\} \{b, c\} \{b, d\} \{c, d\}$ {*c*} {*d*} {*a*} {*b*} d Ø b c а

Matroid \iff only the following diamonds:

red means rank +1, green means rank +0

q-Analogues

lattice	Boolean	subspace lattice of \mathbb{F}_q^n
atom	element	1-dim subspace
height	size	dimension
# atoms	n	$[n]_q := \frac{q^n - 1}{q - 1}$
meet \land	intersection	intersection
join \lor	union	sum

From q-analogue to 'normal': let $q \rightarrow 1$.

q-Matroid \iff only the following "diamonds":

Definition

The direct sum of the matroids $M_1 = (E_1, r_1)$ and $M_2 = (E_2, r_2)$ is the matroid M on ground set $E = E_1 \sqcup E_2$ with for all $A \subseteq E$,

$$r(A) = r_1(A \cap E_1) + r_2(A \cap E_2).$$

Its independent sets are union of independent set in M_1 and M_2 .

Definition

The direct sum of the matroids $M_1 = (E_1, r_1)$ and $M_2 = (E_2, r_2)$ is the matroid M on ground set $E = E_1 \sqcup E_2$ with

$$M|_{E_1} = M/E_2 = M_1$$
 and $M|_{E_2} = M/E_1 = M_2$.

Sets: let $E = E_1 \sqcup E_2$.

For all $A \subseteq E$ we have $A = A_1 \sqcup A_2$ with $A_1 \subseteq E_1$, $A_2 \subseteq E_2$.

Not true for vector spaces!

Example Let $E_1 = \langle 100, 010 \rangle$ and $E_2 = \langle 001 \rangle$. Then $A = \langle 111 \rangle$ has trivial intersection with both E_1 and E_2 .

Definition (Naive attempt)

The direct sum of the q-matroids $M_1 = (E_1, r_1)$ and $M_2 = (E_2, r_2)$ is a q-matroid M on ground space $E = E_1 \oplus E_2$ such that

$$M|_{E_1} = M/E_2 = M_1$$
 and $M|_{E_2} = M/E_1 = M_2$.

Let's hope the rank axioms take care of the rest of the subspaces!

Example $(U_{1,1} \oplus U_{1,2} \text{ over } \mathbb{F}_2)$

Example $(U_{1,1} \oplus U_{1,2} \text{ over } \mathbb{F}_2)$

Unfortunately, this construction becomes not unique already in dimension $4\ldots$

Goal: find some equivalent description of the direct sum that does allow for a q-analogue.

Definition

The matroid union $M_1 \vee M_2$ of two matroids $M_1 = (E_1, \mathcal{I}_1)$ and $M_2 = (E_2, \mathcal{I}_2)$ is a matroid on ground set $E_1 \cup E_2$ with independent sets

$$\mathcal{I} = \{ \mathbf{I}_1 \cup \mathbf{I}_2 : \mathbf{I}_1 \in \mathcal{I}_1, \mathbf{I}_2 \in \mathcal{I}_2 \}.$$

Its rank function is, for all $A \subseteq E_1 \cup E_2$:

$$r(A) = \min_{X\subseteq E} \{r_{M_1}(X) + r_{M_2}(X) + |A\setminus X|\}.$$

How to make the direct sum of the matroids $M_1 = (E_1, r_1)$ and $M_2 = (E_2, r_2)$, using matroid union?

- Let $E = E_1 \sqcup E_2$.
- ► Let M'₁ be the matroid on E such that M'₁|_{E1} = M₁ and M'₁|_{E2} consists of only loops.
- Let M'_2 be the matroid on E such that $M'_2|_{E_2} = M_2$ and $M'_2|_{E_1}$ consists of only loops.
- $\blacktriangleright \text{ Now } M_1 \oplus M_2 = M'_1 \vee M'_2.$

Definition (Ceria & J., 2021)

The direct sum of the *q*-matroids $M_1 = (E_1, r_1)$ and $M_2 = (E_2, r_2)$ is constructed as follows:

- Let $E = E_1 \oplus E_2$ (such that $E_1^{\perp} = E_2$).
- ► Let M'₁ be the q-matroid on E such that M'₁|_{E1} = M₁ and M'₁|_{E2} consists of only loops.
- ► Let M'₂ be the q-matroid on E such that M'₂|_{E₂} = M₂ and M'₂|_{E₁} consists of only loops.
- $\blacktriangleright \text{ Now } M_1 \oplus M_2 = M'_1 \vee M'_2.$

Theorem (Ceria & J., 2021) The direct sum has M_1 and M_2 both twice as minors:

$$M|_{E_1} = M/E_2 = M_1$$
 and $M|_{E_2} = M/E_1 = M_2$.

Theorem (Ceria & J., 2021) The dual of the direct sum is the direct sum of the duals: $(M_1 \oplus M_2)^* = M_1^* \oplus M_2^*.$

Thank you for your attention!

M. Ceria & R. Jurrius The direct sum of *q*-matroids arXiv:2109.13637