Conditions on Large Caps

Ferdinand Ihringer

Ghent University, Belgium

Finite Geometries 6, Irsee, 2022

	ASINGS	Special Doulius	
aps			
$\mathrm{PG}(n,q)$): <i>n</i> -dimensional projec	tive space over $\mathbb{F}_q.$	
Points:	1-spaces of \mathbb{F}_q^{n+1} .	Lines: 2-s	spaces of $\mathbb{F}_q^{n+1}.$
Definitio	on		
A cap is	a set of points in $\mathrm{PG}($	(n,q), no 3 collinear.	
Easy ex	amples:		
~			

- Ovals, e.g. $x_0^2 + x_1^2 + x_2^2 = 0$ for n = 2.
- Ovoids, e.g. $x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0$ for $q \equiv 1 \pmod{4}$.

Caps	ASRGS	Special Bounds	Other Application				
Ca	ps						
	PG (n,q) : <i>n</i> -dimensional projective Points : 1-spaces of \mathbb{F}_q^{n+1} .	e space over \mathbb{F}_q . Lines: 2-spa	aces of $\mathbb{F}_q^{n+1}.$				
	Definition						
	A cap is a set of points in $PG(n,q)$, no 3 collinear.						
	Easy examples: • Ovals, e.g. $x_0^2 + x_1^2 + x_2^2 = 0$ • Ovoids, e.g. $x_0^2 + x_1^2 + x_2^2 + x_2^2$	for $n = 2$. $x_3^2 = 0$ for $q \equiv 1 \pmod{4}$.					

Motivation:

- Linear Codes,
- Extremal Graphs,
- Partial Geometries,
- Strongly Regular Graphs.

 Caps
 ASRGs
 Special Bounds
 Other Applications

 Bounds on Caps
 Image: Caps
 Image: Caps
 Image: Caps
 Image: Caps

Consider a cap C of PG(n,q).

Lemma

```
We have |\mathcal{C}| \leq (1+o(1))q^{n-1} (as q \to \infty, n fix).
```

Proof.

```
Look at lines through p \in C.
```

 Caps
 ASRGs
 Special Bounds
 Other Applications

 Bounds on Caps

Consider a cap C of PG(n,q).

Lemma

We have
$$|\mathcal{C}| \leq (1+o(1))q^{n-1}$$
 (as $q \to \infty$, n fix).

Proof.

```
Look at lines through p \in C.
```

What about regime $n \to \infty$, q fix?

Trivial: A cap has at most size $O(q^n)$ (as $n \to \infty$).

Ellenberg-Gijswijt (2017): For q = 3, a cap has at most size $o(2.76^n)$.

Special Bounds

More Examples

Bound $(1 + o(1))q^{n-1}$ is tight for n = 2, 3.

Bierbrauer, Edel (2004): Construction of size $\sim 3q^2$ for n = 4 for q even. Segre (1959): Construction of size $(1 + o(1))q^{\lfloor \frac{2}{3}n \rfloor}$. ASRGs

Special Bounds

More Examples

Bound $(1 + o(1))q^{n-1}$ is tight for n = 2, 3.

Bierbrauer, Edel (2004): Construction of size $\sim 3q^2$ for n = 4 for q even. Segre (1959): Construction of size $(1 + o(1))q^{\lfloor \frac{2}{3}n \rfloor}$.

Hence, if $\ensuremath{\mathcal{C}}$ has maximum size, then

$$q^{\frac{2}{3}n-\frac{2}{3}} \lesssim |\mathcal{C}| \lesssim q^{n-1}$$

What is the truth?

 $\label{eq:matrix} \mbox{My Hope: } O(q^{\frac{3}{4}n-\frac{1}{4}}).$ That is $O(q^{2.75})$ for n=4 and $O(q^5)$ for n=7.

Caps	ASRGs	Special Bounds	Other Applications
Ovoids			

Take for C an elliptic quadric of PG(3,q).

Size: $q^2 + 1$. Exterior points: Each on precisely $\frac{q^2-q}{2}$ secants.

Caps	ASRGs	Special Bounds	Other Applications
Ovoids			

Take for C an elliptic quadric of PG(3,q).

Size: $q^2 + 1$. Exterior points: Each on precisely $\frac{q^2-q}{2}$ secants.

Define a graph:

Vertices: vectors x of \mathbb{F}_q^4 with PG(3,q) at infinity. **Adjacency:** x, y adjacent iff $\langle x, y \rangle$ meets \mathcal{C} at infinity.

Caps	ASRGs	Special Bounds	Other Applications
Ovoids			

Take for C an elliptic quadric of PG(3,q).

Size: $q^2 + 1$. Exterior points: Each on precisely $\frac{q^2-q}{2}$ secants.

