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Block designs

Definition
A 𝑡-(𝑛, 𝑘, 𝜆) design is a pair𝒟 = (𝒫 ,ℬ) where:
• Elements of the 𝑛-set 𝒫 are called points.

• Elements ofℬ are 𝑘-subsets of 𝒫 called blocks.

• Each 𝑡-subset of𝒫 is contained in precisely 𝜆 blocks.

Examples:

• A projective plane of order 𝑠 is a 2-(𝑠2 + 𝑠 + 1, 𝑠 + 1, 1)
design.

• An affine plane of order 𝑠 is a 2-(𝑠2, 𝑠, 1) design.
• Ex. with 𝜆 > 1 are provided by subspaces/flats of dim. ≥ 2 in
other finite geometries.

• Witt designs (rel. to Mathieu groups) give examples with
𝑡 ≥ 3.

• Keevash proved block designs exist whenever 𝑛 is large.
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Symmetry and designs

A fair amount of study has been devoted to the following classes
of designs:

• 2-Transitive designs.

• Flag-transitive designs.

• Block-transitive designs.

The examples arising in each case are simply too numerous for a
classification to be feasible.



𝑞-Analogues
A 𝑞-analogue involves introducing a parameter 𝑞 in such a way
that the limit 𝑞 → 1 gives back the classical version.

For instance, the 𝑞-analogue of an integer is:

(𝑛)𝑞 = 𝑞𝑛 − 1
𝑞 − 1 = 𝑞𝑛−1 + 𝑞𝑛−2 + ⋯ + 𝑞 + 1.

And the 𝑞-analogue of the binomial coefficient is:

(
𝑛
𝑘)𝑞 = (𝑛)𝑞(𝑛 − 1)𝑞 ⋯ (𝑛 − 𝑘 + 1)𝑞

(𝑘)𝑞(𝑘 − 1)𝑞 ⋯ (1)𝑞
.

Notice that (𝑛𝑘)𝑞 counts the number of 𝑘-subspaces of 𝔽𝑛𝑞 .
Tits (1957) suggested that the combinatorics of 𝔽𝑞-vector spaces
as a 𝑞-analogue of combinatorics of sets.
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Subspace designs

Definition
A 𝑡-(𝑛, 𝑘, 𝜆)𝑞 design is a pair𝒟 = (𝑉 ,ℬ) where:
• 𝑉 ≅ 𝔽𝑛𝑞
• Elements ofℬ are 𝑘-subspaces of 𝑉 called blocks.

• Each 𝑡-subspace of 𝑉 is contained in precisely 𝜆 blocks.

Example
Regular spread via field reduction:

• Let 𝑉 = 𝔽𝑛𝑞 and 𝑈 = 𝔽𝑡𝑞𝑘 , where 𝑛 = 𝑘𝑡 .
• As 𝔽𝑞-vector spaces 𝑉 ≅ 𝑈 .

• The set of 1-dim. 𝔽𝑞𝑘 -subspaces of 𝑈 corresponds a setℬ
of 𝑘-dim. 𝔽𝑞-subspaces of 𝑉 .

• (𝑉 ,ℬ) is a 1-(𝑛, 𝑘, 1)𝑞 design.
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Examples of subspace designs

The following designs have been constructed with 𝑡 ≥ 21:
• 2-(𝑛, 3, 7)2 designs when gcd(𝑛, 6) = 1, Thomas (1987).

• 2-(𝑛, 𝑞 + 1, 𝑞2 + 𝑞 + 1)𝑞 designs when gcd(𝑛, 6) = 1,
Suzuki (1990,1992).

• Braun, Kerber and Laue (2005) found various 2-designs via
computer search, as well as 3-(8, 4, 𝜆)2 designs for 𝜆 = 11
and 𝜆 = 20.

• 2-(13, 3, 1)2 designs, the first examples of 𝑞-Steiner
systems2, Braun et al. (2016).

Automorphism groups are normalisers of Singer cycles.
1Note that we are only interested in 𝑡 ≥ 2 in what follows.
2A subspace design with 𝜆 = 1.



