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PG(n,q): n-dimensional projective space over F,,.

Points: 1-spaces of Fyt!. Lines: 2-spaces of Fj .

A cap is a set of points in PG(n, q), no 3 collinear.

Easy examples:
e Ovals, e.g. 23+ 23 + 25 =0 for n = 2.
e Ovoids, e.g. 23+ 23 + 22+ 23 =0 for g=1 (mod 4).
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Caps
PG(n,q): n-dimensional projective space over F,.
Points: 1-spaces of F/*!. Lines: 2-spaces of F 1.
Definition
A cap is a set of points in PG(n, ¢), no 3 collinear. J

Easy examples:
e Ovals, e.g. 23 + 23 + 23 =0 for n = 2.
e Ovoids, e.g. 3+ 27 + 23 + 25 =0 for ¢ =1 (mod 4).

Motivation:

o Linear Codes,

@ Extremal Graphs,
o Partial Geometries,
°

Strongly Regular Graphs.



Consider a cap C of PG(n,q).

We have |C| < (1 +0(1))g" ! (as ¢ — oo, n fix).

Look at lines through p € C. | l




Consider a cap C of PG(n,q).

We have |C| < (1+ o(1))¢" ! (as ¢ — oo, n fix).

Look at lines through p € C.

What about regime n — oo, ¢ fix?
Trivial: A cap has at most size O(¢™) (as n — o).

Ellenberg-Gijswijt (2017): For ¢ = 3, a cap has at most size 0(2.76™).



Caps ASRGs Special Bounds Other Applications

More Examples

Bound (1 + o(1))g"~! is tight for n = 2, 3.

Bierbrauer, Edel (2004): Construction of size ~ 3¢* for n = 4 for g even.

Segre (1959): Construction of size (1 + o(1))gl5™).
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More Examples

Bound (1 + o(1))g"~! is tight for n = 2, 3.

Bierbrauer, Edel (2004): Construction of size ~ 3¢* for n = 4 for g even.

Segre (1959): Construction of size (1 + o(1))ql3™).

Hence, if C has maximum size, then

T By

What is the truth? My Hope: O(qi"~1).
That is O(¢?7%) for n = 4 and O(q®) for n = 7.



Take for C an elliptic quadric of PG(3, q).

Size: ¢% + 1.
2
Exterior points: Each on precisely 45 secants.



Take for C an elliptic quadric of PG(3,q).

Size: ¢% + 1.
2
Exterior points: Each on precisely 45 secants.

Define a graph:

Vertices: vectors z of Fy with PG(3, ) at infinity.
Adjacency: z,y adjacent iff (x,y) meets C at infinity.
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Ovoids

Take for C an elliptic quadric of PG(3, ¢).

Size: ¢% + 1.
Exterior points: Each on preC|se|y 454 secants.

Define a graph:

Vertices: vectors z of Fy with PG(3, ) at infinity.
Adjacency: z,y adjacent iff (z,y) meets C at infinity.

Strongly regular with parameters (¢*, (¢>+1)(¢—1),q — 2,¢*—q):
@ order ¢*,
o degree (¢* +1)(¢ — 1),
@ two adjacent vertices share ¢ — 2 neighbors,
e two nonadjacent vertices share ¢ — ¢ neighbors.

Cap of size 11 in PG(4,3): (243,22, 1,2) (Berlekamp-Van Lint-Seidel).
Cap of size 729 in PG(5,3): (729,112, 1,20) (Games graph).



Suppose that C is a cap in PG(6, 3).

Size: 91.
Exterior Points: Each on precisely 30 secants.

We obtain a strongly regular graph.
Parameters: (729,182, 1,60).

(Partial GQ with parameters (s,t, 1) = (2,90, 60).)
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A Fictional Cap

Suppose that C is a cap in PG(6, 3).

Size: 91.
Exterior Points: Each on precisely 30 secants.

We obtain a strongly regular graph.
Parameters: (729,182, 1,60).

(Partial GQ with parameters (s,t, 1) = (2,90, 60).)

Cannot exist!

Reason 1: Krein condition.
Reason 2: Absolute bound.
Reason 3: Coclique of size 91, but only 26 possible (inertia bound).

Stability? Say, < L ext. points on 29 secants, >

0 1
i on 30, < 15 on 31.

10
12

Inertia bound: Bound is < 39! Still impossible!



Caps ASRGs Special Bounds Other Applications
Approximately Strongly Regular Graphs
Consider a k-regular graph of order v.

Define Aup (ptab) as the size of common neighborhood of vertices a,b
adjacent (nonadjacent).

Strongly regular with parameters (v, k, A, 1): k-regular of order v with
A= Agp and g = pigp.
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Approximately Strongly Regular Graphs

Consider a k-regular graph of order v.

