On subspaces of classical polar spaces

Luca Giuzzi

(Joint work with Ilaria Cardinali and Antonio Pasini)

University of Brescia

Finite Geometries 2022 - Sixth Irsee Conference

Generalities Rank Residues

Polar spaces

Notation

• $\Gamma = (\mathscr{P}, \mathscr{L})$ point-line geometry;

•
$$\forall p, q \in \mathscr{P} : p \perp q \equiv \exists \ell \in \mathscr{L} : p, q \in \ell$$
 (collinearity);

•
$$X \subseteq \mathscr{P}$$
, $X^{\perp} := \{ p \in \mathscr{P} \colon \forall x \in X, p \perp x \}$ (perp).

Definition (One/all axiom)

 Γ is a *polar space* if and only if

$$\forall p \in \mathscr{P}, \ell \in \mathscr{L}, \text{ either } \ell \subseteq p^{\perp} \text{ or } |\ell \cap p^{\perp}| = 1.$$

Generalities Rank Residues

Polar spaces: subspaces

Definition

- Γ non-degenerate if $\operatorname{Rad}(\Gamma) := \mathscr{P}^{\perp} = \emptyset$.
- $X \subseteq \mathscr{P}$ subspace of Γ if

$$\forall \ell \in \mathscr{L} : |\ell \cap \mathsf{X}| \ge 2 \Rightarrow \ell \subseteq \mathsf{X}.$$

•
$$X \leq \Gamma$$
 singular if $X \subseteq X^{\perp}$.

Remark

A subspace X ≤ 𝒫 can be endowed with the structure of a polar space (𝒫_{|X}, ℒ_{|X}) where

$$\mathscr{P}_{\mathsf{X}} = \mathsf{X}, \qquad \mathscr{L}_{\mathsf{X}} := \{\ell \in \mathscr{L} : \ell \subseteq \mathsf{X}\}.$$

Generalities Rank Residues

Hyperplanes

Definition

• A hyperplane \mathscr{S} of a polar space $\Gamma := (\mathscr{P}, \mathscr{L})$ is a proper subspace $\mathscr{S} < \Gamma$ such that $\forall \ell \in \mathscr{L}, \ell \cap \mathscr{S} \neq \emptyset$.

Theorem (Shult)

Hyperplanes are maximal subspaces of Γ .

Generalities Rank Residues

Rank

Definition

- $\mathscr{S}(\Gamma) := \{ X \leq \Gamma \colon X \leq X^{\perp} \};$
- $\mathfrak{S}(\Gamma) := \{ well \text{ ordered chains of elements of } \mathscr{S}(\Gamma) \};$
- Rank: $\operatorname{Rk}(\Gamma) := \max\{|\mathfrak{z}| : \mathfrak{z} \in \mathfrak{S}(\Gamma)\}.$

Definition

 Γ of rank *n* thick if every line of Γ contains at least 3 points and every singular subspace of rank n - 2 is contained in at least 3 maximal singular subspaces.

Generalities Rank Residues

Remarks

Remarks

- If Γ is thick, then all of its maximal singular subspaces are self-dual projective spaces.
- All singular subspaces of Γ are projective spaces.
- The planes of a thick polar space of rank 3 are Moufang.
- If r := max{dim(X) + 1 : X ≤ 𝒫, X singular} < ∞, then all maximal singular subspaces (generators) of Γ have the same dimension Rk(Γ) − 1 = r − 1.
- If it is finite, the rank of Γ is the common (projective) dimension of its generators plus 1.

Generalities Rank Residues

Stars

Stars

- $X \leq \mathscr{P}$: singular subspace of Γ ;
- $\operatorname{Res}_{X}(\Gamma) := (\mathscr{P}_{X}, \mathscr{L}_{X})$ where
 - $\mathscr{P}_X := \{X \oplus \langle t \rangle \colon t \in X^{\perp}\};$

•
$$\mathscr{L}_X := \{ X \oplus \ell \colon \ell \in \mathscr{L}, \ell \subseteq X^\perp \}.$$

• $\operatorname{Res}_X(\Gamma)$ with incidence given by \subseteq is a polar space.

Remarks

- By construction, the elements of \mathscr{P}_X and \mathscr{L}_X are singular subspaces.
- If $X = \mathscr{P}^{\perp}$, then $\Gamma_{nd} := \operatorname{Res}_{\mathscr{P}^{\perp}}(\Gamma)$ is non-degenerate.

