A modular equality for *m*-ovoids of elliptic quadrics

Alexander Gavrilyuk

Shimane University, Japan

(joint work with Klaus Metsch and Francesco Pavese)

September 2, 2022

q: a prime power

q: a prime power

 $V\colon (n+1)$ -dimensional vector space over \mathbb{F}_q

q: a prime power

 $V\colon (n+1)$ -dimensional vector space over \mathbb{F}_q

$$\mathrm{PG}(n,q) := \mathrm{PG}(V)$$

q: a prime power

 $V\colon (n+1)$ -dimensional vector space over \mathbb{F}_q

 $\mathrm{PG}(n,q) := \mathrm{PG}(V)$

 \mathcal{P} : finite classical polar space of $\mathrm{PG}(n,q)$

q: a prime power

V: (n+1)-dimensional vector space over \mathbb{F}_q

PG(n,q) := PG(V)

 \mathcal{P} : finite classical polar space of $\mathrm{PG}(n,q)$

subspaces of PG(n, q) that are totally isotropic (totally singular) w.r.t.

q: a prime power

 $V\colon (n+1)$ -dimensional vector space over \mathbb{F}_q

PG(n,q) := PG(V)

 \mathcal{P} : finite classical polar space of $\mathrm{PG}(n,q)$ subspaces of $\mathrm{PG}(n,q)$ that are totally isotropic (totally singular) w.r.t. a reflexive sesquilinear (quadratic) form of the Witt index r

q: a prime power

 $V\colon (n+1)$ -dimensional vector space over \mathbb{F}_q

PG(n,q) := PG(V)

 \mathcal{P} : finite classical polar space of $\mathrm{PG}(n,q)$ subspaces of $\mathrm{PG}(n,q)$ that are totally isotropic (totally singular) w.r.t. a reflexive sesquilinear (quadratic) form of the Witt index r

 \perp : the polarity of PG(n,q)

```
q: a prime power
```

 $V\colon (n+1)$ -dimensional vector space over \mathbb{F}_q

$$PG(n,q) := PG(V)$$

 \mathcal{P} : finite classical polar space of $\mathrm{PG}(n,q)$ subspaces of $\mathrm{PG}(n,q)$ that are totally isotropic (totally singular) w.r.t. a reflexive sesquilinear (quadratic) form of the Witt index r

ot: the polarity of $\mathrm{PG}(n,q)$ two points are collinear whenever they are ot

q: a prime power

```
V: (n+1)-dimensional vector space over \mathbb{F}_q \operatorname{PG}(n,q) := \operatorname{PG}(V) \mathcal{P}: finite classical polar space of \operatorname{PG}(n,q) subspaces of \operatorname{PG}(n,q) that are totally isotropic (totally singular) w.r.t. a reflexive sesquilinear (quadratic) form of the Witt index r
```

 \perp : the polarity of $\mathrm{PG}(n,q)$ two points are collinear whenever they are \perp P^{\perp} : all points orthogonal with P (a hyperplane of $\mathrm{PG}(n,q)$)

q: a prime power

V: (n+1)-dimensional vector space over \mathbb{F}_q $\operatorname{PG}(n,q) := \operatorname{PG}(V)$ \mathcal{P} : finite classical polar space of $\operatorname{PG}(n,q)$ subspaces of $\operatorname{PG}(n,q)$ that are totally isotropic (totally singular) w.r.t.

 \perp : the polarity of $\mathrm{PG}(n,q)$ two points are collinear whenever they are \perp P^{\perp} : all points orthogonal with P (a hyperplane of $\mathrm{PG}(n,q)$) $\Pi^{\perp} = \cap_{P \in \Pi} P^{\perp}$

a reflexive sesquilinear (quadratic) form of the Witt index r

q: a prime power

PG(n, q) := PG(V)

```
\mathcal{P}: finite classical polar space of \mathrm{PG}(n,q) subspaces of \mathrm{PG}(n,q) that are totally isotropic (totally singular) w.r.t. a reflexive sesquilinear (quadratic) form of the Witt index r
\perp: the polarity of \mathrm{PG}(n,q) two points are collinear whenever they are \perp
P^{\perp}: all points orthogonal with P (a hyperplane of \mathrm{PG}(n,q)) \Pi^{\perp} = \cap_{P \in \Pi} P^{\perp} generators: subspaces of \mathcal{P} of max dimension (r-1)
```

V: (n+1)-dimensional vector space over \mathbb{F}_a

Quadrics: $Q^+(2r-1,q) \mid Q(2r,q) \mid Q^-(2r+1,q)$

Quadrics: $Q^+(2r-1,q) \mid Q(2r,q) \mid Q^-(2r+1,q)$ Hermitian varieties: $\mathcal{H}(2r-1,q^2) \mid \mathcal{H}(2r,q^2)$

```
Quadrics: Q^+(2r-1,q) \mid Q(2r,q) \mid Q^-(2r+1,q)
Hermitian varieties: \mathcal{H}(2r-1,q^2) \mid \mathcal{H}(2r,q^2)
Symplectic polar spaces: \mathcal{W}(2r-1,q)
```

```
Quadrics: Q^+(2r-1,q) \mid Q(2r,q) \mid Q^-(2r+1,q)
Hermitian varieties: \mathcal{H}(2r-1,q^2) \mid \mathcal{H}(2r,q^2)
Symplectic polar spaces: \mathcal{W}(2r-1,q)
```