Define Aup (ptab) as the size of common neighborhood of vertices a,b
adjacent (nonadjacent).

Strongly regular with parameters (v, k, A, 1): k-regular of order v with
A= Agp and g = pigp.

Approximately strongly regular with parameters (v, k, A\, u; 0):

E(Aap) = A, E(Mab) = M,
Var(Ag) < 02, Var(pqp) < 0.

Some fun facts:
@ SRGs: precisely ASRGs with o = 0.
@ Equation (v—k — 1)u = k(k— X — 1) holds!
© Complement of ASRG is ASRG with (v, v—k—1,v—2k+u,v—2k+X; o).
@ All regular graphs are approximately ASRG with o = k.



Let T be an ASRG with k = o(v) and k = o(|\ — u|?).2
Then a coclique in T’ has at most size

(1+0(1)) (# + i—f) .

aFamin (F,)z of ASRGs with (’U,‘, kb,;, )\i,ui;a'i), ki = 0('[)1;) and kz‘ = O(I)w — ,LLZ‘|2).




Caps
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The Inertia Bound for ASRGs

Theorem

Let T be an ASRG with k = o(v) and k = o(|\ — pu|?).2
Then a coclique in T’ has at most size

(1+o(1)) ((uikA)Q + 7’2‘5) .

aFamin (Fz)z of ASRGs with (vi7ki7)‘iyui;ai)r ki = O(’Ui) and k’i = O(P\z — /MP)-

Let C be a cap of PG(n,q).

Corollary

If 6 = o(q&™), then |C| = o(qi™).

3

If1C| = Qg™ 1Y), then o = Q(q2""2).

Ellenberg-Gijswijt (2016): o(2.76™). (for ¢ = 3.)
Edel (2003): w(2.21™).
Bound here for small o: 0(2.28").



Consider an approximately SRG T with parameters (v, k, \, y; o).

If >\ k=o0(v), k=o(|u—A?2), then o > (1+0(1))(1n — A) 2o~ L.

Same plus regularity conditions. Then o > (1+ o(1))(u — A)5v=3k2.




Consider an approximately SRG T with parameters (v, k, \, y; o).

If >\ k=o0(v), k=o(|u—A?2), then o > (1+0(1))(1n — A) 2o~ L.

Same plus regularity conditions. Then o > (1+ o(1))(u — A)5v=3k2.

Let C be a cap of PG(n,q).

1

If 62 = 0(q=™) and regularity conditions, then |C| = O(q3"~ ).

If|C| = Q(q™~!) and regularity conditions, then o = Q(q"~?).

Now o large enough for most reasonable construction!



(1) Ihringer-Verstraéte (2022*):
Random constructions for cap variants.

e Failure to improve €2(q3™) bound for caps.

o Constructions should satisfy results, so O(q%”_%) best possible.
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Why do this?
(1) Ihringer-Verstraéte (2022*):
Random constructions for cap variants.
o Failure to improve Q(q%") bound for caps.

e Constructions should satisfy results, so O(¢gi"~%) best possible.

(2) Different application of ASRGs:

Mubayi, Verstraéte (2018): Lower bounds on off-diagonal Ramsey
numbers from clique-free pseudorandom graphs.

ASRG Krein bounds imply

Corollary (informal)
If subconstituents close to SRGs, then graphs are (relatively) sparse. J

Details in: Fl, Approximately Strongly Regular Graphs, arXiv:2205.05792 [math.CO].
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Very Small ASRGs

One can also study very small parameters:

v k A o o nr remarks

8 3 0 1.5 0.5 1 Ds

10 3 0 1 0 1 Petersen graph, NO3 3
12 3 0 0.75 ~ 0.43 2 Dg, Dy

14 3 0 0.8 ~ 0.49 9

16 3 0.625 0.34375  ~ 0.48 2 Dg, Dy

18 3 0.6 0.3571428  ~ 0.47 2 Dg, 5% x C>
20 3 0.3 0.31875  ~0.47 5993

22 3 0.27 0.287 ~0.45 86977

9 4 1 2 0 1 Paley(9)

10 4 0.75 1.8 ~ 0.43 1 Ds

1 4 1.09 1.27 ~ 0.44 1 C2 x S3

12 4 1 1.142857 0.41 1 Cy x Dy

13 4 0.692307 1.153846  ~ 0.46 1 Dg

14 4 0.32142857 1.100476  ~ 0.47 2 id, C3

15 4 0.1 1.16 ~ 0.37 1 Dg

16 4 0 1.09 0.36 1 Cy x Co

12 5 0.7 2.75 ~ 0.46 1 S3

14 5 1.0285714 1.857142  ~ 0.45 1 Cy x Dy

13 6 2 3 0 1 Paley(13)



Thank you for your attention!
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