Non-existence of block-transitive subspace designs

Dan Hawtin^a September 1, 2022 – Irsee, Finite Geometries

University of Rijeka, Croatia (joint work with Jesse Lansdown)

^aSupported by the Croatian Science Foundation under the project 6732.

Block designs

Definition

A t- (n, k, λ) design is a pair $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ where:

- \cdot Elements of the *n*-set \mathscr{P} are called *points*.
- \cdot Elements of \mathscr{B} are k-subsets of \mathscr{P} called *blocks*.
- $\cdot\,$ Each t-subset of $\mathscr P$ is contained in precisely λ blocks.

Block designs

Definition

A t- (n, k, λ) design is a pair $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ where:

- \cdot Elements of the *n*-set \mathscr{P} are called *points*.
- \cdot Elements of \mathscr{B} are k-subsets of \mathscr{P} called *blocks*.
- $\cdot\,$ Each t-subset of $\mathscr P$ is contained in precisely λ blocks.

Examples:

- An affine plane of order s is a 2-(s^2 , s, 1) design.
- Ex. with $\lambda > 1$ are provided by subspaces/flats of dim. ≥ 2 in other finite geometries.
- Witt designs (rel. to Mathieu groups) give examples with $t \ge 3$.

A fair amount of study has been devoted to the following classes of designs:

- 2-Transitive designs.
- Flag-transitive designs.
- Block-transitive designs.

The examples arising in each case are simply too numerous for a classification to be feasible.

q-Analogues

A q-analogue involves introducing a parameter q in such a way that the limit $q \rightarrow 1$ gives back the classical version.

q-Analogues

A q-analogue involves introducing a parameter q in such a way that the limit $q \rightarrow 1$ gives back the classical version.

For instance, the q-analogue of an integer is:

$$(n)_q = \frac{q^n - 1}{q - 1} = q^{n-1} + q^{n-2} + \dots + q + 1.$$

And the q-analogue of the binomial coefficient is:

$$\binom{n}{k}_{q} = \frac{(n)_{q}(n-1)_{q}\cdots(n-k+1)_{q}}{(k)_{q}(k-1)_{q}\cdots(1)_{q}}.$$

Notice that $\binom{n}{k}_{q}$ counts the number of k-subspaces of \mathbb{F}_{q}^{n} .

q-Analogues

A q-analogue involves introducing a parameter q in such a way that the limit $q \rightarrow 1$ gives back the classical version.

For instance, the q-analogue of an integer is:

$$(n)_q = \frac{q^n - 1}{q - 1} = q^{n-1} + q^{n-2} + \dots + q + 1.$$

And the q-analogue of the binomial coefficient is:

$$\binom{n}{k}_{q} = \frac{(n)_{q}(n-1)_{q}\cdots(n-k+1)_{q}}{(k)_{q}(k-1)_{q}\cdots(1)_{q}}.$$

Notice that $\binom{n}{k}_q$ counts the number of k-subspaces of \mathbb{F}_q^n .

Tits (1957) suggested that the combinatorics of \mathbb{F}_q -vector spaces as a q -analogue of combinatorics of sets.

Subspace designs

Definition

A
$$t ext{-}(n,k,\lambda)_q$$
 design is a pair $\mathscr{D}=(V,\mathscr{B})$ where:

- $\cdot V \cong \mathbb{F}_q^n$
- \cdot Elements of \mathscr{B} are k-subspaces of V called *blocks*.
- $\cdot \,$ Each t-subspace of V is contained in precisely λ blocks.

Subspace designs

Definition

A
$$t ext{-}(n,k,\lambda)_q$$
 design is a pair $\mathscr{D}=(V,\mathscr{B})$ where:

- $\cdot V \cong \mathbb{F}_q^n$
- \cdot Elements of \mathscr{B} are k-subspaces of V called *blocks*.
- $\cdot \,$ Each t-subspace of V is contained in precisely λ blocks.

Example

Regular spread via field reduction:

- · Let $V = \mathbb{F}_q^n$ and $U = \mathbb{F}_{q^k}^t$, where n = kt.
- As \mathbb{F}_q -vector spaces $V \cong U$.
- The set of 1-dim. \mathbb{F}_{q^k} -subspaces of U corresponds a set \mathscr{B} of k-dim. \mathbb{F}_q -subspaces of V.

$$\cdot \; (V,\mathscr{B})$$
 is a 1- $(n,k,1)_q$ design.

