Cyclic line-spreads and linear spaces

Finite Geometries 2022

Cian Jameson
(joint work with John Sheekey)
University College Dublin

Introduction

Consider the incidence structure $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathcal{I})$ where the point $x \in \mathcal{P}$ is on the line $\ell \in \mathcal{L}$ if $(x, \ell) \in \mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$.

Introduction

Consider the incidence structure $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathcal{I})$ where the point $x \in \mathcal{P}$ is on the line $\ell \in \mathcal{L}$ if $(x, \ell) \in \mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$.

If

- every line contains at least two points;
- every pair of distinct points lie on a unique line;
- every pair of distinct lines meet in at most one common point, then \mathcal{S} is a linear space.

Introduction

Consider the incidence structure $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathcal{I})$ where the point $x \in \mathcal{P}$ is on the line $\ell \in \mathcal{L}$ if $(x, \ell) \in \mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$.

If

- every line contains at least two points;
- every pair of distinct points lie on a unique line;
- every pair of distinct lines meet in at most one common point, then \mathcal{S} is a linear space.

Example

Consider the finite field \mathbb{F}_{q}. Let $\mathcal{P}=\left\{v \in \mathbb{F}_{q}^{n}\right\}$, let $\mathcal{L}=\left\{u+\langle v\rangle: u, v \in \mathbb{F}_{q}^{n}\right\}$ and let $(x, \ell) \in \mathcal{I} \Longleftrightarrow x \in \ell$. Then $(\mathcal{P}, \mathcal{L}, \mathcal{I})=: \operatorname{AG}(n, q)$ is a linear space.

Linear spaces

An automorphism of a linear space L is a type- and incidence-preserving bijection on L.

Linear spaces

An automorphism of a linear space L is a type- and incidence-preserving bijection on L.

The set of automorphisms of L forms a group under composition, called the automorphism group of L, and is denoted by $\operatorname{Aut}(L)$.

Linear spaces

An automorphism of a linear space L is a type- and incidence-preserving bijection on L.

The set of automorphisms of L forms a group under composition, called the automorphism group of L, and is denoted by $\operatorname{Aut}(L)$.

Example

Let $L=\operatorname{AG}(n, q)$ be the linear space in the previous example. Then it is known that
$\operatorname{Aut}(L)=($ Translations $) \circ$ (Invertible semilinear transformations)

$$
\begin{aligned}
& =\left\{T: T(v)=A v^{\sigma}+u\right\} \\
& =\operatorname{A\Gamma L}(n, q)
\end{aligned}
$$

Linear spaces

Example

Let $L=\operatorname{AG}(n, q)$. Then $\operatorname{Aut}(L)$ acts transitively on

- points of L,
- pairs of points of L,
- pairs of nonincident lines of L,
- flags of $L \ldots$

Linear spaces

Example

Let $L=\operatorname{AG}(n, q)$. Then $\operatorname{Aut}(L)$ acts transitively on

- points of L,
- pairs of points of L,
- pairs of nonincident lines of L,
- flags of $L \ldots$

A flag of L is an incident point-line pair (x, ℓ).

Linear spaces

Question: For which linear spaces L does $\operatorname{Aut}(L)$ act transitively on points, lines, pairs of points, pairs of lines, flags, etc.?

Linear spaces

Question: For which linear spaces L does $\operatorname{Aut}(L)$ act transitively on points, lines, pairs of points, pairs of lines, flags, etc.?

In particular, when is $\operatorname{Aut}(L)$ flag-transitive?

Linear spaces

Question: For which linear spaces L does $\operatorname{Aut}(L)$ act transitively on points, lines, pairs of points, pairs of lines, flags, etc.?

In particular, when is $\operatorname{Aut}(L)$ flag-transitive?
Due to work by Buekenhout, Delandtsheer, Doyen et al. (1990), Liebeck (1998), Saxl (2002) and others, the result is known for all L and $\operatorname{Aut}(L)$ except when L is constructed from a spread.

Spreads

Let $V(n, q)$ denote an n-dimensional vector space over \mathbb{F}_{q}.

Spreads

Let $V(n, q)$ denote an n-dimensional vector space over \mathbb{F}_{q}.

Spreads

A t-spread of $V(n, q)$ is a set S of t-dimensional subspaces of $V(n, q)$ such that every nonzero vector of $V(n, q)$ is contained in exactly one element of S.