A point set \mathcal{O} is an **ovoid** if each generator of \mathcal{P} meets \mathcal{O} in 1 point

```
Quadrics: Q^+(2r-1,q) \mid Q(2r,q) \mid Q^-(2r+1,q)
Hermitian varieties: \mathcal{H}(2r-1,q^2) \mid \mathcal{H}(2r,q^2)
Symplectic polar spaces: \mathcal{W}(2r-1,q)
```

A point set $\mathcal O$ is an **ovoid** if each generator of $\mathcal P$ meets $\mathcal O$ in 1 point

ullet a Hoffman-Delsarte coclique in the collinearity graph of ${\mathcal P}$

```
Quadrics: Q^+(2r-1,q) \mid Q(2r,q) \mid Q^-(2r+1,q)
Hermitian varieties: \mathcal{H}(2r-1,q^2) \mid \mathcal{H}(2r,q^2)
Symplectic polar spaces: \mathcal{W}(2r-1,q)
```

A point set $\mathcal O$ is an **ovoid** if each generator of $\mathcal P$ meets $\mathcal O$ in 1 point

- ullet a Hoffman-Delsarte coclique in the collinearity graph of ${\mathcal P}$
- J.A. Thas, Ovoids and spreads of finite classical polar spaces, Geom. Ded., 1981.

Quadrics: $Q^+(2r-1,q) \mid Q(2r,q) \mid Q^-(2r+1,q)$ Hermitian varieties: $\mathcal{H}(2r-1,q^2) \mid \mathcal{H}(2r,q^2)$ Symplectic polar spaces: $\mathcal{W}(2r-1,q)$

A point set $\mathcal O$ is an **ovoid** if each generator of $\mathcal P$ meets $\mathcal O$ in 1 point

- ullet a Hoffman-Delsarte coclique in the collinearity graph of ${\mathcal P}$
- J.A. Thas, Ovoids and spreads of finite classical polar spaces, *Geom. Ded.*, 1981.

A point set $\mathcal O$ is an m-ovoid if each generator of $\mathcal P$ meets $\mathcal O$ in m points

Quadrics: $Q^+(2r-1,q) \mid Q(2r,q) \mid Q^-(2r+1,q)$ Hermitian varieties: $\mathcal{H}(2r-1,q^2) \mid \mathcal{H}(2r,q^2)$

Symplectic polar spaces: W(2r-1,q)

A point set $\mathcal O$ is an $\mathbf ovoid$ if each generator of $\mathcal P$ meets $\mathcal O$ in 1 point

- ullet a Hoffman-Delsarte coclique in the collinearity graph of ${\mathcal P}$
- J.A. Thas, Ovoids and spreads of finite classical polar spaces, *Geom. Ded.*, 1981.

A point set $\mathcal O$ is an m-ovoid if each generator of $\mathcal P$ meets $\mathcal O$ in m points

 J.A. Thas, Interesting pointsets in generalized quadrangles and partial geometries, LAA, 1989.

Quadrics: $Q^+(2r-1,q) \mid Q(2r,q) \mid Q^-(2r+1,q)$ Hermitian varieties: $\mathcal{H}(2r-1,q^2) \mid \mathcal{H}(2r,q^2)$

Symplectic polar spaces: W(2r-1,q)

A point set $\mathcal O$ is an **ovoid** if each generator of $\mathcal P$ meets $\mathcal O$ in 1 point

- ullet a Hoffman-Delsarte coclique in the collinearity graph of ${\mathcal P}$
- J.A. Thas, Ovoids and spreads of finite classical polar spaces, *Geom. Ded.*, 1981.

A point set $\mathcal O$ is an m-ovoid if each generator of $\mathcal P$ meets $\mathcal O$ in m points

- J.A. Thas, Interesting pointsets in generalized quadrangles and partial geometries, *LAA*, 1989.
- E.E. Shult, J.A. Thas, *m*-systems of polar spaces, *JCTA*, 1994.

Quadrics: $Q^+(2r-1,q) \mid Q(2r,q) \mid Q^-(2r+1,q)$ Hermitian varieties: $\mathcal{H}(2r-1,q^2) \mid \mathcal{H}(2r,q^2)$ Symplectic polar spaces: $\mathcal{W}(2r-1,q)$

A point set $\mathcal O$ is an **ovoid** if each generator of $\mathcal P$ meets $\mathcal O$ in 1 point

- ullet a Hoffman-Delsarte coclique in the collinearity graph of ${\cal P}$
- J.A. Thas, Ovoids and spreads of finite classical polar spaces, Geom. Ded., 1981.

