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Polar spaces

Notation
Γ = (P,L ) point-line geometry;
∀p,q ∈ P : p ⊥ q ≡ ∃` ∈ L : p,q ∈ ` (collinearity);
X ⊆ P, X⊥ := {p ∈ P : ∀x ∈ X ,p ⊥ x} (perp).

Definition (One/all axiom)

Γ is a polar space if and only if

∀p ∈ P, ` ∈ L , either ` ⊆ p⊥ or |` ∩ p⊥| = 1.
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Polar spaces: subspaces

Definition
Γ non-degenerate if Rad(Γ) := P⊥ = ∅.
X ⊆ P subspace of Γ if

∀` ∈ L : |` ∩ X | ≥ 2 ⇒ ` ⊆ X .

X ≤ Γ singular if X ⊆ X⊥.

Remark
A subspace X ≤ P can be endowed with the structure of a
polar space (P|X ,L|X ) where

PX = X , LX := {` ∈ L : ` ⊆ X}.
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Hyperplanes

Definition
A hyperplane S of a polar space Γ := (P,L ) is a proper
subspace S < Γ such that ∀` ∈ L , ` ∩ S 6= ∅.

Theorem (Shult)

Hyperplanes are maximal subspaces of Γ.
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Rank

Definition
S (Γ) := {X ≤ Γ: X ≤ X⊥};
S(Γ) := {well ordered chains of elements of S (Γ)};
Rank: Rk(Γ) := max{|z| : z ∈ S(Γ)}.

Definition
Γ of rank n thick if every line of Γ contains at least 3 points
and every singular subspace of rank n− 2 is contained in at
least 3 maximal singular subspaces.
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Remarks

Remarks
If Γ is thick, then all of its maximal singular subspaces are
self-dual projective spaces.
All singular subspaces of Γ are projective spaces.
The planes of a thick polar space of rank 3 are Moufang.
If r := max{dim(X) + 1 : X ≤ P,X singular} < ∞, then all
maximal singular subspaces (generators) of Γ have the same
dimension Rk(Γ)− 1 = r − 1.
If it is finite, the rank of Γ is the common (projective)
dimension of its generators plus 1.
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Stars

Stars
X ≤ P: singular subspace of Γ;
ResX (Γ) := (PX ,LX ) where

PX := {X ⊕ 〈t〉 : t ∈ X⊥};
LX := {X ⊕ ` : ` ∈ L , ` ⊆ X⊥}.

ResX(Γ) with incidence given by ⊆ is a polar space.

Remarks
By construction, the elements of PX and LX are singular
subspaces.
If X = P⊥, then Γnd := ResP⊥(Γ) is non–degenerate.
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Non-degenerate rank

Definition
S ≤ Γ subspace;
Non-degenerate rank of S :

Rknd(S ) := Rk(ResRad(S )(S )).

Remark
Rad(S ) = S ∩ S ⊥;
Rknd(S ) = Rk(S )− Rk(Rad(S ));

if S singular subspace, then Rknd(S ) = 0.
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Our main problem

Problem
Describe the subspaces of a given polar space.
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Projective embeddings

Notation
K: division ring;
V := V (K) vector space over K;
Γ = (P,L ): polar space.

Definition
ε : P → PG(V ) (full) projective embedding of Γ if

1 ε is injective;
2 ∀` ∈ L : {ε(p) : p ∈ `} is a line of PG(V );
3 〈ε(P)〉 = PG(V ).

dim(ε) := dim(V ).
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Natural questions

When a polar space Γ is embeddable?
How to describe a projective embedding? How many of
them there are? Are there any preferred embeddings?
What properties of Γ are “easy” to read in the embedding?
How to characterize the possible embeddings in terms of Γ?
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Embeddable polar spaces

Theorem (Tits)

All polar spaces of rank n ≥ 4 are embeddable.
The non-embeddable polar spaces of rank n = 3 are:

1 Line Grassmannians of projective spaces of rank 3 over a
non-commutative division ring K (not thick);

2 A class of polar spaces related to Cayley-Dickson division
algebras whose totally singular planes are Moufang but not
Desarguesian (thick).
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Embeddable polar spaces

Γ := (P,L ) embeddable, non-degenerate, thick polar
space of rank n with 2 ≤ n < ∞;
ε : Γ → PG(V ) projective embedding.