Spreads

Let $V(n, q)$ denote an n-dimensional vector space over \mathbb{F}_{q}.

Spreads

A t-spread of $V(n, q)$ is a set S of t-dimensional subspaces of $V(n, q)$ such that every nonzero vector of $V(n, q)$ is contained in exactly one element of S.

Hence

$$
|S|=\frac{q^{n}-1}{q^{t}-1}
$$

Spreads

Let $V(n, q)$ denote an n-dimensional vector space over \mathbb{F}_{q}.

Spreads

A t-spread of $V(n, q)$ is a set S of t-dimensional subspaces of $V(n, q)$ such that every nonzero vector of $V(n, q)$ is contained in exactly one element of S.

Hence

$$
|S|=\frac{q^{n}-1}{q^{t}-1}
$$

- It is known (due to Segre) that t-spreads exist in $V(n, q)$ if and only if t divides n.

Spreads

Let $V(n, q)$ denote an n-dimensional vector space over \mathbb{F}_{q}.

Spreads

A t-spread of $V(n, q)$ is a set S of t-dimensional subspaces of $V(n, q)$ such that every nonzero vector of $V(n, q)$ is contained in exactly one element of S.

Hence

$$
|S|=\frac{q^{n}-1}{q^{t}-1}
$$

- It is known (due to Segre) that t-spreads exist in $V(n, q)$ if and only if t divides n.
- Equivalently we could consider $(t-1)$-spreads in $\operatorname{PG}(n-1, q)$.

Spreads

Example (Desarguesian spread)

Consider $\mathbb{F}_{q^{t m}}$ as a tm-dimensional vector space over \mathbb{F}_{q}. Then

$$
S=\left\{\left\{a x: x \in \mathbb{F}_{q^{t}}\right\}: a \in \mathbb{F}_{q^{t m}}^{\times}\right\}
$$

is a t-spread of $\mathbb{F}_{q^{t m}} \cong V(t m, q)$.

Linear space from a spread

Let S be a t-spread of $V=V(n, q)$. Let $\mathcal{P}=\{v \in V\}$, let $\mathcal{L}=\{u+U: u \in V, U \in S\}$ and let $(x, \ell) \in \mathcal{I} \Longleftrightarrow x \in \ell$. Then $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ is a linear space. We will refer to a linear space constructed in this way from a t-spread S as $L(S)$ and say it is associated with S.

Linear space from a spread

Let S be a t-spread of $V=V(n, q)$. Let $\mathcal{P}=\{v \in V\}$, let $\mathcal{L}=\{u+U: u \in V, U \in S\}$ and let $(x, \ell) \in \mathcal{I} \Longleftrightarrow x \in \ell$. Then $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ is a linear space. We will refer to a linear space constructed in this way from a t-spread S as $L(S)$ and say it is associated with S.

This coincides with the Barlotti-Cofman construction for linear spaces; specifically translation Sperner spaces. When $n=2 t$ this becomes the André/Bruck-Bose construction for affine (and projective) planes.

Linear space from a spread

Let S be a t-spread of $V=V(n, q)$. Let $\mathcal{P}=\{v \in V\}$, let $\mathcal{L}=\{u+U: u \in V, U \in S\}$ and let $(x, \ell) \in \mathcal{I} \Longleftrightarrow x \in \ell$. Then $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ is a linear space. We will refer to a linear space constructed in this way from a t-spread S as $L(S)$ and say it is associated with S.

This coincides with the Barlotti-Cofman construction for linear spaces; specifically translation Sperner spaces. When $n=2 t$ this becomes the André/Bruck-Bose construction for affine (and projective) planes.

The linear space associated with the Desarguesian t-spread in $V(m t, q)$ is $\operatorname{AG}\left(m, q^{t}\right)$.

Linear space from a spread

Let $L(S)$ be a linear space associated with a t-spread S of $V(n, q)$.
Then it is known that
Aut $(L(S))=($ Translations $) \circ($ Semilinear transformations stabilizing $S)$
$=T \circ G_{0}$.
Here $G_{0} \leq \Gamma L(n, q)$.

Linear space from a spread

Let $L(S)$ be a linear space associated with a t-spread S of $V(n, q)$.
Then it is known that
Aut $(L(S))=($ Translations $) \circ($ Semilinear transformations stabilizing $S)$ $=T \circ G_{0}$.

