Conditions on Large Caps

Ferdinand Ihringer

Ghent University, Belgium

Finite Geometries 6, Irsee, 2022

Caps

$\mathrm{PG}(n, q): n$-dimensional projective space over \mathbb{F}_{q}.
Points: 1-spaces of \mathbb{F}_{q}^{n+1}.
Lines: 2-spaces of \mathbb{F}_{q}^{n+1}.

Definition

A cap is a set of points in $\mathrm{PG}(n, q)$, no 3 collinear.

Easy examples:

- Ovals, e.g. $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}=0$ for $n=2$.
- Ovoids, e.g. $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ for $q \equiv 1(\bmod 4)$.

Caps

$\mathrm{PG}(n, q): n$-dimensional projective space over \mathbb{F}_{q}.
Points: 1-spaces of \mathbb{F}_{q}^{n+1}.
Lines: 2-spaces of \mathbb{F}_{q}^{n+1}.
Definition
A cap is a set of points in $\operatorname{PG}(n, q)$, no 3 collinear.

Easy examples:

- Ovals, e.g. $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}=0$ for $n=2$.
- Ovoids, e.g. $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ for $q \equiv 1(\bmod 4)$.

Motivation:

- Linear Codes,
- Extremal Graphs,
- Partial Geometries,
- Strongly Regular Graphs.

Bounds on Caps

Consider a cap \mathcal{C} of $\operatorname{PG}(n, q)$.

Lemma

We have $|\mathcal{C}| \leq(1+o(1)) q^{n-1}$ (as $q \rightarrow \infty, n$ fix).

Proof.

Look at lines through $p \in \mathcal{C}$.

Bounds on Caps

Consider a cap \mathcal{C} of $\mathrm{PG}(n, q)$.

Lemma

We have $|\mathcal{C}| \leq(1+o(1)) q^{n-1}$ (as $q \rightarrow \infty$, n fix).

Proof.

Look at lines through $p \in \mathcal{C}$.

What about regime $n \rightarrow \infty, q$ fix?
Trivial: A cap has at most size $O\left(q^{n}\right)$ (as $\left.n \rightarrow \infty\right)$.
Ellenberg-Gijswijt (2017): For $q=3$, a cap has at most size $o\left(2.76^{n}\right)$.

More Examples

Bound $(1+o(1)) q^{n-1}$ is tight for $n=2,3$.
Bierbrauer, Edel (2004): Construction of size $\sim 3 q^{2}$ for $n=4$ for q even.
Segre (1959): Construction of size $(1+o(1)) q^{\left\lfloor\frac{2}{3} n\right\rfloor}$.

More Examples

Bound $(1+o(1)) q^{n-1}$ is tight for $n=2,3$.
Bierbrauer, Edel (2004): Construction of size $\sim 3 q^{2}$ for $n=4$ for q even.
Segre (1959): Construction of size $(1+o(1)) q^{\left\lfloor\frac{2}{3} n\right\rfloor}$.
Hence, if \mathcal{C} has maximum size, then

$$
q^{\frac{2}{3} n-\frac{2}{3}} \lesssim|\mathcal{C}| \lesssim q^{n-1} .
$$

What is the truth?
My Hope: $O\left(q^{\frac{3}{4} n-\frac{1}{4}}\right)$.
That is $O\left(q^{2.75}\right)$ for $n=4$ and $O\left(q^{5}\right)$ for $n=7$.

Ovoids

Take for \mathcal{C} an elliptic quadric of $\operatorname{PG}(3, q)$.
Size: $q^{2}+1$.
Exterior points: Each on precisely $\frac{q^{2}-q}{2}$ secants.

Ovoids

Take for \mathcal{C} an elliptic quadric of $\operatorname{PG}(3, q)$.
Size: $q^{2}+1$.
Exterior points: Each on precisely $\frac{q^{2}-q}{2}$ secants.
Define a graph:
Vertices: vectors x of \mathbb{F}_{q}^{4} with $\operatorname{PG}(3, q)$ at infinity. Adjacency: x, y adjacent iff $\langle x, y\rangle$ meets \mathcal{C} at infinity.

Ovoids

Take for \mathcal{C} an elliptic quadric of $\operatorname{PG}(3, q)$.
Size: $q^{2}+1$.
Exterior points: Each on precisely $\frac{q^{2}-q}{2}$ secants.
Define a graph:
Vertices: vectors x of \mathbb{F}_{q}^{4} with $\operatorname{PG}(3, q)$ at infinity.
Adjacency: x, y adjacent iff $\langle x, y\rangle$ meets \mathcal{C} at infinity.
Strongly regular with parameters $\left(q^{4},\left(q^{2}+1\right)(q-1), q-2, q^{2}-q\right)$:

- order q^{4},
- degree $\left(q^{2}+1\right)(q-1)$,
- two adjacent vertices share $q-2$ neighbors,
- two nonadjacent vertices share $q^{2}-q$ neighbors.