Divisors and duality

Lemma
If 𝑡 ≥ 2 and𝒟 = (𝑉 ,ℬ) is a 𝑡-(𝑛, 𝑘, 𝜆)𝑞 design then𝒟 is
also a 2-(𝑛, 𝑘, 𝜆2)𝑞 design, for some integer 𝜆2. In particular,

|ℬ| = (𝑛)𝑞(𝑛 − 1)𝑞
(𝑘)𝑞(𝑘 − 1)𝑞

𝜆2.

Lemma
Let𝒟 = (𝒫 ,ℬ) be a 𝑡-(𝑛, 𝑘, 𝜆)𝑞 design and let
ℬ⟂ = {𝑈⟂ ∣ 𝑈 ∈ ℬ}, where ⟂ is a duality on 𝑉 .

Then𝒟⟂ = (𝒫 ,ℬ⟂) is a 𝑡-(𝑛, 𝑛 − 𝑘, 𝜆′)𝑞 design, for some
integer 𝜆′.

We can focus on 2-(𝑛, 𝑘, 𝜆)𝑞 designs with 𝑘 ≤ 𝑛/2.
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Automorphism groups

The Grassmann graph 𝐽𝑞(𝑛, 𝑘) is the graph with vertex set all
𝑘-subspaces of 𝔽𝑛𝑞 ; two vertices are adjacent when they intersect
in a (𝑘 − 1)-subspace.
Lemma
For 2 ≤ 𝑘 ≤ 𝑛 − 2, the automorphism group of 𝐽𝑞(𝑛, 𝑘) is:
• 𝑃Γ𝐿𝑛(𝑞) when 𝑛 ≠ 2𝑘 .
• 𝑃Γ𝐿𝑛(𝑞).𝐶2 when 𝑛 = 2𝑘 .

(In the second case the map 𝑈 ↦ 𝑈⟂ is an automorphism.)

A subspace design𝒟 may be thought of as a code in a
Grassmann graph, and Aut(𝒟) is then the setwise stabiliser of
ℬ in 𝑃Γ𝐿𝑛(𝑞) (unless𝒟 is self-dual).



Automorphism groups

The Grassmann graph 𝐽𝑞(𝑛, 𝑘) is the graph with vertex set all
𝑘-subspaces of 𝔽𝑛𝑞 ; two vertices are adjacent when they intersect
in a (𝑘 − 1)-subspace.
Lemma
For 2 ≤ 𝑘 ≤ 𝑛 − 2, the automorphism group of 𝐽𝑞(𝑛, 𝑘) is:
• 𝑃Γ𝐿𝑛(𝑞) when 𝑛 ≠ 2𝑘 .
• 𝑃Γ𝐿𝑛(𝑞).𝐶2 when 𝑛 = 2𝑘 .

(In the second case the map 𝑈 ↦ 𝑈⟂ is an automorphism.)

A subspace design𝒟 may be thought of as a code in a
Grassmann graph, and Aut(𝒟) is then the setwise stabiliser of
ℬ in 𝑃Γ𝐿𝑛(𝑞) (unless𝒟 is self-dual).



Block transitivity

Definition
We say that a 𝑡-(𝑛, 𝑘, 𝜆)𝑞 design𝒟 = (𝑉 ,ℬ) is
block-transitive if Aut(𝒟) acts transitively onℬ.

Recall that we can focus on the case 𝑡 = 2 and 𝑘 ≤ 𝑛/2.
Lemma
Suppose𝒟 = (𝑉 ,ℬ) is a block-transitive 2-(𝑛, 𝑘, 𝜆)𝑞 design.
Then Aut(𝒟) is a subgroup of 𝑃Γ𝐿𝑛(𝑞) and has order divisible
by

|ℬ| = (𝑛)𝑞(𝑛 − 1)𝑞
(𝑘)𝑞(𝑘 − 1)𝑞

𝜆.
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Primitive divisors and Zsigmondy’s Theorem

Definition

A divisor 𝑟 of 𝑞𝑚 − 1 that is coprime to 𝑞𝑖 − 1 for all 𝑖 < 𝑚 is
called a primitive divisor of 𝑞𝑚 − 1.
• If 𝑟 is prime then 𝑟 is called a primitive prime divisor.