Here $G_{0} \leq \Gamma L(n, q)$.

Aut $(L(S))$ is transitive on points. It is transitive on flags if and only if G_{0} is transitive on the elements of the spread.

Linear spaces

Question: For which linear spaces L does $\operatorname{Aut}(L)$ act transitively on points, lines, pairs of points, pairs of lines, flags, etc.?

Linear spaces

Question: For which linear spaces L does $\operatorname{Aut}(L)$ act transitively on points, lines, pairs of points, pairs of lines, flags, etc.?

In particular, when is $\operatorname{Aut}(L)$ flag-transitive?

Linear spaces

Question: For which linear spaces L does $\operatorname{Aut}(L)$ act transitively on points, lines, pairs of points, pairs of lines, flags, etc.?

In particular, when is $\operatorname{Aut}(L)$ flag-transitive?

Due to work by Buekenhout, Delandtsheer, Doyen et al. (1990), Liebeck (1998), Saxl (2002) and others, the result is known for all L and $\operatorname{Aut}(L)$ except when L is constructed from a t-spread of $V(n, q)$ and $\operatorname{Aut}(L)$ is $T \circ G_{0}$, where G_{0} is a subgroup of $\Gamma L\left(1, q^{n}\right) \leq \Gamma L(n, q)$.

Linear spaces

Question: For which linear spaces L does $\operatorname{Aut}(L)$ act transitively on points, lines, pairs of points, pairs of lines, flags, etc.?

In particular, when is $\operatorname{Aut}(L)$ flag-transitive?

Due to work by Buekenhout, Delandtsheer, Doyen et al. (1990), Liebeck (1998), Saxl (2002) and others, the result is known for all L and $\operatorname{Aut}(L)$ except when L is constructed from a t-spread of $V(n, q)$ and $\operatorname{Aut}(L)$ is $T \circ G_{0}$, where G_{0} is a subgroup of $\Gamma L\left(1, q^{n}\right) \leq \Gamma L(n, q)$.

$$
\Gamma L\left(1, q^{n}\right)=\left\{x \mapsto a x^{\sigma}: a \in \mathbb{F}_{q^{n}}^{\times}, \sigma \in \operatorname{Aut}\left(\mathbb{F}_{q^{n}}\right)\right\}
$$

Line-spreads

Pauley and Bamberg (2007) studied the case $t=2$ and $G_{0}=C:=\left\langle\omega^{q+1}\right\rangle \leq \Gamma L\left(1, q^{2 m}\right)$, where ω is a generator of $\mathbb{F}_{q^{2 m}}^{\times}$.

Line-spreads

Pauley and Bamberg (2007) studied the case $t=2$ and $G_{0}=C:=\left\langle\omega^{q+1}\right\rangle \leq \Gamma L\left(1, q^{2 m}\right)$, where ω is a generator of $\mathbb{F}_{q^{2 m}}^{\times}$.
We call a 2-spread with G_{0} cyclic a cyclic 2-spread, or a cyclic line-spread in $\operatorname{PG}(2 m-1, q)$.

Line-spreads

Pauley and Bamberg (2007) studied the case $t=2$ and $G_{0}=C:=\left\langle\omega^{q+1}\right\rangle \leq \Gamma L\left(1, q^{2 m}\right)$, where ω is a generator of $\mathbb{F}_{q^{2 m}}^{\times}$.
We call a 2-spread with G_{0} cyclic a cyclic 2 -spread, or a cyclic line-spread in $\operatorname{PG}(2 m-1, q)$.

They showed that every such spread was equivalent to one of the form

$$
S_{b}=\left\{\left\{a\left(x-b x^{q}\right): x \in \mathbb{F}_{q^{2}}\right\}: a \in C\right\}
$$

and found criteria for when this forms a spread in terms of the minimal polynomial $P(x)$ of b.