Cap of size 11 in $\operatorname{PG}(4,3)$: $(243,22,1,2)$ (Berlekamp-Van Lint-Seidel). Cap of size 729 in $\operatorname{PG}(5,3)$: $(729,112,1,20)$ (Games graph).

A Fictional Cap

Suppose that \mathcal{C} is a cap in $\operatorname{PG}(6,3)$.
Size: 91.
Exterior Points: Each on precisely 30 secants.
We obtain a strongly regular graph. Parameters: (729, 182, 1, 60).
(Partial GQ with parameters $(s, t, \mu)=(2,90,60)$.

A Fictional Cap

Suppose that \mathcal{C} is a cap in $\operatorname{PG}(6,3)$.
Size: 91.
Exterior Points: Each on precisely 30 secants.
We obtain a strongly regular graph.
Parameters: (729, 182, 1, 60).
(Partial GQ with parameters $(s, t, \mu)=(2,90,60)$.

Cannot exist!

Reason 1: Krein condition.
Reason 2: Absolute bound.
Reason 3: Coclique of size 91 , but only 26 possible (inertia bound).
Stability? Say, $\leq \frac{1}{12}$ ext. points on 29 secants, $\geq \frac{10}{12}$ on $30, \leq \frac{1}{12}$ on 31 .
Inertia bound: Bound is ≤ 39 ! Still impossible!

Approximately Strongly Regular Graphs

Consider a k-regular graph of order v.
Define $\lambda_{a b}\left(\mu_{a b}\right)$ as the size of common neighborhood of vertices a, b adjacent (nonadjacent).

Strongly regular with parameters (v, k, λ, μ) : k-regular of order v with $\lambda=\lambda_{a b}$ and $\mu=\mu_{a b}$.

Approximately Strongly Regular Graphs

Consider a k-regular graph of order v.
Define $\lambda_{a b}\left(\mu_{a b}\right)$ as the size of common neighborhood of vertices a, b adjacent (nonadjacent).

Strongly regular with parameters (v, k, λ, μ) : k-regular of order v with $\lambda=\lambda_{a b}$ and $\mu=\mu_{a b}$.

Approximately strongly regular with parameters $(v, k, \lambda, \mu ; \sigma)$:

$$
\begin{array}{ll}
\mathbb{E}\left(\lambda_{a b}\right)=\lambda, & \mathbb{E}\left(\mu_{a b}\right)=\mu, \\
\operatorname{Var}\left(\lambda_{a b}\right) \leq \sigma^{2}, & \operatorname{Var}\left(\mu_{a b}\right) \leq \sigma^{2}
\end{array}
$$

Some fun facts:
(1) SRGs: precisely ASRGs with $\sigma=0$.
(2) Equation $(v-k-1) \mu=k(k-\lambda-1)$ holds!
(3) Complement of ASRG is ASRG with ($v, v-k-1, v-2 k+\mu, v-2 k+\lambda ; \sigma)$.
(4) All regular graphs are approximately ASRG with $\sigma=k$.

The Inertia Bound for ASRGs

Theorem

Let Γ be an ASRG with $k=o(v)$ and $k=o\left(|\lambda-\mu|^{2}\right) .{ }^{a}$
Then a coclique in Γ has at most size

$$
(1+o(1))\left(\frac{v k}{(\mu-\lambda)^{2}}+\frac{v^{2} \sigma^{2}}{k^{2}}\right)
$$

${ }^{a}$ Family $\left(\Gamma_{i}\right)_{i}$ of ASRGs with $\left(v_{i}, k_{i}, \lambda_{i}, \mu_{i} ; \sigma_{i}\right), k_{i}=o\left(v_{i}\right)$ and $k_{i}=o\left(\left|\lambda_{i}-\mu_{i}\right|^{2}\right)$.

The Inertia Bound for ASRGs

Theorem

Let Γ be an ASRG with $k=o(v)$ and $k=o\left(|\lambda-\mu|^{2}\right)$. ${ }^{\text {a }}$
Then a coclique in Γ has at most size

$$
(1+o(1))\left(\frac{v k}{(\mu-\lambda)^{2}}+\frac{v^{2} \sigma^{2}}{k^{2}}\right) .
$$

${ }^{a}$ Family $\left(\Gamma_{i}\right)_{i}$ of ASRGs with $\left(v_{i}, k_{i}, \lambda_{i}, \mu_{i} ; \sigma_{i}\right), k_{i}=o\left(v_{i}\right)$ and $k_{i}=o\left(\left|\lambda_{i}-\mu_{i}\right|^{2}\right)$.
Let \mathcal{C} be a cap of $\operatorname{PG}(n, q)$.

Corollary

If $\sigma^{2}=o\left(q^{\frac{1}{4} n}\right)$, then $|\mathcal{C}|=o\left(q^{\frac{3}{4} n}\right)$.
If $|\mathcal{C}|=\Omega\left(q^{n-1}\right)$, then $\sigma=\Omega\left(q^{\frac{1}{2} n-\frac{3}{2}}\right)$.
Ellenberg-Gijswijt (2016): $o\left(2.76^{n}\right)$.
Edel (2003): $\omega\left(2.21^{n}\right)$.
Bound here for small σ : o(2.28 $)$.