A point set $\mathcal O$ is an m-ovoid if each generator of $\mathcal P$ meets $\mathcal O$ in m points

- J.A. Thas, Interesting pointsets in generalized quadrangles and partial geometries, *LAA*, 1989.
- E.E. Shult, J.A. Thas, m-systems of polar spaces, JCTA, 1994.
- J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, *JCTA*, 2007.

Determine the values of m, for which $\mathcal P$ possesses an m-ovoid.

Determine the values of m, for which $\mathcal P$ possesses an m-ovoid.

Excluding the trivial cases:

Determine the values of m, for which $\mathcal P$ possesses an m-ovoid.

Excluding the trivial cases:

• m = 0: \mathcal{O} is empty,

Determine the values of m, for which $\mathcal P$ possesses an m-ovoid.

Excluding the trivial cases:

- m = 0: \mathcal{O} is empty,
- m = |PG(r-1, q)|: \mathcal{O} contains all points of \mathcal{P} ,

Determine the values of m, for which \mathcal{P} possesses an m-ovoid.

Excluding the trivial cases:

- m = 0: \mathcal{O} is empty,
- m = |PG(r-1, q)|: \mathcal{O} contains all points of \mathcal{P} ,

and up to taking the complement:

Determine the values of m, for which P possesses an m-ovoid.

Excluding the trivial cases:

- m = 0: \mathcal{O} is empty,
- m = |PG(r-1, q)|: \mathcal{O} contains all points of \mathcal{P} ,

and up to taking the complement:

• $\mathcal{P} \setminus \mathcal{O}$ is (|PG(r-1,q)| - m)-ovoid of \mathcal{P} .

Let $\mathcal O$ be an m-ovoid of $\mathcal P$ and $\mathcal P \in \{\mathcal H(2r,q^2), \mathcal Q^-(2r+1,q), \mathcal W(2r-1,q)\}$

Let \mathcal{O} be an *m*-ovoid of \mathcal{P} and $\mathcal{P} \in \{\mathcal{H}(2r, q^2), \mathcal{Q}^-(2r+1, q), \mathcal{W}(2r-1, q)\}$ $\Rightarrow \mathcal{O}$ is a *two-character* set w.r.t. the hyperplanes of $\mathrm{PG}(n, q)$

Let \mathcal{O} be an m-ovoid of \mathcal{P} and $\mathcal{P} \in \{\mathcal{H}(2r,q^2), \mathcal{Q}^-(2r+1,q), \mathcal{W}(2r-1,q)\}$ $\Rightarrow \mathcal{O}$ is a *two-character* set w.r.t. the hyperplanes of $\mathrm{PG}(n,q)$ $\Rightarrow \mathsf{SRG}(v,k,\lambda,\mu)$ with v,k,λ,μ in terms of m,q, and r

```
Let \mathcal{O} be an m-ovoid of \mathcal{P} and \mathcal{P} \in \{\mathcal{H}(2r,q^2), \mathcal{Q}^-(2r+1,q), \mathcal{W}(2r-1,q)\} \Rightarrow \mathcal{O} is a two-character set w.r.t. the hyperplanes of \mathrm{PG}(n,q) \Rightarrow \mathit{SRG}(v,k,\lambda,\mu) with v,k,\lambda,\mu in terms of m,q, and r \lambda \geq 0 \implies m \geq s some lower bound in q and r
```

```
Let \mathcal{O} be an m-ovoid of \mathcal{P} and \mathcal{P} \in \{\mathcal{H}(2r,q^2), \mathcal{Q}^-(2r+1,q), \mathcal{W}(2r-1,q)\} \Rightarrow \mathcal{O} is a two-character set w.r.t. the hyperplanes of \mathrm{PG}(n,q) \Rightarrow \mathit{SRG}(v,k,\lambda,\mu) with v,k,\lambda,\mu in terms of m,q, and r \lambda \geq 0 \implies m \geq s some lower bound in q and r
```

• J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, *JCTA*, 2007.

Let \mathcal{O} be an m-ovoid of \mathcal{P} and $\mathcal{P} \in \{\mathcal{H}(2r,q^2), \mathcal{Q}^-(2r+1,q), \mathcal{W}(2r-1,q)\}$ $\Rightarrow \mathcal{O}$ is a two-character set w.r.t. the hyperplanes of $\mathrm{PG}(n,q)$ $\Rightarrow \mathit{SRG}(v,k,\lambda,\mu)$ with v,k,λ,μ in terms of m,q, and r $\lambda \geq 0 \implies m \geq \lceil \mathsf{some} \rceil$ some lower bound in q and r

• J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, *JCTA*, 2007.

From now on, $\mathcal{P} = \mathcal{Q}^-(2r+1,q)$, an elliptic quadric

Let \mathcal{O} be an m-ovoid of \mathcal{P} and $\mathcal{P} \in \{\mathcal{H}(2r,q^2), \mathcal{Q}^-(2r+1,q), \mathcal{W}(2r-1,q)\}$ $\Rightarrow \mathcal{O}$ is a two-character set w.r.t. the hyperplanes of $\mathrm{PG}(n,q)$ $\Rightarrow \mathit{SRG}(v,k,\lambda,\mu)$ with v,k,λ,μ in terms of m,q, and r $\lambda \geq 0 \implies m \geq \lceil \mathsf{some} \rceil$ some lower bound in q and r

• J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, *JCTA*, 2007.