Line-spreads

Theorem (Pauley-Bamberg, 2007)

Let $P(x)$ be an irreducible polynomial over $\mathbb{F}_{q^{2}}$ of degree m and let b be a root of $P(x)$. Then S_{b} is a cyclic 2 -spread if and only if for all nonzero $x, y \in \mathbb{F}_{q^{2}}$ we have that

$$
\frac{x^{m} P\left(x^{q-1}\right)}{y^{m} P\left(y^{q-1}\right)} \in \mathbb{F}_{q} \Longrightarrow \frac{x}{y} \in \mathbb{F}_{q} .
$$

Line-spreads

Theorem (Pauley-Bamberg, 2007)

Let $P(x)$ be an irreducible polynomial over $\mathbb{F}_{q^{2}}$ of degree m and let b be a root of $P(x)$. Then S_{b} is a cyclic 2-spread if and only if for all nonzero $x, y \in \mathbb{F}_{q^{2}}$ we have that

$$
\frac{x^{m} P\left(x^{q-1}\right)}{y^{m} P\left(y^{q-1}\right)} \in \mathbb{F}_{q} \Longrightarrow \frac{x}{y} \in \mathbb{F}_{q}
$$

As they also showed that different roots of the same polynomial define equivalent spreads, we abuse notation a bit and refer to such a spread as S_{P}.

Line-spreads

Theorem (Pauley-Bamberg, 2007)
Let $P(x), Q(x) \in \mathbb{F}_{q^{2}}[x]$ satisfy \star. Then S_{P} and S_{Q} are equivalent if and only if

$$
P(x)=\lambda\left(u+v^{q} x\right)^{m} Q^{\sigma}\left(\frac{v+u^{q} x}{u+v^{q} x}\right)
$$

for some $u, v, \lambda \in \mathbb{F}_{q^{2}}$ where $\lambda \neq 0$ and $u^{q+1} \neq v^{q+1}$.

Known constructions

- Desarguesian spread.
- Kantor (1993): $P(x)=x^{m}-\zeta$, where ζ is a generator of $\mathbb{F}_{q^{2}}^{\times}$.
- Bamberg and Pauley (2007): $P(x)=\frac{x^{p+1}-1}{x-1}-2$ where p is an odd prime.
- Feng and Lu (2021):

$$
g_{n}(x):=\frac{(\delta x-1)^{n}-\delta(x-\delta)^{n}}{\delta^{n}-\delta}
$$

where $d>1$ is an odd divisor of $q+1, u$ is a proper divisor of $d, t \in \mathbb{N}^{+}, n=d^{t} u$ and $\delta \in \mathbb{F}_{q^{2}}^{\times}$is an element of order $q+1$.

Binomials

Theorem

The polynomial $P(x)=x^{m}-\theta$ is irreducible in $\mathbb{F}_{q^{2}}[x]$ and satisfies \star if and only if the following hold:
(i) every prime factor of m divides $o(\theta)$ but not $\frac{q^{2}-1}{o(\theta)}$;
(ii) $(m, q+1)=1$.

Binomials

Theorem

The polynomial $P(x)=x^{m}-\theta$ is irreducible in $\mathbb{F}_{q^{2}}[x]$ and satisfies \star if and only if the following hold:
(i) every prime factor of m divides $o(\theta)$ but not $\frac{q^{2}-1}{o(\theta)}$;
(ii) $(m, q+1)=1$.

In particular, if $m=3$ then there exists an irreducible cubic binomial satisfying \star if and only if $q \equiv 1 \bmod 3$.

Binomials

Theorem

The polynomial $P(x)=x^{m}-\theta$ is irreducible in $\mathbb{F}_{q^{2}}[x]$ and satisfies \star if and only if the following hold:
(i) every prime factor of m divides $o(\theta)$ but not $\frac{q^{2}-1}{o(\theta)}$;
(ii) $(m, q+1)=1$.

In particular, if $m=3$ then there exists an irreducible cubic binomial satisfying \star if and only if $q \equiv 1 \bmod 3$.

We also calculated the equivalence classes of binomials for arbitrary degree.

An equivalent critieron

Let $P(x)=\sum_{i=0}^{m} a_{i} x^{i} \in \mathbb{F}_{q^{2}}[x]$, and define $\tilde{P}(x):=\sum_{i=0}^{m} a_{m-i}^{q} x^{i}$.