Krein Bound for ASRGs

Consider an approximately SRG Γ with parameters $(v, k, \lambda, \mu ; \sigma)$.
Theorem (Krein Bound for ASRGs)

$$
\text { If } \mu>\lambda, k=o(v), k=o\left(|\mu-\lambda|^{\frac{3}{2}}\right), \text { then } \sigma \geq(1+o(1))(\mu-\lambda)^{\frac{3}{2}} v^{-1} \text {. }
$$

Theorem (Krein Bound for Special 1-Walk-Regular ASRGs)
Same plus regularity conditions. Then $\sigma \geq(1+o(1))(\mu-\lambda)^{\frac{5}{4}} v^{-\frac{3}{4}} k^{\frac{1}{2}}$.

Krein Bound for ASRGs

Consider an approximately SRG Γ with parameters $(v, k, \lambda, \mu ; \sigma)$.
Theorem (Krein Bound for ASRGs)

$$
\text { If } \mu>\lambda, k=o(v), k=o\left(|\mu-\lambda|^{\frac{3}{2}}\right), \text { then } \sigma \geq(1+o(1))(\mu-\lambda)^{\frac{3}{2}} v^{-1} \text {. }
$$

Theorem (Krein Bound for Special 1-Walk-Regular ASRGs)

Same plus regularity conditions. Then $\sigma \geq(1+o(1))(\mu-\lambda)^{\frac{5}{4}} v^{-\frac{3}{4}} k^{\frac{1}{2}}$.
Let \mathcal{C} be a cap of $\operatorname{PG}(n, q)$.

Corollary

If $\sigma^{2}=o\left(q^{\frac{1}{2} n}\right)$ and regularity conditions, then $|\mathcal{C}|=O\left(q^{\frac{3}{4} n-\frac{1}{4}}\right)$.
If $|\mathcal{C}|=\Omega\left(q^{n-1}\right)$ and regularity conditions, then $\sigma=\Omega\left(q^{n-2}\right)$.
Now σ large enough for most reasonable construction!

Why do this?

(1) Ihringer-Verstraëte (2022*):

Random constructions for cap variants.

- Failure to improve $\Omega\left(q^{\frac{2}{3} n}\right)$ bound for caps.
- Constructions should satisfy results, so $O\left(q^{\frac{3}{4} n-\frac{1}{4}}\right)$ best possible.

Why do this?

(1) Ihringer-Verstraëte (2022*):

Random constructions for cap variants.

- Failure to improve $\Omega\left(q^{\frac{2}{3} n}\right)$ bound for caps.
- Constructions should satisfy results, so $O\left(q^{\frac{3}{4} n-\frac{1}{4}}\right)$ best possible.
(2) Different application of ASRGs:

Mubayi, Verstraëte (2018): Lower bounds on off-diagonal Ramsey numbers from clique-free pseudorandom graphs.

ASRG Krein bounds imply
Corollary (informal)
If subconstituents close to SRGs, then graphs are (relatively) sparse.

Details in: FI, Approximately Strongly Regular Graphs, arXiv:2205.05792 [math.CO].

Very Small ASRGs

One can also study very small parameters:

v	k	λ	μ	σ	nr	remarks
8	3	0	1.5	0.5	1	D_{8}
10	3	0	1	0	1	Petersen graph, $N O_{3,5}^{-1}$
12	3	0	0.75	~ 0.43	2	D_{8}, D_{9}
14	3	0	0.8	~ 0.49	9	
16	3	0.625	0.34375	~ 0.48	2	D_{6}, D_{9}
18	3	$0 . \overline{6}$	$0.3 \overline{571428}$	~ 0.47	2	$D_{6}, S_{3}^{2} \rtimes C_{2}$
20	3	0.3	0.31875	~ 0.47	5993	
22	3	$0 . \overline{27}$	$0.2 \overline{87}$	~ 0.45	86977	
9	4	1	2	0	1	Paley (9)
10	4	0.75	1.8	~ 0.43	1	D_{5}
11	4	$1 . \overline{09}$	$1 . \overline{27}$	~ 0.44	1	$C_{2}^{2} \times S_{3}$
12	4	1	$1 . \overline{142857}$	0.41	1	$C_{2} \times D_{4}$
13	4	$0 . \overline{692307}$	$1 . \overline{153846}$	~ 0.46	1	D_{8}
14	4	$0.32 \overline{142857}$	$1 . \overline{190476}$	~ 0.47	2	id, C_{2}^{2}
15	4	0.1	1.16	~ 0.37	1	D_{6}
16	4	0	$1 . \overline{09}$	0.36	1	$C_{2}^{4} \rtimes C_{2}$
12	5	0.7	2.75	~ 0.46	1	S_{3}^{2}
14	5	$1.0 \overline{285714}$	$1 . \overline{857142}$	~ 0.45	1	$C_{2} \times D_{4}$
13	6	2	3	0	1	Paley (13)

Thank you for your attention!