The following designs have been constructed with $t \ge 2^1$:

- $\cdot 2 \cdot (n, 3, 7)_2$ designs when gcd(n, 6) = 1, Thomas (1987).
- 2- $(n, q + 1, q^2 + q + 1)_q$ designs when gcd(n, 6) = 1, Suzuki (1990,1992).
- Braun, Kerber and Laue (2005) found various 2-designs via computer search, as well as 3-(8, 4, λ)₂ designs for λ = 11 and λ = 20.
- 2-(13, 3, 1)₂ designs, the first examples of *q*-Steiner systems², Braun et al. (2016).

Automorphism groups are normalisers of Singer cycles.

¹Note that we are only interested in $t \ge 2$ in what follows.

²A subspace design with $\lambda = 1$.

Divisors and duality

Lemma

If $t \ge 2$ and $\mathcal{D} = (V, \mathcal{B})$ is a $t \cdot (n, k, \lambda)_q$ design then \mathcal{D} is also a $2 \cdot (n, k, \lambda_2)_q$ design, for some integer λ_2 . In particular,

$$|\mathscr{B}| = \frac{(n)_q(n-1)_q}{(k)_q(k-1)_q}\lambda_2.$$

Lemma

Let
$$\mathcal{D} = (\mathcal{P}, \mathcal{B})$$
 be a $t \cdot (n, k, \lambda)_q$ design and let
 $\mathcal{B}^{\perp} = \{U^{\perp} \mid U \in \mathcal{B}\}$, where \perp is a duality on V .
Then $\mathcal{D}^{\perp} = (\mathcal{P}, \mathcal{B}^{\perp})$ is a $t \cdot (n, n - k, \lambda')_q$ design, for some integer λ' .

Divisors and duality

Lemma

If $t \ge 2$ and $\mathcal{D} = (V, \mathcal{B})$ is a $t \cdot (n, k, \lambda)_q$ design then \mathcal{D} is also a $2 \cdot (n, k, \lambda_2)_q$ design, for some integer λ_2 . In particular,

$$|\mathscr{B}| = \frac{(n)_q(n-1)_q}{(k)_q(k-1)_q}\lambda_2.$$

Lemma

Let
$$\mathscr{D} = (\mathscr{P}, \mathscr{B})$$
 be a $t \cdot (n, k, \lambda)_q$ design and let
 $\mathscr{B}^{\perp} = \{U^{\perp} \mid U \in \mathscr{B}\}$, where \perp is a duality on V .
Then $\mathscr{D}^{\perp} = (\mathscr{P}, \mathscr{B}^{\perp})$ is a $t \cdot (n, n - k, \lambda')_q$ design, for some integer λ' .

We can focus on 2- $(n, k, \lambda)_q$ designs with $k \le n/2$.

Automorphism groups

The Grassmann graph $J_q(n, k)$ is the graph with vertex set all k-subspaces of \mathbb{F}_q^{n} ; two vertices are adjacent when they intersect in a (k - 1)-subspace.

Lemma

For $2 \le k \le n - 2$, the automorphism group of $J_q(n, k)$ is:

- $P\Gamma L_n(q)$ when $n \neq 2k$.
- $\cdot P\Gamma L_n(q).C_2$ when n = 2k.

(In the second case the map $U \mapsto U^{\perp}$ is an automorphism.)

Automorphism groups

The Grassmann graph $J_q(n, k)$ is the graph with vertex set all k-subspaces of \mathbb{F}_q^{n} ; two vertices are adjacent when they intersect in a (k - 1)-subspace.

Lemma

For $2 \le k \le n - 2$, the automorphism group of $J_q(n, k)$ is:

- $P\Gamma L_n(q)$ when $n \neq 2k$.
- $\cdot P\Gamma L_n(q).C_2$ when n = 2k.

(In the second case the map $U \mapsto U^{\perp}$ is an automorphism.)

A subspace design \mathscr{D} may be thought of as a code in a Grassmann graph, and $\operatorname{Aut}(\mathscr{D})$ is then the setwise stabiliser of \mathscr{B} in $P\Gamma L_n(q)$ (unless \mathscr{D} is self-dual).

We say that a $t \cdot (n, k, \lambda)_q$ design $\mathcal{D} = (V, \mathcal{B})$ is block-transitive if $\operatorname{Aut}(\mathcal{D})$ acts transitively on \mathcal{B} .

We say that a $t \cdot (n, k, \lambda)_q$ design $\mathcal{D} = (V, \mathcal{B})$ is block-transitive if $\operatorname{Aut}(\mathcal{D})$ acts transitively on \mathcal{B} .

Recall that we can focus on the case t = 2 and $k \le n/2$.