Generalities Rank Residues

Non-degenerate rank

Definition

- $\mathscr{S} \leq \Gamma$ subspace;
- Non-degenerate rank of *S*:

$$\operatorname{Rk}_{\operatorname{\textit{nd}}}(\mathscr{S}) := \operatorname{Rk}(\operatorname{Res}_{\operatorname{Rad}(\mathscr{S})}(\mathscr{S})).$$

Remark

•
$$\operatorname{Rad}(\mathscr{S}) = \mathscr{S} \cap \mathscr{S}^{\perp};$$

•
$$\operatorname{Rk}_{nd}(\mathscr{S}) = \operatorname{Rk}(\mathscr{S}) - \operatorname{Rk}(\operatorname{Rad}(\mathscr{S}));$$

• if $\mathscr S$ singular subspace, then $\operatorname{Rk}_{\operatorname{nd}}(\mathscr S)=0.$

Generalities Rank Residues

Our main problem

Problem

• Describe the subspaces of a given polar space.

I. Cardinali, LG, A. Pasini On subspaces of classical polar spaces

Projective embeddings Forms

Projective embeddings

Notation

- \mathbb{K} : division ring;
- $V:=V(\mathbb{K})$ vector space over $\mathbb{K};$
- $\Gamma = (\mathscr{P}, \mathscr{L})$: polar space.

Definition

• $\varepsilon : \mathscr{P} \to \mathrm{PG}(\mathsf{V})$ (full) projective embedding of Γ if

• $\dim(\varepsilon) := \dim(V)$.

Projective embeddings Forms

Natural questions

- \bullet When a polar space Γ is embeddable?
- How to describe a projective embedding? How many of them there are? Are there any preferred embeddings?
- \bullet What properties of Γ are "easy" to read in the embedding?
- How to characterize the possible embeddings in terms of Γ ?

Projective embeddings Forms

Embeddable polar spaces

Theorem (Tits)

- All polar spaces of rank $n \ge 4$ are embeddable.
- The non-embeddable polar spaces of rank n = 3 are:
 - Line Grassmannians of projective spaces of rank 3 over a non-commutative division ring K (not thick);
 - A class of polar spaces related to Cayley-Dickson division algebras whose totally singular planes are Moufang but not Desarguesian (thick).

Projective embeddings Forms

Embeddable polar spaces

- Γ := (𝒫, 𝒴) embeddable, non-degenerate, thick polar space of rank n with 2 ≤ n < ∞;
- $\varepsilon: \Gamma \to \mathrm{PG}(V)$ projective embedding.

Remark

• $\dim(\varepsilon) \ge 2n$.

Theorem (I. Cardinali, LG, A. Pasini)

An embeddable non-degenerate thick polar space Γ admits an embedding ε of dimension 2n if and only if

• for every generator M of $\Gamma, \, a, b \in \mathscr{P}$ with a $\not\perp b,$

 $\dim(\textit{M}/(\textit{M} \cap \{\textit{a},\textit{b}\}^{\perp})) = 1 \Rightarrow \textit{M} \cap \{\textit{a},\textit{b}\}^{\perp \perp} \neq \emptyset.$

Projective embeddings Forms

Covering embeddings

Definition

- $\varepsilon_1 : \mathscr{P} \to \mathrm{PG}(V_1), \, \varepsilon_2 : \mathscr{P} \to \mathrm{PG}(V_2) \text{ p. embeddings};$
- $\varepsilon_2 \leq \varepsilon_1$ ($\varepsilon_1 \text{ covers } \varepsilon_2$) if $\exists f: V_1 \to V_2$ such that

• ε dominant (or relatively universal) if

 $\forall \varepsilon': \mathscr{P} \to \mathrm{PG}(\mathsf{V}) \text{ embedding}, \varepsilon \leq \varepsilon' \Rightarrow \varepsilon \cong \varepsilon';$

• ε_{univ} (absolutely) universal if

 $\forall \varepsilon : \mathscr{P} \to \mathrm{PG}(V) \text{ embedding}, \varepsilon \leq \varepsilon_{\mathsf{univ}}.$

Projective embeddings Forms

Embeddable polar spaces

Definition

Γ := (𝒫, ℒ) classical polar space when it admits the universal embedding ε_{univ} : 𝒫 → PG(V) for suitable V := V(K).

Theorem (Tits)

If Γ is a classical polar space and $char(\mathbb{K}) \neq 2$ then ε_{univ} is the unique embedding of Γ .

Projective embeddings Forms

Describing the embeddings

Given

•
$$\Gamma := (\mathscr{P}, \mathscr{L})$$
: polar space;

• $\varepsilon: \mathscr{P} \to \mathrm{PG}(\mathsf{V})$: projective embedding.