From now on,
$$\mathcal{P} = \mathcal{Q}^-(2r+1,q)$$
, an elliptic quadric

$$|P^{\perp} \cap \mathcal{O}| = \begin{cases} (m-1)(q^r+1)+1 & \text{if } P \in \mathcal{O}, \\ m(q^r+1) & \text{if } P \notin \mathcal{O}. \end{cases}$$

Let \mathcal{O} be an m-ovoid of \mathcal{P} and $\mathcal{P} \in \{\mathcal{H}(2r,q^2), \mathcal{Q}^-(2r+1,q), \mathcal{W}(2r-1,q)\}$ $\Rightarrow \mathcal{O}$ is a two-character set w.r.t. the hyperplanes of $\mathrm{PG}(n,q)$ $\Rightarrow \mathit{SRG}(v,k,\lambda,\mu)$ with v,k,λ,μ in terms of m,q, and r $\lambda \geq 0 \implies m \geq \lceil \mathsf{some} \rceil$ some lower bound in q and r

• J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, *JCTA*, 2007.

From now on,
$$\mathcal{P} = \mathcal{Q}^-(2r+1,q)$$
, an elliptic quadric

$$\blacktriangleright |P^{\perp} \cap \mathcal{O}| = \begin{cases} (m-1)(q^r+1)+1 & \text{if } P \in \mathcal{O}, \\ m(q^r+1) & \text{if } P \notin \mathcal{O}. \end{cases}$$

$$m \geq \frac{-3+\sqrt{4q^{r+1}+9}}{2q-2}.$$

m-ovoids of polar spaces

Let \mathcal{O} be an m-ovoid of \mathcal{P} and

$$\mathcal{P} \in \{\mathcal{H}(2r, q^2), \mathcal{Q}^-(2r+1, q), \mathcal{W}(2r-1, q)\}\$$

 $\Rightarrow \mathcal{O}$ is a *two-character* set w.r.t. the hyperplanes of $\mathrm{PG}(n, q)$

$$\Rightarrow$$
 SRG (v, k, λ, μ) with v, k, λ, μ in terms of m, q , and r

$$\lambda \geq 0 \implies m \geq \boxed{\text{some lower bound in } q \text{ and } r}$$

• J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, *JCTA*, 2007.

From now on,
$$\mathcal{P} = \mathcal{Q}^{-}(2r+1,q)$$
, an elliptic quadric

$$ightharpoonup |P^{\perp}\cap\mathcal{O}| = egin{cases} (m-1)\,(q^r+1)+1 & ext{if } P\in\mathcal{O}, \ m\,(q^r+1) & ext{if } P
otin\mathcal{O}. \end{cases}$$

$$ightharpoonup m \geq \frac{-3+\sqrt{4q^{r+1}+9}}{2q-2}$$
.

Theorem (B. Segre, 1965)

If $\mathcal O$ is a proper m-ovoid of $\mathcal Q^-(5,q)$, then q is odd and m=(q+1)/2.

Quite a few hemisystems were constructed in the past few decades:

- A. Cossidente, T. Penttila, Hemisystems on the Hermitian surface, LMS, 2005.
- J. Bamberg, M. Giudici, G.F. Royle, Every flock generalized quadrangle has a hemisystem, BLMS, 2010.
- J. Bamberg, M. Giudici, G.F. Royle, Hemisystems of small flock generalized quadrangles, *DCC*, 2013.
- A. Cossidente, F. Pavese, Intriguing sets of quadrics in PG(5, q), Adv. Geom., 2017.
- J. Bamberg, M. Lee, K. Momihara, Q. Xiang, A new infinite family of hemisystems of the Hermitian surface, *Combinatorica*, 2018.
- G. Korchmáros, G.P. Nagy, P. Speziali, Hemisystems of the Hermitian surface, JCTA, 2019.

Consider $V = \mathbb{F}_{q^e}^n$ as the vector space \mathbb{F}_q^{en} :

- a point of $\operatorname{PG}(n-1,q^e)\mapsto$ a set of points of $\operatorname{PG}(en-1,q)$ compose a form f on V with the trace map $\mathbb{F}_{q^e}\to\mathbb{F}_q$
- S. Kelly, Constructions of intriguing sets of polar spaces from field reduction and derivation, *DCC*, 2007.