Lemma

Suppose $\mathcal{D} = (V, \mathcal{B})$ is a block-transitive $2 \cdot (n, k, \lambda)_q$ design. Then $\operatorname{Aut}(\mathcal{D})$ is a subgroup of $P \Gamma L_n(q)$ and has order divisible by

$$|\mathscr{B}| = \frac{(n)_q(n-1)_q}{(k)_q(k-1)_q}\lambda.$$

A divisor r of $q^m - 1$ that is coprime to $q^i - 1$ for all i < m is called a *primitive divisor* of $q^m - 1$.

- If r is prime then r is called a *primitive prime divisor*.
- The largest primitive divisor is called the *primitive part*.
- Note that r divides $(m)_q$ and is coprime to $(i)_q$ for all i < m.

³Note that the theorem is actually a fair bit more general than this.

A divisor r of $q^m - 1$ that is coprime to $q^i - 1$ for all i < m is called a *primitive divisor* of $q^m - 1$.

- If *r* is prime then *r* is called a *primitive prime divisor*.
- The largest primitive divisor is called the *primitive part*.
- Note that r divides $(m)_q$ and is coprime to $(i)_q$ for all i < m.

Theorem (Zsigmondy's Theorem)³

Primitive prime divisors exist except for when $q^m = 2^6$.

³Note that the theorem is actually a fair bit more general than this.

Hering's Theorem (1985):

• Classified transitive linear groups.

Guralnick, Pentilla, Praeger, Saxl (1999):

• Classified groups $G \leq GL_n(q)$ such that |G| is divisible by some primitive prime divisor of $q^e - 1$, where $n/2 < e \leq n$.

Bamberg and Pentilla (2008):

• Classified groups $G \leq GL_n(q)$ such that |G| is divisible by the primitive part r of $q^e - 1$, where r > 1 and $n/2 < e \leq n$.

Applying Bamberg and Pentilla

Recall that if $\mathcal{D} = (V, \mathcal{B})$ is a block-transitive $t - (n, k, \lambda)_q$ design then $|\operatorname{Aut}(\mathcal{D})|$ is divisible by

$$|\mathscr{B}| = \frac{(n)_q(n-1)_q}{(k)_q(k-1)_q}\lambda_2.$$

In particular, $|\operatorname{Aut}(\mathcal{D})|$ is divisible by each of the primitive parts r_n and r_{n-1} of $q^n - 1$ and $q^{n-1} - 1$, respectively.

Applying Bamberg and Pentilla

Recall that if $\mathcal{D} = (V, \mathcal{B})$ is a block-transitive $t - (n, k, \lambda)_q$ design then $|\operatorname{Aut}(\mathcal{D})|$ is divisible by

$$|\mathscr{B}| = \frac{(n)_q(n-1)_q}{(k)_q(k-1)_q}\lambda_2.$$

In particular, $|\operatorname{Aut}(\mathcal{D})|$ is divisible by each of the primitive parts r_n and r_{n-1} of $q^n - 1$ and $q^{n-1} - 1$, respectively.

By the result of Bamberg and Pentilla, we than have the following cases:

1. One of
$$r_n$$
, r_{n-1} is equal to 1.
2. r_n , $r_{n-1} \neq 1$, r_n , r_{n-1} divide $|G|$ and $G \leq \Gamma L_1(q^n)$.
3. r_n , $r_{n-1} \neq 1$ and r_n , r_{n-1} divide $|G \cap GL_n(q)|$.

Applying Bamberg and Pentilla

Cases:

1. One of
$$r_n$$
, r_{n-1} is equal to 1.
2. r_n , $r_{n-1} \neq 1$, r_n , r_{n-1} divide $|G|$ and $G \leq \Gamma L_1(q^n)$.
3. r_n , $r_{n-1} \neq 1$ and r_n , r_{n-1} divide $|G \cap GL_n(q)|$.

Eliminate via:

- 1. Subgroup structure and geometric arguments.
- Divisibility conditions and geometric arguments leave one case, a hypothetical 2-(11, 5, 5)₂ design. Ruled out via a lengthy computation.
- 3. Apply Bamberg and Pentilla divisibility conditions eliminate any remaining cases.

Theorem (H., Lansdown)

There are no non-trivial block-transitive $t - (n, k, \lambda)_q$ designs for $t \ge 2$.

Theorem (H., Lansdown)

There are no non-trivial block-transitive t- $(n, k, \lambda)_q$ designs for $t \ge 2$.

A subspace design with $\lambda = 1$ is called a q-Steiner system.

Corollary (H., Lansdown)

There are no block-transitive q-Steiner systems.

Thanks for listening!

RICOTTA2023 at the University of Rijeka, Croatia.

July 3–7, 2023.

https://riccota2023.math.uniri.hr/

