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P: finite classical polar space of PG(n, q)
subspaces of PG(n, q) that are totally isotropic (totally singular) w.r.t.

a reflexive sesquilinear (quadratic) form of the Witt index r

L: the polarity of PG(n, q)

two points are collinear whenever they are |

P-: all points orthogonal with P (a hyperplane of PG(n, q))
M+ = NpenP*

generators: subspaces of P of max dimension (r — 1)
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Excluding the trivial cases:

* m=20: O is empty,

* m=|PG(r—1,q)|: O contains all points of P,
and up to taking the complement:
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Theorem (B. Segre, 1965)

If O is a proper m-ovoid of Q= (5, q), then q is odd and m = (q + 1)/2.5




m-ovoids of Q7 (2r +1,q), r =2

Quite a few hemisystems were constructed in the past few decades:

® A. Cossidente, T. Penttila, Hemisystems on the Hermitian surface,
LMS, 2005.

J. Bamberg, M. Giudici, G.F. Royle, Every flock generalized
quadrangle has a hemisystem, BLMS, 2010.

J. Bamberg, M. Giudici, G.F. Royle, Hemisystems of small flock
generalized quadrangles, DCC, 2013.

A. Cossidente, F. Pavese, Intriguing sets of quadrics in PG(5, q),
Adv. Geom., 2017.

J. Bamberg, M. Lee, K. Momihara, Q. Xiang, A new infinite family of
hemisystems of the Hermitian surface, Combinatorica, 2018.

G. Korchmdros, G.P. Nagy, P. Speziali, Hemisystems of the Hermitian
surface, JCTA, 2019.
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Main result

Theorem (A.G., K. Metsch, F. Pavese)
Let O be an m-ovoid of Q~(2r +1,q), r > 2. Then

m?>—m=0 (modq+1)
if r is odd, and

m2

q+1
2

0 (mod g+ 1) when q is even, or
m? + m 0

(mod g+ 1) when q is odd,

if r is even.
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even, DM, 2005.

A (g + 1)-ovoid of Q~(7,q), q € {2,3}, arises by field reduction from
Q(3,¢%). J
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https://arxiv.org/abs/2208.13023 (August 27, 2022)
by Tao Feng, Weicong Li, Ran Tao:

On m-ovoids of finite classical polar spaces with an irreducible transitive
automorphism group J

® In the case of elliptic quadrics, at some point they obtained 70
candidate values for m.

® Only 11 cases survived after applying our theorem.
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2 o'

e
<6
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In particular, |xo|? = |0|.

|l = w(Po)?+ (u(Po) +m(g—1))*+(q+1) > p(Pr)? |k, |>
P1ePy-\{Po}

Fix a maximal flag Po C 4y C o C ... and let u = xo

H,LL#OHZZ. .. (in m,q,r)
T ' L\ Y
o Tl = e = (02)' -
o
2
Compute H#O H by induction, modulo q+1
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Equating modulo g + 1

2 .
= Gn ma

2 P N AN
t? = [ = (o) | = (Gs)s) | -
2
Compute ;,Lto H by induction, modulo q+1

Assuming that Py ¢ O:

m(q—12+m(qd" +q) = llupl?
| —2gm?® + (g +1)(g" P+ 1)m if ris odd
(P +1)m? if r is even

Computing modulo g + 1 and simplifying gives the result.
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Main result

Theorem (A.G., K. Metsch, F. Pavese)
Let O be an m-ovoid of Q~(2r +1,q), r > 2. Then

m?>—m=0 (modq+1)

if r is odd, and

m2

1
gark

0 (mod g+ 1) when q is even, or
m? + 0

(mod g+ 1) when q is odd,

if r is even.
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