Consider $V = \mathbb{F}_{q^e}^n$ as the vector space \mathbb{F}_q^{en} :

- a point of $\operatorname{PG}(n-1,q^e)\mapsto$ a set of points of $\operatorname{PG}(en-1,q)$ compose a form f on V with the trace map $\mathbb{F}_{q^e}\to\mathbb{F}_q$
- S. Kelly, Constructions of intriguing sets of polar spaces from field reduction and derivation, *DCC*, 2007.

$$ar{\mathcal{P}} \subset \mathrm{PG}(n-1,q^e) \quad o \quad \mathcal{P} \subset \mathrm{PG}(\mathsf{en}-1,q)$$
 $\mathsf{m} ext{-}\mathsf{ovoid} \ \mathsf{of} \ \mathcal{Q}^-(2r+1,q^e) \quad o \quad \left(m rac{q^e-1}{q-1}
ight) ext{-}\mathsf{ovoid} \ \mathsf{of} \ \mathcal{Q}^-(2\mathsf{e}(r+1)-1,q)$
 $\mathsf{m} ext{-}\mathsf{ovoid} \ \mathsf{of} \ \mathcal{H}(2r,q^{2e}) \quad o \quad \left(m rac{q^{2e}-1}{q-1}
ight) ext{-}\mathsf{ovoid} \ \mathsf{of} \ \mathcal{Q}^-(2\mathsf{e}(2r+1)-1,q)$

Consider $V = \mathbb{F}_{q^e}^n$ as the vector space \mathbb{F}_q^{en} :

- a point of $\operatorname{PG}(n-1,q^e)\mapsto$ a set of points of $\operatorname{PG}(en-1,q)$ compose a form f on V with the trace map $\mathbb{F}_{q^e}\to\mathbb{F}_q$
- S. Kelly, Constructions of intriguing sets of polar spaces from field reduction and derivation, *DCC*, 2007.

$$ar{\mathcal{P}}\subset \mathrm{PG}(n-1,q^e) \quad o \quad \mathcal{P}\subset \mathrm{PG}(\mathsf{en}-1,q)$$
 $m ext{-}\mathit{ovoid}\ \mathit{of}\ \mathcal{Q}^-(2r+1,q^e) \quad o \quad \left(mrac{q^e-1}{q-1}
ight) ext{-}\mathit{ovoid}\ \mathit{of}\ \mathcal{Q}^-(2e(r+1)-1,q)$
 $m ext{-}\mathit{ovoid}\ \mathit{of}\ \mathcal{H}(2r,q^{2e}) \quad o \quad \left(mrac{q^{2e}-1}{q-1}
ight) ext{-}\mathit{ovoid}\ \mathit{of}\ \mathcal{Q}^-(2e(2r+1)-1,q)$

ightharpoonup all points of $\mathcal{Q}^-(2r+1,q^e)$, $r\geq 1, e\geq 2$,

Consider $V = \mathbb{F}_{q^e}^n$ as the vector space \mathbb{F}_q^{en} :

- a point of $\operatorname{PG}(n-1,q^e)\mapsto$ a set of points of $\operatorname{PG}(en-1,q)$ compose a form f on V with the trace map $\mathbb{F}_{q^e}\to\mathbb{F}_q$
- S. Kelly, Constructions of intriguing sets of polar spaces from field reduction and derivation, *DCC*, 2007.

$$ar{\mathcal{P}}\subset\operatorname{PG}(n-1,q^e)$$
 o $\mathcal{P}\subset\operatorname{PG}(en-1,q)$
 $m ext{-}ovoid\ of\ \mathcal{Q}^-(2r+1,q^e)$ o $\left(mrac{q^e-1}{q-1}
ight) ext{-}ovoid\ of\ \mathcal{Q}^-(2e(r+1)-1,q)$
 $m ext{-}ovoid\ of\ \mathcal{H}(2r,q^{2e})$ o $\left(mrac{q^{2e}-1}{q-1}
ight) ext{-}ovoid\ of\ \mathcal{Q}^-(2e(2r+1)-1,q)$

- ightharpoonup all points of $Q^-(2r+1, q^e)$, $r \ge 1, e \ge 2$,
- ▶ hemisystem of $Q^-(5, q^e)$, $e \ge 2$,

Consider $V = \mathbb{F}_{q^e}^n$ as the vector space \mathbb{F}_q^{en} :

- a point of $\operatorname{PG}(n-1,q^e)\mapsto$ a set of points of $\operatorname{PG}(en-1,q)$ compose a form f on V with the trace map $\mathbb{F}_{q^e}\to\mathbb{F}_q$
- S. Kelly, Constructions of intriguing sets of polar spaces from field reduction and derivation, *DCC*, 2007.

$$ar{\mathcal{P}}\subset \mathrm{PG}(n-1,q^e) o \mathcal{P}\subset \mathrm{PG}(\mathsf{en}-1,q)$$
 $m ext{-}\mathit{ovoid}\ \mathit{of}\ \mathcal{Q}^-(2r+1,q^e) o \left(mrac{q^e-1}{q-1}
ight) ext{-}\mathit{ovoid}\ \mathit{of}\ \mathcal{Q}^-(2\mathsf{e}(r+1)-1,q)$
 $m ext{-}\mathit{ovoid}\ \mathit{of}\ \mathcal{H}(2r,q^{2e}) o \left(mrac{q^{2e}-1}{q-1}
ight) ext{-}\mathit{ovoid}\ \mathit{of}\ \mathcal{Q}^-(2\mathsf{e}(2r+1)-1,q)$

- \blacktriangleright all points of $\mathcal{Q}^-(2r+1,q^e), r \geq 1, e \geq 2,$
- \blacktriangleright hemisystem of $Q^-(5, q^e)$, e > 2,
- \blacktriangleright all points of $\mathcal{H}(2r,q^{2e}), r \geq 1, e \geq 2.$

Main result

Theorem (A.G., K. Metsch, F. Pavese)

Let \mathcal{O} be an m-ovoid of $\mathcal{Q}^-(2r+1,q)$, $r\geq 2$. Then

$$m^2 - m \equiv 0 \pmod{q+1}$$

if r is odd, and

$$m^2 \equiv 0 \pmod{q+1}$$
 when q is even, or $m^2 + \frac{q+1}{2}m \equiv 0 \pmod{q+1}$ when q is odd,

if r is even.