Define a graph:

Vertices: vectors x of \mathbb{F}_q^4 with PG(3,q) at infinity. **Adjacency:** x, y adjacent iff $\langle x, y \rangle$ meets \mathcal{C} at infinity.

Strongly regular with parameters $(q^4, (q^2+1)(q-1), q-2, q^2-q)$:

- order q^4 ,
- degree $(q^2 + 1)(q 1)$,
- two adjacent vertices share q-2 neighbors,
- two **nonadjacent** vertices share $q^2 q$ neighbors.

Cap of size 11 in PG(4,3): (243,22,1,2) (Berlekamp-Van Lint-Seidel). Cap of size 729 in PG(5,3): (729,112,1,20) (Games graph).

```
Suppose that C is a cap in PG(6,3).
```

Size: 91. Exterior Points: Each on precisely 30 secants.

We obtain a **strongly regular graph**. **Parameters:** (729, 182, 1, 60).

(Partial GQ with parameters $(s, t, \mu) = (2, 90, 60)$.)

Suppose that C is a cap in PG(6,3).

Size: 91. Exterior Points: Each on precisely 30 secants.

We obtain a **strongly regular graph**. **Parameters:** (729, 182, 1, 60).

(Partial GQ with parameters $(s, t, \mu) = (2, 90, 60)$.)

Cannot exist!

Reason 1: Krein condition.

Reason 2: Absolute bound.

Reason 3: Coclique of size 91, but only 26 possible (inertia bound).

Stability? Say, $\leq \frac{1}{12}$ ext. points on 29 secants, $\geq \frac{10}{12}$ on 30, $\leq \frac{1}{12}$ on 31.

Inertia bound: Bound is $\leq 39!$ Still impossible!

Caps

Approximately Strongly Regular Graphs

Consider a k-regular graph of order v.

Define λ_{ab} (μ_{ab}) as the size of common neighborhood of vertices a, b adjacent (nonadjacent).

Strongly regular with parameters (v, k, λ, μ) : k-regular of order v with $\lambda = \lambda_{ab}$ and $\mu = \mu_{ab}$.

Approximately Strongly Regular Graphs

Consider a k-regular graph of order v.

Define λ_{ab} (μ_{ab}) as the size of common neighborhood of vertices a, b adjacent (nonadjacent).

Strongly regular with parameters (v, k, λ, μ) : k-regular of order v with $\lambda = \lambda_{ab}$ and $\mu = \mu_{ab}$.

Approximately strongly regular with parameters $(v, k, \lambda, \mu; \sigma)$:

$\mathbb{E}(\lambda_{ab}) = \lambda,$	$\mathbb{E}(\mu_{ab}) = \mu,$
$\operatorname{Var}(\lambda_{ab}) \le \sigma^2,$	$\operatorname{Var}(\mu_{ab}) \le \sigma^2.$

Some fun facts:

Caps

- **1** SRGs: precisely ASRGs with $\sigma = 0$.
- 2 Equation $(v k 1)\mu = k(k \lambda 1)$ holds!
- **6** Complement of ASRG is ASRG with $(v, v-k-1, v-2k+\mu, v-2k+\lambda; \sigma)$.

4 All regular graphs are approximately ASRG with $\sigma = k$.

The Inertia Bound for ASRGs

Theorem

Let Γ be an ASRG with k = o(v) and $k = o(|\lambda - \mu|^2)$.^a Then a coclique in Γ has at most size

$$(1+o(1))\left(\frac{vk}{(\mu-\lambda)^2}+\frac{v^2\sigma^2}{k^2}\right).$$

^aFamily $(\Gamma_i)_i$ of ASRGs with $(v_i, k_i, \lambda_i, \mu_i; \sigma_i)$, $k_i = o(v_i)$ and $k_i = o(|\lambda_i - \mu_i|^2)$.

The Inertia Bound for ASRGs

Theorem

Let Γ be an ASRG with k = o(v) and $k = o(|\lambda - \mu|^2)$.^a Then a coclique in Γ has at most size

$$(1+o(1))\left(\frac{vk}{(\mu-\lambda)^2}+\frac{v^2\sigma^2}{k^2}\right).$$

^aFamily $(\Gamma_i)_i$ of ASRGs with $(v_i, k_i, \lambda_i, \mu_i; \sigma_i)$, $k_i = o(v_i)$ and $k_i = o(|\lambda_i - \mu_i|^2)$.

Let ${\mathcal C}$ be a cap of $\mathrm{PG}(n,q).$

Corollary

If
$$\sigma^2 = o(q^{\frac{1}{4}n})$$
, then $|\mathcal{C}| = o(q^{\frac{3}{4}n})$.

If
$$|\mathcal{C}| = \Omega(q^{n-1})$$
, then $\sigma = \Omega(q^{\frac{1}{2}n-\frac{3}{2}})$.