An equivalent critieron

Let $P(x)=\sum_{i=0}^{m} a_{i} x^{i} \in \mathbb{F}_{q^{2}}[x]$, and define $\tilde{P}(x):=\sum_{i=0}^{m} a_{m-i}^{q} x^{i}$. We define a polynomial in two variables as follows.

$$
H_{P}(z, w):=\frac{P(z) \tilde{P}(w)-\tilde{P}(z) P(w)}{z-w} .
$$

An equivalent critieron

Let $P(x)=\sum_{i=0}^{m} a_{i} x^{i} \in \mathbb{F}_{q^{2}}[x]$, and define $\tilde{P}(x):=\sum_{i=0}^{m} a_{m-i}^{q} x^{i}$. We define a polynomial in two variables as follows.

$$
H_{P}(z, w):=\frac{P(z) \tilde{P}(w)-\tilde{P}(z) P(w)}{z-w}
$$

Lemma

A polynomial $P(x)$ satisfies $\star \Longleftrightarrow$ the system $H_{P}(z, w)=0$, $z^{q+1}=w^{q+1}=1$ has no solutions with $z \neq w$.

The case $m=3$

Goal

- To classify all cyclic 2 -spreads in $V(6, q)$.

The case $m=3$

Goal

- To classify all cyclic 2 -spreads in $V(6, q)$.
- This is the smallest open case; the case $m=2$ is fully understood.

The case $m=3$

Goal

- To classify all cyclic 2 -spreads in $V(6, q)$.
- This is the smallest open case; the case $m=2$ is fully understood.
- In this case, $H_{P}(z, w)$ has degree two in both variables.

The case $m=3$

Goal

- To classify all cyclic 2 -spreads in $V(6, q)$.
- This is the smallest open case; the case $m=2$ is fully understood.
- In this case, $H_{P}(z, w)$ has degree two in both variables.
- We analyse the case where $H_{P}(z, w)$ is reducible.

The case $m=3$

Goal

- To classify all cyclic 2 -spreads in $V(6, q)$.
- This is the smallest open case; the case $m=2$ is fully understood.
- In this case, $H_{P}(z, w)$ has degree two in both variables.
- We analyse the case where $H_{P}(z, w)$ is reducible.
- For technical reasons we restrict to q neither a power of 2 nor 3.

The case $m=3$

If $H_{P}(z, w)$ is reducible, then either

$$
H_{P}(z, w)=\lambda(c z w+a z+b w+d)(c z w+b z+a w+d)
$$

or

$$
H_{P}(z, w)=\lambda(c z w+a(z+w)+d)\left(c^{\prime} z w+b(z+w)+d^{\prime}\right)
$$

The case $m=3$

If $H_{P}(z, w)$ is reducible, then either

$$
H_{P}(z, w)=\lambda(c z w+a z+b w+d)(c z w+b z+a w+d)
$$

Or

$$
H_{P}(z, w)=\lambda(c z w+a(z+w)+d)\left(c^{\prime} z w+b(z+w)+d^{\prime}\right)
$$

The case $m=3$

If $H_{P}(z, w)$ is reducible, then either

$$
H_{P}(z, w)=\lambda(c z w+a z+b w+d)(c z w+b z+a w+d)
$$

өr

$$
H_{p}(z, w) \equiv \lambda(c z w+a(z+w)+d)\left(c^{\prime} z w+b(z+w)+d^{\prime}\right)
$$

Let $P(x)=x^{3}-\delta x^{2}-\gamma x-\theta \in \mathbb{F}_{q^{2}}[x]$. Then

$$
\begin{aligned}
H_{P}(z, w)= & \left(\theta^{q} \delta+\gamma^{q}\right) z^{2} w^{2}+\left(\theta^{q} \gamma+\delta^{q}\right)\left(z^{2} w+z w^{2}\right) \\
& +\left(\theta^{q+1}-1\right)\left(z^{2}+z w+w^{2}\right)+\left(\gamma^{q+1}-\delta^{q+1}\right) z w \\
& +\left(\theta \gamma^{q}+\delta\right)(z+w)+\left(\theta \delta^{q}+\gamma\right) .
\end{aligned}
$$

The case $m=3$

Example

Let $P(x)=x^{3}-\delta x^{2}-(\delta+3) x-1$. Then

$$
H_{P}(z, w)=(z w+z+1)(z w+w+1)
$$

The case $m=3$

Example

Let $P(x)=x^{3}-\delta x^{2}-(\delta+3) x-1$. Then

$$
H_{P}(z, w)=(z w+z+1)(z w+w+1) .
$$

Suppose $z w+z+1=0 \Longleftrightarrow z=\frac{-1}{w+1}$.