• m-ovoid \mathcal{O} of $\mathcal{Q}^-(7,2) \implies m=3$

• *m*-ovoid \mathcal{O} of $\mathcal{Q}^-(7,2) \implies m=3$

and $\mathcal O$ consists of the points of a 1-system of $\mathcal Q^-(7,2)$

• *m*-ovoid \mathcal{O} of $\mathcal{Q}^-(7,2) \implies m=3$

and \mathcal{O} consists of the points of a 1-system of $\mathcal{Q}^-(7,2)$

• *m*-ovoid \mathcal{O} of $\mathcal{Q}^-(7,3) \implies m \in \{4,5\}$

• *m*-ovoid \mathcal{O} of $\mathcal{Q}^-(7,2) \implies m=3$

and $\mathcal O$ consists of the points of a 1-system of $\mathcal Q^-(7,2)$

• m-ovoid \mathcal{O} of $\mathcal{Q}^-(7,3) \implies m \in \{4,5\}$

If m=4, then $\mathcal O$ consists of the points of a 1-system of $\mathcal Q^-(7,3)$

• *m*-ovoid \mathcal{O} of $\mathcal{Q}^-(7,2) \implies m=3$

and $\mathcal O$ consists of the points of a 1-system of $\mathcal Q^-(7,2)$

• m-ovoid \mathcal{O} of $\mathcal{Q}^-(7,3) \implies m \in \{4,5\}$

If m=4, then $\mathcal O$ consists of the points of a 1-system of $\mathcal Q^-(7,3)$

• D. Luyckx, J.A. Thas, The uniqueness of the 1-system of $\mathcal{Q}^-(7,q)$, q odd, JCTA, 2002.

• *m*-ovoid \mathcal{O} of $\mathcal{Q}^-(7,2) \implies m=3$

and $\mathcal O$ consists of the points of a 1-system of $\mathcal Q^-(7,2)$

• m-ovoid \mathcal{O} of $\mathcal{Q}^-(7,3) \implies m \in \{4,5\}$

If m=4, then $\mathcal O$ consists of the points of a 1-system of $\mathcal Q^-(7,3)$

- D. Luyckx, J.A. Thas, The uniqueness of the 1-system of $\mathcal{Q}^-(7,q)$, q odd, JCTA, 2002.
- D. Luyckx, J.A. Thas, The uniqueness of the 1-system of $\mathcal{Q}^-(7,q)$, q even, DM, 2005.

• *m*-ovoid \mathcal{O} of $\mathcal{Q}^-(7,2) \implies m=3$

and \mathcal{O} consists of the points of a 1-system of $\mathcal{Q}^-(7,2)$

• m-ovoid $\mathcal O$ of $\mathcal Q^-(7,3) \implies m \in \{4,5\}$

If m=4, then $\mathcal O$ consists of the points of a 1-system of $\mathcal Q^-(7,3)$

- D. Luyckx, J.A. Thas, The uniqueness of the 1-system of $\mathcal{Q}^-(7,q)$, q odd, JCTA, 2002.
- D. Luyckx, J.A. Thas, The uniqueness of the 1-system of $\mathcal{Q}^-(7,q)$, q even, DM, 2005.

A (q+1)-ovoid of $Q^-(7,q)$, $q \in \{2,3\}$, arises by field reduction from $Q^-(3,q^2)$.

```
https://arxiv.org/abs/2208.13023 (August 27, 2022) by Tao Feng, Weicong Li, Ran Tao:
```

On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group

```
https://arxiv.org/abs/2208.13023 (August 27, 2022) by Tao Feng, Weicong Li, Ran Tao:
```

On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group

• In the case of elliptic quadrics, at some point they obtained 70 candidate values for *m*.

```
https://arxiv.org/abs/2208.13023 (August 27, 2022) by Tao Feng, Weicong Li, Ran Tao:
```

On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group

- In the case of elliptic quadrics, at some point they obtained 70 candidate values for *m*.
- Only 11 cases survived after applying our theorem.