Remark
dim(ε) ≥ 2n.

Theorem (I. Cardinali, LG, A. Pasini)

An embeddable non-degenerate thick polar space Γ admits an
embedding ε of dimension 2n if and only if

for every generator M of Γ, a,b ∈ P with a 6⊥ b,

dim(M/(M ∩ {a,b}⊥)) = 1 ⇒ M ∩ {a,b}⊥⊥ 6= ∅.
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Covering embeddings

Definition
ε1 : P → PG(V1), ε2 : P → PG(V2) p. embeddings;
ε2 ≤ ε1 (ε1 covers ε2) if ∃f : V1 → V2 such that

P PG(V1)

PG(V2)

ε2

ε1

[f ]

ε dominant (or relatively universal) if

∀ε′ : P → PG(V ) embedding, ε ≤ ε′ ⇒ ε ∼= ε′;

εuniv (absolutely) universal if

∀ε : P → PG(V ) embedding, ε ≤ εuniv.
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Embeddable polar spaces

Definition
Γ := (P,L ) classical polar space when it admits the
universal embedding εuniv : P → PG(V ) for suitable
V := V (K).

Theorem (Tits)

If Γ is a classical polar space and char(K) 6= 2 then εuniv is the
unique embedding of Γ.
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Describing the embeddings

Given
Γ := (P,L ): polar space;
ε : P → PG(V ): projective embedding.

Describe
ε(P) ⊆ PG(V );
ε(L ) ⊆ Gr2(PG(V )).
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Constructing polar spaces from forms
Theorem

Let f be a reflexive (σ, ε)-sesquilinear form on a vector space V . Then
1 Γ(f ) := (P(f ),L (f )) is a polar space where

P(f ): set of the f -isotropic points of PG(V);

L (f ): set of the totally f -isotropic lines of PG(V).

2 The identity mapping ι : P(f ) → PG(V) is an embedding for Γ(f ).
3 The polar space Γ(f ) is non-degenerate if and only if [Rad(f )] = ∅.

Theorem

Let Q be a generalized (σ, ε)-pseudoquadratic form on a vector space V over K with
(σ, ε) 6= (IdK,−1) if char(K) 6= 2. Then

1 Γ(Q) := (P(Q),L (Q)) is a polar space where
P(Q): set of the Q-singular points of PG(V);

L (Q): set of the totally Q-singular lines of PG(V).

2 The identity mapping ι : P(f ) → PG(V) is an embedding for Γ(Q).
3 The polar space Γ(Q) is non-degenerate if and only if [Rad(Q)] = ∅.

I. Cardinali, LG, A. Pasini On subspaces of classical polar spaces



Polar spaces
Embeddings
Main results

Consequences

Projective embeddings
Forms

Description of the embeddings

Theorem (Tits)

Let Γ be an embeddable non-degenerate polar space of rank n ≥ 2 and
ε : Γ → PG(V ) be an embedding.

If ε is dominant, then ε(Γ) = Γ(Q) for Q a non-degenerate
pseudoquadratic form Q defined over V or char(K) 6= 2 and ε(Γ) = Γ(f )
for f : V × V → K a non-degenerate alternating form.

Furthermore, ε is also absolutely universal except in the following two
cases:

1 Γ is a bi-embeddable quaternion quadrangle; i.e. Rk(Γ) = 2,
dim(V ) = 4, K is a quaternion division ring, Q is (σ, ε)-quadratic
with σ the standard involution of K and Kσ,ε is a 1-dimensional
vector space over Z(K).