The case $m=3$

Example

Let $P(x)=x^{3}-\delta x^{2}-(\delta+3) x-1$. Then

$$
H_{P}(z, w)=(z w+z+1)(z w+w+1) .
$$

Suppose $z w+z+1=0 \Longleftrightarrow z=\frac{-1}{w+1}$. Then

$$
\begin{aligned}
& z^{q+1}=1=w^{q+1} \\
\Longleftrightarrow & w^{q+1}+w^{q}+w=0 \\
\Longleftrightarrow & w^{2}+w+1=0 \\
\Longleftrightarrow & z=w
\end{aligned}
$$

The case $m=3$

Example

Let $P(x)=x^{3}-\delta x^{2}-(\delta+3) x-1$. Then

$$
H_{P}(z, w)=(z w+z+1)(z w+w+1) .
$$

Suppose $z w+z+1=0 \Longleftrightarrow z=\frac{-1}{w+1}$. Then

$$
\begin{aligned}
& z^{q+1}=1=w^{q+1} \\
\Longleftrightarrow & w^{q+1}+w^{q}+w=0 \\
\Longleftrightarrow & w^{2}+w+1=0 \\
\Longleftrightarrow & z=w .
\end{aligned}
$$

Hence $P(x)$ satisfies *.

The case $m=3$

Theorem
Let $P(x)=x^{3}-\delta x^{2}-\gamma x-\theta \in \mathbb{F}_{q^{2}}[x]$. Then $H_{P}(z, w)$ is reducible (and not identically zero) if and only if one of the following holds:
(i) $P(x)=B_{\theta}(x):=x^{3}-\theta$;
(ii) $P(x)=P_{\delta, \alpha}(x):=x^{3}-\delta x^{2}-\left(\delta \alpha+3 \alpha^{1-q}\right) x-\left(\delta \alpha^{2}\left(\frac{1-\alpha^{-(q+1)}}{3}\right)+\alpha^{2-q}\right)$, $\alpha \neq 0$;
(iii) $P(x)=Q_{\delta, \gamma}(x):=x^{3}-\delta x^{2}-\gamma x+\delta \gamma / 9, \gamma^{q+1}=9$.

Furthermore

- an irreducible $P_{\delta, \alpha}(x)$ satisfies \star if and only if $\frac{4-\alpha^{q+1}}{3 \alpha^{q+1}}$ is a nonzero square in \mathbb{F}_{q}, and $\delta=0$ or $\left(\alpha+3 \delta^{-q}\right)^{q+1} \neq 1$;
- an irreducible $Q_{\delta, \gamma}(x)$ satisfies \star if and only if $\gamma^{\frac{q+1}{2}}=3$.

The case $m=3$

Theorem
Let $P(x)$ be an irreducible polynomial of the form $B_{\theta}(x), P_{\delta, \alpha}(x)$ or $Q_{\delta, \gamma}(x)$ that satisfies \star. Then $P(x)$ is equivalent to some $P_{\delta^{\prime}, 1}(x)$.

The case $m=3$

Theorem
Let $P(x)$ be an irreducible polynomial of the form $B_{\theta}(x), P_{\delta, \alpha}(x)$ or $Q_{\delta, \gamma}(x)$ that satisfies \star. Then $P(x)$ is equivalent to some $P_{\delta^{\prime}, 1}(x)$. By counting the number of irreducibles of the form $P_{\delta, 1}(x)$, and calculating precisely the equivalences between polynomials of this form, we get the following.

The case $m=3$

Theorem
Let $P(x)$ be an irreducible polynomial of the form $B_{\theta}(x), P_{\delta, \alpha}(x)$ or $Q_{\delta, \gamma}(x)$ that satisfies \star. Then $P(x)$ is equivalent to some $P_{\delta^{\prime}, 1}(x)$. By counting the number of irreducibles of the form $P_{\delta, 1}(x)$, and calculating precisely the equivalences between polynomials of this form, we get the following.