$$|P^{\perp}\cap\mathcal{O}|=egin{cases} (m-1)\,(q^r+1)+1 & \textit{if }P\in\mathcal{O},\ m\,(q^r+1) & \textit{if }P\in\mathcal{Q}^-(2r+1,q)\setminus\mathcal{O}. \end{cases}$$

$$|P^{\perp}\cap\mathcal{O}|=egin{cases} (m-1)\,(q^r+1)+1 & ext{ if }P\in\mathcal{O},\ m\,(q^r+1) & ext{ if }P\in\mathcal{Q}^-(2r+1,q)\setminus\mathcal{O}. \end{cases}$$

$$\chi(P) = \begin{cases} 1 & \text{if } P \in \mathcal{O}, \\ 0 & \text{if } P \in \mathrm{PG}(2r+1,q) \setminus \mathcal{O}. \end{cases}$$

$$|P^{\perp}\cap\mathcal{O}|=egin{cases} (m-1)\,(q^r+1)+1 & ext{ if }P\in\mathcal{O},\ m\,(q^r+1) & ext{ if }P\in\mathcal{Q}^-(2r+1,q)\setminus\mathcal{O}. \end{cases}$$

$$\chi(P) = \begin{cases} 1 & \text{if } P \in \mathcal{O}, \\ 0 & \text{if } P \in \mathrm{PG}(2r+1,q) \setminus \mathcal{O}. \end{cases}$$
$$\chi(\mathcal{S}) := \sum_{P \in \mathcal{S}} \chi(P)$$

$$\mathcal{O}$$
: an *m*-ovoid of $\mathcal{Q}^-(2r+1,q)$

$$|P^\perp\cap\mathcal{O}| = egin{cases} (m-1)\,(q^r+1)+1 & ext{ if } P\in\mathcal{O}, \ m\,(q^r+1) & ext{ if } P\in\mathcal{Q}^-(2r+1,q)\setminus\mathcal{O}. \end{cases}$$

$$\chi(P) = \begin{cases} 1 & \text{if } P \in \mathcal{O}, \\ 0 & \text{if } P \in \mathrm{PG}(2r+1,q) \setminus \mathcal{O}. \end{cases}$$
$$\chi(\mathcal{S}) := \sum_{P \in \mathcal{S}} \chi(P)$$

$$\chi(P^{\perp}) + q^{r}\chi(P) = m(q^{r} + 1), P \in PG(2r + 1, q)$$

$$|P^{\perp}\cap\mathcal{O}|=egin{cases} (m-1)\,(q^r+1)+1 & ext{ if }P\in\mathcal{O},\ m\,(q^r+1) & ext{ if }P\in\mathcal{Q}^-(2r+1,q)\setminus\mathcal{O}. \end{cases}$$

$$\chi(P) = \begin{cases} 1 & \text{if } P \in \mathcal{O}, \\ 0 & \text{if } P \in \mathrm{PG}(2r+1,q) \setminus \mathcal{O}. \end{cases}$$
$$\chi(\mathcal{S}) := \sum_{P \in \mathcal{S}} \chi(P)$$

$$\chi(P^{\perp}) + q^{r}\chi(P) = m(q^{r} + 1), P \in PG(2r + 1, q)$$

$$\chi(\Pi^{\perp}) + q^{r-j}\chi(\Pi) = m(q^{r-j} + 1)$$
, for a j-space Π of $PG(2r + 1, q)$

Take a secant line $\ell \implies \ell \cap \mathcal{Q}^-(2r+1,q) = \{P,Q\}$

Take a secant line $\ell \implies \ell \cap \mathcal{Q}^-(2r+1,q) = \{P,Q\}$

$$\underbrace{\chi(\ell^{\perp})}_{|P^{\perp}\cap Q^{\perp}\cap \mathcal{O}|} + q^{r-1} \cdot \underbrace{\chi(\ell)}_{|\{P,Q\}\cap \mathcal{O}|} = m(q^{r-1} + 1)$$

Take a secant line $\ell \implies \ell \cap \mathcal{Q}^-(2r+1,q) = \{P,Q\}$

$$\underbrace{\chi(\ell^{\perp})}_{|P^{\perp}\cap Q^{\perp}\cap \mathcal{O}|} + q^{r-1} \cdot \underbrace{\chi(\ell)}_{|\{P,Q\}\cap \mathcal{O}|} = m(q^{r-1}+1)$$

Once we know $P^{\perp} \cap \mathcal{O}$, we can recover all other points of \mathcal{O} .

Take a secant line $\ell \implies \ell \cap \mathcal{Q}^-(2r+1,q) = \{P,Q\}$

$$\underbrace{\chi(\ell^{\perp})}_{|P^{\perp}\cap Q^{\perp}\cap \mathcal{O}|} + q^{r-1} \cdot \underbrace{\chi(\ell)}_{|\{P,Q\}\cap \mathcal{O}|} = m(q^{r-1}+1)$$

Once we know $P^{\perp} \cap \mathcal{O}$, we can recover all other points of \mathcal{O} .