• The largest primitive divisor is called the primitive part.

• Note that 𝑟 divides (𝑚)𝑞 and is coprime to (𝑖)𝑞 for all 𝑖 < 𝑚.

Theorem (Zsigmondy’s Theorem)3

Primitive prime divisors exist except for when 𝑞𝑚 = 26.

3Note that the theorem is actually a fair bit more general than this.
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Applications of Zsigmondy’s Theorem

Hering’s Theorem (1985):

• Classified transitive linear groups.

Guralnick, Pentilla, Praeger, Saxl (1999):

• Classified groups 𝐺 ≤ 𝐺𝐿𝑛(𝑞) such that |𝐺| is divisible by
some primitive prime divisor of 𝑞𝑒 − 1, where 𝑛/2 < 𝑒 ≤ 𝑛.

Bamberg and Pentilla (2008):

• Classified groups 𝐺 ≤ 𝐺𝐿𝑛(𝑞) such that |𝐺| is divisible by
the primitive part 𝑟 of 𝑞𝑒 − 1, where 𝑟 > 1 and 𝑛/2 < 𝑒 ≤ 𝑛.



Applying Bamberg and Pentilla

Recall that if𝒟 = (𝑉 ,ℬ) is a block-transitive 𝑡-(𝑛, 𝑘, 𝜆)𝑞
design then |Aut(𝒟)| is divisible by

|ℬ| = (𝑛)𝑞(𝑛 − 1)𝑞
(𝑘)𝑞(𝑘 − 1)𝑞

𝜆2.

In particular, |Aut(𝒟)| is divisible by each of the primitive parts
𝑟𝑛 and 𝑟𝑛−1 of 𝑞𝑛 − 1 and 𝑞𝑛−1 − 1, respectively.

By the result of Bamberg and Pentilla, we than have the following
cases:

1. One of 𝑟𝑛 , 𝑟𝑛−1 is equal to 1.
2. 𝑟𝑛, 𝑟𝑛−1 ≠ 1, 𝑟𝑛, 𝑟𝑛−1 divide |𝐺| and 𝐺 ≤ Γ𝐿1(𝑞𝑛).
3. 𝑟𝑛, 𝑟𝑛−1 ≠ 1 and 𝑟𝑛, 𝑟𝑛−1 divide |𝐺 ∩ 𝐺𝐿𝑛(𝑞)|.
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Applying Bamberg and Pentilla

Cases:

1. One of 𝑟𝑛 , 𝑟𝑛−1 is equal to 1.
2. 𝑟𝑛, 𝑟𝑛−1 ≠ 1, 𝑟𝑛, 𝑟𝑛−1 divide |𝐺| and 𝐺 ≤ Γ𝐿1(𝑞𝑛).
3. 𝑟𝑛, 𝑟𝑛−1 ≠ 1 and 𝑟𝑛, 𝑟𝑛−1 divide |𝐺 ∩ 𝐺𝐿𝑛(𝑞)|.

Eliminate via:

1. Subgroup structure and geometric arguments.

2. Divisibility conditions and geometric arguments leave one
case, a hypothetical 2-(11, 5, 5)2 design. Ruled out via a
lengthy computation.

3. Apply Bamberg and Pentilla - divisibility conditions eliminate
any remaining cases.



Main theorem

Theorem (H., Lansdown)
There are no non-trivial block-transitive 𝑡-(𝑛, 𝑘, 𝜆)𝑞 designs for
𝑡 ≥ 2.

A subspace design with 𝜆 = 1 is called a 𝑞-Steiner system.

Corollary (H., Lansdown)
There are no block-transitive 𝑞-Steiner systems.
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Thanks for listening!
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