Theorem

The number of equivalence classes of irreducible cubic polynomials satisfying \star such that $H_{P}(z, w)$ is reducible is precisely

$$
\left\{\begin{array}{lll}
\frac{q-1}{3}, & \text { if } q \equiv 1 & \bmod 3 \\
\frac{q+1}{3}, & \text { if } q \not \equiv 1 & \bmod 3
\end{array} .\right.
$$

The case $m=3$

Given a $P_{\delta, 1}(x)$ satisfying \star, the set of values of δ^{\prime} for which $P_{\delta, 1}(x)$ is equivalent to $P_{\delta^{\prime}, 1}(x)$ is

$$
\begin{aligned}
D= & \left\{\frac{-3\left(w^{3}-3 w^{2}+1\right)-\delta\left(w^{3}-3 w+1\right)}{w^{3}-3 w+1+\delta w(w-1)}: w^{q+1}=1\right\} \\
& \cup\left\{\frac{9 w(w-1)+\delta\left(w^{3}-3 w+1\right)}{w^{3}-3 w^{2}+1-\delta w(w-1)}: w^{q+1}=1\right\}
\end{aligned}
$$

Counts

	$\# B_{\theta}(q \equiv 1 \bmod 3)$	$\# P_{\delta, \alpha}$	$\# Q_{\delta, \gamma}$	$\# P_{\delta, 1}$
Total	q^{2}	$\left(q^{2}-1\right)^{2}$	$\frac{q^{2}(q+1)}{2}$	q^{2}
Reducible	$\frac{q^{2}+2}{3}$	$\frac{(q-1)(q+1)^{3}}{3}$	$\frac{(q+1)\left(q^{2}+2\right)}{6}$	$\frac{q^{2}+2}{3}$
Irreducible	$\frac{2\left(q^{2}-1\right)}{3}$	$\frac{2(q-2)(q-1)(q+1)^{2}}{3}$	$\frac{(q-1)(q+1)^{2}}{3}$	$\frac{2\left(q^{2}-1\right)}{3}$

Since

$$
|D|=\left\{\begin{array}{ll}
2(q+1), & \text { if } q \equiv 1 \quad \bmod 3 \\
2(q-1), & \text { if } q \not \equiv 1 \bmod 3
\end{array},\right.
$$

the number of equivalence classes is

$$
\left\{\begin{array}{lll}
\frac{q-1}{3}, & \text { if } q \equiv 1 & \bmod 3 \\
\frac{q+1}{3}, & \text { if } q \not \equiv 1 & \bmod 3
\end{array} .\right.
$$

Remarks

We have

$$
\left(H_{P}(z, w) \text { reducible and conditions }\right) \Longrightarrow \star \text {. }
$$

Remarks

We have

$$
\left(H_{P}(z, w) \text { reducible and conditions }\right) \Longrightarrow \star .
$$

We believe

$$
H_{P}(z, w) \text { irreducible } \Longrightarrow \neg \star .
$$

Remarks

In their work on characterising permutation polynomials of $\mathbb{F}_{q^{2}}$ of the form

$$
f_{a, b}(X)=X\left(1+a X^{q(q-1)}+b X^{2(q-1)}\right)
$$

Bartoli and Timpanella (2021) considered a curve with affine equation

$$
-b^{q+1} H_{P}(z, w)=0
$$

where $P(x)=x^{3}+b^{-1} x+a b^{-1}$. They showed that $f_{a, b}(X)$ is a PP if and only if \star is satisfied. It follows that $P(x)$ is of the form $P_{\delta, \alpha}(x)$ with $\delta=0, a=\alpha / 3$ and $b=-\alpha^{q-1} / 3$.

Remarks

Applying methods of Stichtenoth-Topuzoğlu (2012) and Gow-McGuire (2021) tells us that every irreducible cubic factor of $\left(x^{q^{2}+1}+x^{q^{2}}+1\right)\left(x^{q^{2}+1}+x+1\right) \in \mathbb{F}_{q^{2}}[x]$ is of the form

$$
P_{\delta, 1}(x)=x^{3}-\delta x^{2}-(\delta+3) x-1
$$

Remarks

Applying methods of Stichtenoth-Topuzoğlu (2012) and Gow-McGuire (2021) tells us that every irreducible cubic factor of $\left(x^{q^{2}+1}+x^{q^{2}}+1\right)\left(x^{q^{2}+1}+x+1\right) \in \mathbb{F}_{q^{2}}[x]$ is of the form

$$
P_{\delta, 1}(x)=x^{3}-\delta x^{2}-(\delta+3) x-1
$$

We hope to exploit this connection to find polynomials of other degrees satisfying \star.

Remarks

Feng and Lu (2021) showed that

$$
g_{n}(x):=\frac{(\delta x-1)^{n}-\delta(x-\delta)^{n}}{\delta^{n}-\delta}
$$

satisfies \star, where $d>1$ is an odd divisor of $q+1, u$ is a proper divisor of $d, t \in \mathbb{N}^{+}, n=d^{t} u$ and $\delta \in \mathbb{F}_{q^{2}}^{\times}$is an element of order $q+1$.

