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Introduction

Consider the incidence structure S = (P,L, I) where the point
x ∈ P is on the line ℓ ∈ L if (x , ℓ) ∈ I ⊆ P × L.

If

• every line contains at least two points;

• every pair of distinct points lie on a unique line;

• every pair of distinct lines meet in at most one common point,

then S is a linear space.

Example

Consider the finite field Fq. Let P = {v ∈ Fn
q}, let

L = {u + ⟨v⟩ : u, v ∈ Fn
q} and let (x , ℓ) ∈ I ⇐⇒ x ∈ ℓ. Then

(P,L, I) =: AG(n, q) is a linear space.
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Linear spaces

An automorphism of a linear space L is a type- and
incidence-preserving bijection on L.

The set of automorphisms of L forms a group under composition,
called the automorphism group of L, and is denoted by Aut(L).

Example

Let L = AG(n, q) be the linear space in the previous example.
Then it is known that

Aut(L) = (Translations) ◦ (Invertible semilinear transformations)

= {T : T (v) = Avσ + u}
= AΓL(n, q).
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Example

Let L = AG(n, q). Then Aut(L) acts transitively on

• points of L,

• pairs of points of L,

• pairs of nonincident lines of L,

• flags of L . . .

A flag of L is an incident point-line pair (x , ℓ).
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Linear spaces

Question: For which linear spaces L does Aut(L) act transitively
on points, lines, pairs of points, pairs of lines, flags, etc.?

In particular, when is Aut(L) flag-transitive?

Due to work by Buekenhout, Delandtsheer, Doyen et al. (1990),
Liebeck (1998), Saxl (2002) and others, the result is known for all
L and Aut(L) except when L is constructed from a spread.
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Spreads

Let V (n, q) denote an n-dimensional vector space over Fq.

Spreads

A t-spread of V (n, q) is a set S of t-dimensional subspaces of
V (n, q) such that every nonzero vector of V (n, q) is contained in
exactly one element of S .

Hence

|S | = qn − 1

qt − 1
.

• It is known (due to Segre) that t-spreads exist in V (n, q) if
and only if t divides n.

• Equivalently we could consider (t−1)-spreads in PG(n−1, q).
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Spreads

Example (Desarguesian spread)

Consider Fqtm as a tm-dimensional vector space over Fq. Then

S = {{ax : x ∈ Fqt} : a ∈ F×
qtm}

is a t-spread of Fqtm
∼= V (tm, q).



Linear space from a spread

Let S be a t-spread of V = V (n, q). Let P = {v ∈ V }, let
L = {u + U : u ∈ V ,U ∈ S} and let (x , ℓ) ∈ I ⇐⇒ x ∈ ℓ. Then
(P,L, I) is a linear space. We will refer to a linear space
constructed in this way from a t-spread S as L(S) and say it is
associated with S .

This coincides with the Barlotti-Cofman construction for linear
spaces; specifically translation Sperner spaces. When n = 2t this
becomes the André/Bruck-Bose construction for affine (and
projective) planes.

The linear space associated with the Desarguesian t-spread in
V (mt, q) is AG(m, qt).
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Linear space from a spread

Let L(S) be a linear space associated with a t-spread S of V (n, q).
Then it is known that

Aut(L(S)) = (Translations) ◦ (Semilinear transformations stabilizing S)

= T ◦ G0.

Here G0 ≤ ΓL(n, q).

Aut(L(S)) is transitive on points. It is transitive on flags if and
only if G0 is transitive on the elements of the spread.
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Line-spreads

Pauley and Bamberg (2007) studied the case t = 2 and
G0 = C :=

〈
ωq+1

〉
≤ ΓL(1, q2m), where ω is a generator of F×

q2m
.

We call a 2-spread with G0 cyclic a cyclic 2-spread, or a cyclic
line-spread in PG(2m − 1, q).

They showed that every such spread was equivalent to one of the
form

Sb = {{a(x − bxq) : x ∈ Fq2} : a ∈ C},

and found criteria for when this forms a spread in terms of the
minimal polynomial P(x) of b.
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Line-spreads

Theorem (Pauley-Bamberg, 2007)

Let P(x) be an irreducible polynomial over Fq2 of degree m and let
b be a root of P(x). Then Sb is a cyclic 2-spread if and only if for
all nonzero x , y ∈ Fq2 we have that

xmP(xq−1)

ymP(yq−1)
∈ Fq =⇒ x

y
∈ Fq. (⋆)

As they also showed that different roots of the same polynomial
define equivalent spreads, we abuse notation a bit and refer to
such a spread as SP .
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Line-spreads

Theorem (Pauley-Bamberg, 2007)

Let P(x),Q(x) ∈ Fq2 [x ] satisfy ⋆. Then SP and SQ are equivalent
if and only if

P(x) = λ(u + vqx)mQσ

(
v + uqx

u + vqx

)
for some u, v , λ ∈ Fq2 where λ ̸= 0 and uq+1 ̸= vq+1.