2 Γ is a grid of order at least 5; i.e. Rk(Γ) = 2, dim(V ) = 4 and
ε(Γ) is a hyperbolic quadric of the projective 3-space PG(V ).
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Subspaces from an embedding

Remark
Γ := (P,L ) embeddable polar space;
ε : P → PG(V ) embedding of Γ;
[X ] ≤ PG(V );
S := ε−1([X ]) is a subspace of Γ.

Definition
We say that a subspace S of Γ arises from the embedding
ε : P → PG(V ) if there is [X ] ≤ PG(V ) such that S = ε−1([X ]).

Remark
In general, not all subspaces of Γ arise from (any) embeddings.
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Example 1: wrong embedding

K := F2n , V := K6, f (x) = x1x2 + x3x4 + x5x6,
(P,L ) := Γ(f );
ι : P → PG(V ) given by the identity is an embedding;
εuniv : P → PG(K7) universal embedding;
the image of εuniv is the quadric

Q(x′) = x1x2 + x3x4 + x5x6 + x27 ;

π : x1 + x7 = 0;
S := ε−1

univ(π): subspace of Γ(f ) arising from εuniv but not ι;
ι(S ) is a quadric.
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Example 2: Subspaces of rank 1

K := Fq2, V := K4, f (x) = x1x
q
2 + x3x

q
4 .

(P,L ) := Γ(f ) polar space;
ι : P → PG(V ): identity mapping;
ι is the universal embedding of Γ(f );
The pointset of Γ is identified by ι with an Hermitian surface
H (3,q2);
It is well known that H (3,q2) has non-classical ovoids (e.g.
obtained by derivation) O;
The preimage ι−1(O) of a non-classical ovoid O of H (3,q2)
is a hyperplane of Γ(f ) which does not arise from ι.
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Main theorem

Theorem (A. Cohen, E.E. Shult)

Let Γ := (P,L ) to be a polar space of rank n > 2. Then all
hyperplanes of Γ arise from εuniv : P → PG(Vuniv).

Theorem (I. Cardinali, LG, A. Pasini)
Suppose

Γ: classical polar space of finite rank n ≥ 2 with universal
embedding εuniv : Γ → PG(Vuniv);
S : proper non-singular subspace of Γ with Rknd(S ) ≥ 2.

Then
S arises from εuniv.
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Remarks

Remarks

Γ has finite rank but we do not assume it is finitely generated.
The hypothesis Rknd(S ) ≥ 2 cannot be removed from the theorem.
If Rknd(S ) = 1, then S is a “cone over a partial ovoid”, in the sense that
S is a collection of singular subspaces of rank k + 1 containing a fixed
subspace of rank k, no two of them contained in a common singular
subspace.
The two embeddable polar spaces which do not admit the universal
embedding do not admit proper non-singular subspaces of nondegenerate
rank at least 2 (so we do not need to exclude them explicitly).
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Theorem (I. Cardinali, LG, A. Pasini)

Every maximal proper subspace of rank at least 2 of a
classical polar space Γ is a hyperplane.

Corollary (I. Cardinali, LG, A. Pasini)

Suppose
Γ: polar space with Rk(Γ) = n > 2.

Then
The hyperplanes of Γ are precisely the maximal subspaces of
Γ of rank at least 2 (actually either n− 1 or n).
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Remark (Anonymous referee)

When Rk(Γ) = 2 there are maximal subspaces of rank 1
which are not hyperplanes.
(actually also when Rk(Γ) > 2 there might be such
subspaces)
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Theorem (I. Cardinali, LG, A. Pasini)
Suppose

Γ := (P,L ): polar space of rank 2.
Then

Γ does not admit a 2-dimensional embedding;
if Γ admits a relatively universal 3-dimensional embedding,
then all of its proper subspaces have non-degenerate rank at
most 1.
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Further developments

Theorem (A. Pasini)

Let Γ be an embeddable polar space of rank n > 2. Then any
subspace S of Γ of non-degenerate rank at least 2 arises from an
embedding, except possibly when S is a rosette.
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