Remarks

Feng and Lu (2021) showed that

$$
g_{n}(x):=\frac{(\delta x-1)^{n}-\delta(x-\delta)^{n}}{\delta^{n}-\delta}
$$

satisfies \star, where $d>1$ is an odd divisor of $q+1, u$ is a proper divisor of $d, t \in \mathbb{N}^{+}, n=d^{t} u$ and $\delta \in \mathbb{F}_{q^{2}}^{\times}$is an element of order $q+1$.

We have

$$
g_{3}(x)=P_{0,-\left(\delta+\delta^{-1}\right)}(x) \in \mathbb{F}_{q}[x]
$$

Not every irreducible satisfying \star is equivalent to one of the form $g_{3}(x)$, and so this construction is a proper subset of ours for the case $m=3$.

Thank you for your attention!

Equivalence between $P_{0, \alpha}$ and a general cubic

A polynomial of the form $P_{0, \alpha}$ is equivalent to $x^{3}-\delta x^{2}-\gamma x-\theta \in \mathbb{F}_{q^{2}}[x]$ if and only if the following hold for some $u, v \in \mathbb{F}_{q^{2}}$ with $u^{q+1} \neq v^{q+1}$:

- $\alpha\left(\delta v\left(2 u^{q+1}+v^{q+1}\right)+\gamma u\left(u^{q+1}+2 v^{q+1}\right)+3\left(\theta u^{2} v^{q}-u^{q} v^{2}\right)\right)=$ $3\left(u v(\gamma u+\delta v)+\theta u^{3}-v^{3}\right)$
- $\delta u^{q}\left(u^{q+1}+2 v^{q+1}\right)+\gamma v^{q}\left(2 u^{q+1}+v^{q+1}\right)+3\left(\theta u v^{2 q}-u^{2 q} v\right)=0$
- $u v\left(\delta^{q} u+\gamma^{q} v\right)+\theta^{q} v^{3}-u^{3} \neq 0$

Equivalence between $P_{0, \alpha}$ and $P_{\delta, 1}$

A polynomial of the form $P_{0, \alpha}$ is equivalent to some $P_{\delta, 1}$ if and only if the following hold for some $u, v \in \mathbb{F}_{q^{2}}$ with $u^{q+1} \neq v^{q+1}$:

- $3\left(\left(v^{3}-3 u^{2} v-u^{3}\right)+\alpha\left(u^{q+2}-u^{q} v^{2}+u^{2} v^{q}+2 u v^{q+1}\right)\right)=$ $\delta\left(3 u v(u+v)-\alpha\left(u^{q+2}+2 u v(u+v)^{q}+v^{q+2}\right)\right)$
- $3\left(u^{2 q} v-2 u^{q+1} v^{q}-u v^{2 q}-v^{2 q+1}\right)=$ $\delta\left(u^{2 q+1}+2(u v)^{q}(u+v)+v^{2 q+1}\right)$
- $u^{3}-3 u v^{2}-v^{3} \neq \delta^{q} u v(u+v)$

A coding theory connection

Let $\mathcal{P}_{q}(n)$ be the set of all subspaces of \mathbb{F}_{q}^{n}. A subset $\mathcal{C} \subseteq \mathcal{P}_{q}(n)$ is a subspace code, with distance between subspaces U and V given by

$$
d(U, V)=\operatorname{dim}(U)+\operatorname{dim}(V)-2 \operatorname{dim}(U \cap V)
$$

A coding theory connection

Let $\mathcal{P}_{q}(n)$ be the set of all subspaces of \mathbb{F}_{q}^{n}. A subset $\mathcal{C} \subseteq \mathcal{P}_{q}(n)$ is a subspace code, with distance between subspaces U and V given by

$$
d(U, V)=\operatorname{dim}(U)+\operatorname{dim}(V)-2 \operatorname{dim}(U \cap V)
$$

Let G be a group acting on a metric set X and let $x \in X$. Then $x G=\{x g: g \in G\}$ is an orbit code. If G is cyclic, then $x G$ is a cyclic orbit code.

A coding theory connection

$S_{P}=\ell_{b} C$ is a

- subspace code;
- cyclic orbit code;
- constant-dimension code;
- spread code.