Describe

•
$$\varepsilon(\mathscr{P}) \subseteq \mathrm{PG}(V);$$

• $\varepsilon(\mathscr{L}) \subseteq \operatorname{Gr}_2(\operatorname{PG}(V)).$

Projective embeddings Forms

Constructing polar spaces from forms

Theorem

Let f be a reflexive (σ,ϵ) -sesquilinear form on a vector space V. Then

- $\ \, \mathbf{O} \ \, \Gamma(f):=(\mathscr{P}(f),\mathscr{L}(f)) \text{ is a polar space where }$
 - $\mathscr{P}(f)$: set of the f-isotropic points of PG(V);
 - $\mathscr{L}(f)$: set of the totally f-isotropic lines of $\mathrm{PG}(V)$.
- **2** The identity mapping $\iota : \mathscr{P}(f) \to \mathrm{PG}(V)$ is an embedding for $\Gamma(f)$.
- 3 The polar space $\Gamma(f)$ is non-degenerate if and only if $[\operatorname{Rad}(f)] = \emptyset$.

Theorem

Let Q be a generalized (σ, ϵ) -pseudoquadratic form on a vector space V over \mathbb{K} with $(\sigma, \epsilon) \neq (\mathrm{Id}_{\mathbb{K}}, -1)$ if $\mathrm{char}(\mathbb{K}) \neq 2$. Then

- $\bigcirc \ \Gamma(\mathsf{Q}) := (\mathscr{P}(\mathsf{Q}), \mathscr{L}(\mathsf{Q})) \text{ is a polar space where }$
 - *P*(Q): set of the Q-singular points of PG(V);

• $\mathscr{L}(Q)$: set of the totally Q-singular lines of $\mathrm{PG}(V)$.

- The identity mapping $\iota : \mathscr{P}(f) \to \mathrm{PG}(V)$ is an embedding for $\Gamma(Q)$.
- The polar space $\Gamma(Q)$ is non-degenerate if and only if $[Rad(Q)] = \emptyset$.

Projective embeddings Forms

Description of the embeddings

Theorem (Tits)

Let Γ be an embeddable non-degenerate polar space of rank $n \ge 2$ and $\varepsilon: \Gamma \to PG(V)$ be an embedding.

- If ε is dominant, then ε(Γ) = Γ(Q) for Q a non-degenerate <u>pseudoquadratic form</u> Q defined over V or char(K) ≠ 2 and ε(Γ) = Γ(f) for f : V × V → K a non-degenerate <u>alternating form</u>.
- Furthermore, ε is also absolutely universal except in the following two cases:
 - Γ is a bi-embeddable quaternion quadrangle; i.e. $Rk(\Gamma) = 2$, $\dim(V) = 4$, \mathbb{K} is a quaternion division ring, Q is (σ, ϵ) -quadratic with σ the standard involution of \mathbb{K} and $\mathbb{K}_{\sigma,\epsilon}$ is a 1-dimensional vector space over $Z(\mathbb{K})$.

C is a grid of order at least 5; i.e. Rk(Γ) = 2, dim(V) = 4 and ε(Γ) is a hyperbolic quadric of the projective 3-space PG(V).

Main theorem Remarks

Subspaces from an embedding

Remark

- $\Gamma := (\mathscr{P}, \mathscr{L})$ embeddable polar space;
- $\varepsilon : \mathscr{P} \to \mathrm{PG}(\mathsf{V})$ embedding of Γ ;

•
$$[X] \leq \operatorname{PG}(V);$$

•
$$\mathscr{S} := \varepsilon^{-1}([X])$$
 is a subspace of Γ .

Definition

We say that a subspace \mathscr{S} of Γ arises from the embedding $\varepsilon : \mathscr{P} \to \operatorname{PG}(V)$ if there is $[X] \leq \operatorname{PG}(V)$ such that $\mathscr{S} = \varepsilon^{-1}([X])$.

Remark

In general, not all subspaces of Γ arise from (any) embeddings.

Main theorem Remarks

Example 1: wrong embedding

•
$$\mathbb{K} := \mathbb{F}_{2^n}, \ V := \mathbb{K}^6, \ f(\mathbf{x}) = \mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_3 \mathbf{x}_4 + \mathbf{x}_5 \mathbf{x}_6,$$

 $(\mathscr{P}, \mathscr{L}) := \Gamma(f);$

- $\iota : \mathscr{P} \to \mathrm{PG}(V)$ given by the identity is an embedding;
- $\varepsilon_{\text{univ}}: \mathscr{P} \to \mathrm{PG}(\mathbb{K}^7)$ universal embedding;
- the image of $\varepsilon_{\rm univ}$ is the quadric

$$Q(\mathbf{x}') = \mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_3 \mathbf{x}_4 + \mathbf{x}_5 \mathbf{x}_6 + \mathbf{x}_7^2;$$

• $\pi : \mathbf{x}_1 + \mathbf{x}_7 = 0;$ • $\mathscr{S} := \varepsilon_{\text{univ}}^{-1}(\pi):$ subspace of $\Gamma(f)$ arising from $\varepsilon_{\text{univ}}$ but not $\iota;$ • $\iota(\mathscr{S})$ is a quadric.