Known constructions

• Desarguesian spread.

• Kantor (1993): P(x) = xm − ζ, where ζ is a generator of F×
q2
.

• Bamberg and Pauley (2007): P(x) = xp+1−1
x−1 − 2 where p is

an odd prime.

• Feng and Lu (2021):

gn(x) :=
(δx − 1)n − δ(x − δ)n

δn − δ

where d > 1 is an odd divisor of q + 1, u is a proper divisor of
d , t ∈ N+, n = d tu and δ ∈ F×

q2
is an element of order q + 1.



Binomials

Theorem
The polynomial P(x) = xm − θ is irreducible in Fq2 [x ] and satisfies
⋆ if and only if the following hold:

(i) every prime factor of m divides o(θ) but not q2−1
o(θ) ;

(ii) (m, q + 1) = 1.

In particular, if m = 3 then there exists an irreducible cubic
binomial satisfying ⋆ if and only if q ≡ 1 mod 3.

We also calculated the equivalence classes of binomials for
arbitrary degree.
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An equivalent critieron

Let P(x) =
∑m

i=0 aix
i ∈ Fq2 [x ], and define P̃(x) :=

∑m
i=0 a

q
m−ix

i .

We define a polynomial in two variables as follows.

HP(z ,w) :=
P(z)P̃(w)− P̃(z)P(w)

z − w
.

Lemma
A polynomial P(x) satisfies ⋆ ⇐⇒ the system HP(z ,w) = 0,
zq+1 = wq+1 = 1 has no solutions with z ̸= w .
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The case m = 3

Goal

• To classify all cyclic 2-spreads in V (6, q).

• This is the smallest open case; the case m = 2 is fully
understood.

• In this case, HP(z ,w) has degree two in both variables.

• We analyse the case where HP(z ,w) is reducible.

• For technical reasons we restrict to q neither a power of 2 nor
3.
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The case m = 3

If HP(z ,w) is reducible, then either

HP(z ,w) = λ(czw + az + bw + d)(czw + bz + aw + d)

or

HP(z ,w) = λ(czw + a(z + w) + d)(c ′zw + b(z + w) + d ′).

Let P(x) = x3 − δx2 − γx − θ ∈ Fq2 [x ]. Then

HP(z ,w) = (θqδ + γq)z2w2 + (θqγ + δq)(z2w + zw2)

+ (θq+1 − 1)(z2 + zw + w2) + (γq+1 − δq+1)zw

+ (θγq + δ)(z + w) + (θδq + γ).
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The case m = 3

Example

Let P(x) = x3 − δx2 − (δ + 3)x − 1. Then

HP(z ,w) = (zw + z + 1)(zw + w + 1).

Suppose zw + z + 1 = 0 ⇐⇒ z = −1
w+1 . Then

zq+1 = 1 = wq+1

⇐⇒ wq+1 + wq + w = 0

⇐⇒ w2 + w + 1 = 0

⇐⇒ z = w .

Hence P(x) satisfies ⋆.
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The case m = 3

Theorem
Let P(x) = x3 − δx2 − γx − θ ∈ Fq2 [x ]. Then HP(z ,w) is
reducible (and not identically zero) if and only if one of the
following holds:

(i) P(x) = Bθ(x) := x3 − θ;

(ii) P(x) = Pδ,α(x) := x3 − δx2 − (δα+3α1−q)x − (δα2
(

1−α−(q+1)

3

)
+α2−q),

α ̸= 0;

(iii) P(x) = Qδ,γ(x) := x3 − δx2 − γx + δγ/9, γq+1 = 9.

Furthermore

• an irreducible Pδ,α(x) satisfies ⋆ if and only if 4−αq+1

3αq+1 is a
nonzero square in Fq, and δ = 0 or (α+ 3δ−q)q+1 ̸= 1;.

• an irreducible Qδ,γ(x) satisfies ⋆ if and only if γ
q+1
2 = 3.



The case m = 3

Theorem
Let P(x) be an irreducible polynomial of the form Bθ(x), Pδ,α(x) or
Qδ,γ(x) that satisfies ⋆. Then P(x) is equivalent to some Pδ′,1(x).

By counting the number of irreducibles of the form Pδ,1(x), and
calculating precisely the equivalences between polynomials of this
form, we get the following.

Theorem
The number of equivalence classes of irreducible cubic polynomials
satisfying ⋆ such that HP(z ,w) is reducible is precisely{

q−1
3 , if q ≡ 1 mod 3

q+1
3 , if q ̸≡ 1 mod 3

.
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3 , if q ≡ 1 mod 3

q+1
3 , if q ̸≡ 1 mod 3

.



The case m = 3

Given a Pδ,1(x) satisfying ⋆, the set of values of δ′ for which
Pδ,1(x) is equivalent to Pδ′,1(x) is

D =

{
−3(w3 − 3w2 + 1)− δ(w3 − 3w + 1)

w3 − 3w + 1 + δw(w − 1)
: wq+1 = 1

}
∪
{
9w(w − 1) + δ(w3 − 3w + 1)

w3 − 3w2 + 1− δw(w − 1)
: wq+1 = 1

}
.