Ellenberg-Gijswijt (2016): $o(2.76^n)$. Edel (2003): $\omega(2.21^n)$. Bound here for small σ : $o(2.28^n)$. (for q = 3.)

Caps

ASRGs

Special Bounds

Krein Bound for ASRGs

Consider an approximately SRG Γ with parameters $(v, k, \lambda, \mu; \sigma)$.

Theorem (Krein Bound for ASRGs)

If $\mu > \lambda$, k = o(v), $k = o(|\mu - \lambda|^{\frac{3}{2}})$, then $\sigma \ge (1+o(1))(\mu - \lambda)^{\frac{3}{2}}v^{-1}$.

Theorem (Krein Bound for Special 1-Walk-Regular ASRGs)

Same plus regularity conditions. Then $\sigma \ge (1 + o(1))(\mu - \lambda)^{\frac{5}{4}}v^{-\frac{3}{4}}k^{\frac{1}{2}}$.

Caps

Special Bounds

Krein Bound for ASRGs

Consider an approximately SRG Γ with parameters $(v,k,\lambda,\mu;\sigma).$

Theorem (Krein Bound for ASRGs)

If $\mu > \lambda$, k = o(v), $k = o(|\mu - \lambda|^{\frac{3}{2}})$, then $\sigma \ge (1+o(1))(\mu - \lambda)^{\frac{3}{2}}v^{-1}$.

Theorem (Krein Bound for Special 1-Walk-Regular ASRGs)

Same plus regularity conditions. Then $\sigma \ge (1 + o(1))(\mu - \lambda)^{\frac{5}{4}}v^{-\frac{3}{4}}k^{\frac{1}{2}}$.

Let C be a cap of PG(n,q).

Corollary

If $\sigma^2 = o(q^{\frac{1}{2}n})$ and regularity conditions, then $|\mathcal{C}| = O(q^{\frac{3}{4}n - \frac{1}{4}})$.

If $|\mathcal{C}| = \Omega(q^{n-1})$ and regularity conditions, then $\sigma = \Omega(q^{n-2})$.

Now σ large enough for most reasonable construction!

Why do this?

(1) Ihringer-Verstraëte (2022*): Random constructions for cap variants.

- Failure to improve $\Omega(q^{\frac{2}{3}n})$ bound for caps.
- Constructions should satisfy results, so $O(q^{\frac{3}{4}n-\frac{1}{4}})$ best possible.

Why do this?

Caps

(1) Ihringer-Verstraëte (2022*): Random constructions for cap variants.

- Failure to improve $\Omega(q^{\frac{2}{3}n})$ bound for caps.
- Constructions should satisfy results, so $O(q^{\frac{3}{4}n-\frac{1}{4}})$ best possible.

(2) Different application of ASRGs:

Mubayi, Verstraëte (2018): Lower bounds on off-diagonal Ramsey numbers from clique-free pseudorandom graphs.

ASRG Krein bounds imply

Corollary (informal)

If subconstituents close to SRGs, then graphs are (relatively) sparse.

Details in: FI, Approximately Strongly Regular Graphs, arXiv:2205.05792 [math.CO].

ASRGs

Special Bounds

Other Applications

Very Small ASRGs

One can also study very small parameters:

v	$_{k}$	λ	μ	σ	nr	remarks
8	3	0	1.5	0.5	1	D_8
10	3	0	1	0	1	Petersen graph, $NO_{3.5}^{-\perp}$
12	3	0	0.75	~ 0.43	2	D_8, D_9
14	3	0	0.8	~ 0.49	9	
16	3	0.625	0.34375	~ 0.48	2	D ₆ , D ₉
18	3	$0.\overline{6}$	$0.3\overline{571428}$	~ 0.47	2	$D_6, S_3^2 \rtimes C_2$
20	3	0.3	0.31875	~ 0.47	5993	
22	3	$0.\overline{27}$	$0.2\overline{87}$	~ 0.45	86977	
9	4	1	2	0	1	Paley(9)
10	4	0.75	1.8	~ 0.43	1	D_5
11	4	$1.\overline{09}$	$1.\overline{27}$	~ 0.44	1	$C_2^2 \times S_3$
12	4	1	$1.\overline{142857}$	0.41	1	$C_2 \times D_4$
13	4	$0.\overline{692307}$	$1.\overline{153846}$	~ 0.46	1	D_8
14	4	$0.32\overline{142857}$	$1.\overline{190476}$	~ 0.47	2	id, C_2^2
15	4	0.1	1.16	~ 0.37	1	D_6
16	4	0	$1.\overline{09}$	0.36	1	$C_2^4 \rtimes C_2$
12	5	0.7	2.75	~ 0.46	1	S_{3}^{2}
14	5	$1.0\overline{285714}$	$1.\overline{857142}$	~ 0.45	1	$C_2 \times D_4$
13	6	2	3	0	1	Paley(13)

Caps

Thank you for your attention!