Main theorem Remarks

Example 2: Subspaces of rank 1

- $\mathbb{K} := \mathbb{F}_{q^2}$, $V := \mathbb{K}^4$, $f(\mathbf{x}) = \mathbf{x}_1 \mathbf{x}_2^q + \mathbf{x}_3 \mathbf{x}_4^q$.
- $(\mathscr{P}, \mathscr{L}) := \Gamma(f)$ polar space;
- $\iota: \mathscr{P} \to \mathrm{PG}(V)$: identity mapping;
- ι is the universal embedding of $\Gamma(f)$;
- The pointset of Γ is identified by ι with an Hermitian surface $\mathscr{H}(3, q^2)$;
- It is well known that $\mathscr{H}(3,q^2)$ has non-classical ovoids (e.g. obtained by derivation) \mathscr{O} ;
- The preimage $\iota^{-1}(\mathscr{O})$ of a non-classical ovoid \mathscr{O} of $\mathscr{H}(3, q^2)$ is a hyperplane of $\Gamma(f)$ which does not arise from ι .

Main theorem Remarks

Main theorem

Theorem (A. Cohen, E.E. Shult)

Let Γ := (𝒫, 𝒫) to be a polar space of rank n > 2. Then all hyperplanes of Γ arise from ε_{univ} : 𝒫 → PG(V_{univ}).

Theorem (I. Cardinali, LG, A. Pasini)

Suppose

- Γ: classical polar space of finite rank n ≥ 2 with universal embedding ε_{univ} : Γ → PG(V_{univ});
- \mathscr{S} : proper non-singular subspace of Γ with $\operatorname{Rk}_{\operatorname{nd}}(\mathscr{S}) \geq 2$.

Then

• $\mathscr S$ arises from $\varepsilon_{\mathrm{univ}}$.

Main theorem Remarks

Remarks

Remarks

- Γ has finite rank but we do not assume it is finitely generated.
- The hypothesis $\operatorname{Rk}_{\operatorname{nd}}(\mathscr{S}) \geq 2$ cannot be removed from the theorem.
- If Rk_{nd}(S) = 1, then S is a "cone over a partial ovoid", in the sense that S is a collection of singular subspaces of rank k + 1 containing a fixed subspace of rank k, no two of them contained in a common singular subspace.
- The two embeddable polar spaces which do not admit the universal embedding do not admit proper non-singular subspaces of nondegenerate rank at least 2 (so we do not need to exclude them explicitly).

Theorem (I. Cardinali, LG, A. Pasini)

 Every maximal proper subspace of rank at least 2 of a classical polar space Γ is a hyperplane.

Corollary (I. Cardinali, LG, A. Pasini)

Suppose

• Γ : polar space with $Rk(\Gamma) = n > 2$.

Then

 The hyperplanes of Γ are precisely the maximal subspaces of Γ of rank at least 2 (actually either n − 1 or n).

Remark (Anonymous referee)

- When Rk(Γ) = 2 there are maximal subspaces of rank 1 which are not hyperplanes.
- (actually also when $\operatorname{Rk}(\Gamma) > 2$ there might be such subspaces)

Theorem (I. Cardinali, LG, A. Pasini)

Suppose

• $\Gamma := (\mathscr{P}, \mathscr{L})$: polar space of rank 2.

Then

- Γ does not admit a 2-dimensional embedding;
- if Γ admits a relatively universal 3-dimensional embedding, then all of its proper subspaces have non-degenerate rank at most 1.

Further developments

Theorem (A. Pasini)

Let Γ be an embeddable polar space of rank n > 2. Then any subspace \mathscr{S} of Γ of non-degenerate rank at least 2 arises from an embedding, except possibly when \mathscr{S} is a rosette.

References

- I. Cardinali, L. Giuzzi, A. Pasini, Nearly all subspaces of a classical polar space arise from its universal embedding, Linear Algebra Appl. 627 (2021), 287-307 doi:10.1016/j.laa.2021.06.013 (arXiv:2010.07640).
- A.M. Cohen, E.E. Shult, Affine polar spaces, Geom. Dedicata 35 (1990), 43-76.
- E.E. Shult, Points and lines, Springer-Verlag (2011).
- J. Tits, Buildings of Spherical Type and Finite BN-Pairs, LNM volume **386** (1974).