Counts

# Bθ (q ≡ 1 mod 3) # Pδ,α # Qδ,γ # Pδ,1

Total q2 (q2 − 1)2 q2(q+1)
2 q2

Reducible q2+2
3

(q−1)(q+1)3

3
(q+1)(q2+2)

6
q2+2
3

Irreducible 2(q2−1)
3

2(q−2)(q−1)(q+1)2

3
(q−1)(q+1)2

3
2(q2−1)

3

Since

|D| =

{
2(q + 1), if q ≡ 1 mod 3

2(q − 1), if q ̸≡ 1 mod 3
,

the number of equivalence classes is{
q−1
3 , if q ≡ 1 mod 3

q+1
3 , if q ̸≡ 1 mod 3

.



Remarks

We have

(HP(z ,w) reducible and conditions) =⇒ ⋆.

We believe
HP(z ,w) irreducible =⇒ ¬ ⋆ .
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Remarks

In their work on characterising permutation polynomials of Fq2 of
the form

fa,b(X ) = X (1 + aX q(q−1) + bX 2(q−1)),

Bartoli and Timpanella (2021) considered a curve with affine
equation

−bq+1HP(z ,w) = 0

where P(x) = x3 + b−1x + ab−1. They showed that fa,b(X ) is a
PP if and only if ⋆ is satisfied. It follows that P(x) is of the form
Pδ,α(x) with δ = 0, a = α/3 and b = −αq−1/3.



Remarks

Applying methods of Stichtenoth-Topuzoğlu (2012) and
Gow-McGuire (2021) tells us that every irreducible cubic factor of
(xq

2+1 + xq
2
+ 1)(xq

2+1 + x + 1) ∈ Fq2 [x ] is of the form

Pδ,1(x) = x3 − δx2 − (δ + 3)x − 1.

We hope to exploit this connection to find polynomials of other
degrees satisfying ⋆.
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We hope to exploit this connection to find polynomials of other
degrees satisfying ⋆.



Remarks

Feng and Lu (2021) showed that

gn(x) :=
(δx − 1)n − δ(x − δ)n

δn − δ

satisfies ⋆, where d > 1 is an odd divisor of q + 1, u is a proper
divisor of d , t ∈ N+, n = d tu and δ ∈ F×

q2
is an element of order

q + 1.

We have
g3(x) = P0,−(δ+δ−1)(x) ∈ Fq[x ].

Not every irreducible satisfying ⋆ is equivalent to one of the form
g3(x), and so this construction is a proper subset of ours for the
case m = 3.
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Thank you for your attention!



Equivalence between P0,α and a general cubic

A polynomial of the form P0,α is equivalent to
x3 − δx2 − γx − θ ∈ Fq2 [x ] if and only if the following hold for
some u, v ∈ Fq2 with uq+1 ̸= vq+1:

• α(δv(2uq+1+vq+1)+γu(uq+1+2vq+1)+3(θu2vq−uqv2)) =
3(uv(γu + δv) + θu3 − v3)

• δuq(uq+1+2vq+1)+γvq(2uq+1+vq+1)+3(θuv2q−u2qv) = 0

• uv(δqu + γqv) + θqv3 − u3 ̸= 0



Equivalence between P0,α and Pδ,1

A polynomial of the form P0,α is equivalent to some Pδ,1 if and
only if the following hold for some u, v ∈ Fq2 with uq+1 ̸= vq+1:

• 3((v3 − 3u2v − u3) + α(uq+2 − uqv2 + u2vq + 2uvq+1)) =
δ(3uv(u + v)− α(uq+2 + 2uv(u + v)q + vq+2))

• 3(u2qv − 2uq+1vq − uv2q − v2q+1) =
δ(u2q+1 + 2(uv)q(u + v) + v2q+1)

• u3 − 3uv2 − v3 ̸= δquv(u + v)



A coding theory connection

Let Pq(n) be the set of all subspaces of Fn
q. A subset C ⊆ Pq(n) is

a subspace code, with distance between subspaces U and V given
by

d(U,V ) = dim(U) + dim(V )− 2dim(U ∩ V ).

Let G be a group acting on a metric set X and let x ∈ X . Then
xG = {xg : g ∈ G} is an orbit code. If G is cyclic, then xG is a
cyclic orbit code.
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Let Pq(n) be the set of all subspaces of Fn
q. A subset C ⊆ Pq(n) is

a subspace code, with distance between subspaces U and V given
by

d(U,V ) = dim(U) + dim(V )− 2dim(U ∩ V ).

Let G be a group acting on a metric set X and let x ∈ X . Then
xG = {xg : g ∈ G} is an orbit code. If G is cyclic, then xG is a
cyclic orbit code.



A coding theory connection

SP = ℓbC is a

• subspace code;

• cyclic orbit code;

• constant-dimension code;

• spread code.