$$\mu:\mathcal{Q}^-(2r+1,q) o \mathbb{Z}$$
 is a weighted $m ext{-ovoid}$ of $\mathcal{Q}^-(2r+1,q)$ if $\mu(P^\perp) + q^r \mu(P) = m(q^r+1), \ P \in \mathcal{Q}^-(2r+1,q)$

$$\mu:\mathcal{Q}^-(2r+1,q) o\mathbb{Z}$$
 is a weighted m-ovoid of $\mathcal{Q}^-(2r+1,q)$ if
$$\mu\left(P^\perp\right)+q^r\mu(P)=m(q^r+1),\ P\in\mathcal{Q}^-(2r+1,q)$$

$$\mu(\Pi^{\perp}) + q^{r-j}\mu(\Pi) = m(q^{r-j}+1)$$
, for a j-space Π of $\mathrm{PG}(2r+1,q)$

$$\mu:\mathcal{Q}^-(2r+1,q) o\mathbb{Z}$$
 is a weighted m-ovoid of $\mathcal{Q}^-(2r+1,q)$ if
$$\mu\left(P^\perp\right)+q^r\mu(P)=m(q^r+1),\ P\in\mathcal{Q}^-(2r+1,q)$$

$$\mu(\Pi^{\perp}) + q^{r-j}\mu(\Pi) = m(q^{r-j}+1)$$
, for a j-space Π of $\operatorname{PG}(2r+1,q)$

 P_0 : a point of $Q^-(2r+1,q)$

$$\mu:\mathcal{Q}^-(2r+1,q) o\mathbb{Z}$$
 is a **weighted** m-ovoid of $\mathcal{Q}^-(2r+1,q)$ if $\mu\left(P^\perp\right)+q^r\mu(P)=m(q^r+1),\ P\in\mathcal{Q}^-(2r+1,q)$

$$\mu(\Pi^{\perp}) + q^{r-j}\mu(\Pi) = m(q^{r-j}+1)$$
, for a j-space Π of $\operatorname{PG}(2r+1,q)$

 P_0 : a point of $Q^-(2r+1,q)$

Local polar space $Q^-(2r-1,q)$: induced by $Q^-(2r+1,q)$ in P_0^{\perp}/P_0

$$\mu:\mathcal{Q}^-(2r+1,q) o\mathbb{Z}$$
 is a weighted m-ovoid of $\mathcal{Q}^-(2r+1,q)$ if $\mu\left(P^\perp\right)+q^r\mu(P)=m(q^r+1),\ P\in\mathcal{Q}^-(2r+1,q)$

$$\mu(\Pi^{\perp}) + q^{r-j}\mu(\Pi) = m(q^{r-j}+1)$$
, for a j-space Π of $\operatorname{PG}(2r+1,q)$

 P_0 : a point of $\mathcal{Q}^-(2r+1,q)$ Local polar space $\mathcal{Q}^-(2r-1,q)$: induced by $\mathcal{Q}^-(2r+1,q)$ in P_0^\perp/P_0 μ : a weighted m-ovoid of $\mathcal{Q}^-(2r+1,q)$

$$\mu:\mathcal{Q}^-(2r+1,q) o \mathbb{Z}$$
 is a weighted m-ovoid of $\mathcal{Q}^-(2r+1,q)$ if $\mu\left(P^\perp\right) + q^r\mu(P) = m(q^r+1), \ P \in \mathcal{Q}^-(2r+1,q)$

$$\mu(\Pi^{\perp}) + q^{r-j}\mu(\Pi) = m(q^{r-j}+1)$$
, for a j-space Π of $\operatorname{PG}(2r+1,q)$

 P_0 : a point of $\mathcal{Q}^-(2r+1,q)$ Local polar space $\mathcal{Q}^-(2r-1,q)$: induced by $\mathcal{Q}^-(2r+1,q)$ in P_0^\perp/P_0 μ : a weighted m-ovoid of $\mathcal{Q}^-(2r+1,q)$

$$\mu_{P_0}^{\downarrow}: \mathcal{Q}^{-}(2r-1,q) \to \mathbb{Z}, \quad \mu_{P_0}^{\downarrow}(\ell) = \sum_{\substack{P \in \ell \setminus \{P_0\} \\ P_0 \in \ell}} \mu(P) = \mu(\ell) - \mu(P_0)$$

$$\mu:\mathcal{Q}^-(2r+1,q) o\mathbb{Z}$$
 is a **weighted** m-ovoid of $\mathcal{Q}^-(2r+1,q)$ if
$$\mu\left(P^\perp\right)+q^r\mu(P)=m(q^r+1),\ P\in\mathcal{Q}^-(2r+1,q)$$

$$\mu(\Pi^{\perp}) + q^{r-j}\mu(\Pi) = m(q^{r-j}+1)$$
, for a j-space Π of $\mathrm{PG}(2r+1,q)$

 P_0 : a point of $\mathcal{Q}^-(2r+1,q)$ Local polar space $\mathcal{Q}^-(2r-1,q)$: induced by $\mathcal{Q}^-(2r+1,q)$ in P_0^\perp/P_0 μ : a weighted m-ovoid of $\mathcal{Q}^-(2r+1,q)$

$$\mu_{P_0}^{\downarrow}: \mathcal{Q}^-(2r-1,q) \to \mathbb{Z}, \quad \mu_{P_0}^{\downarrow}(\ell) = \sum_{\substack{P \in \ell \setminus \{P_0\} \\ P_0 \in \ell}} \mu(P) = \mu(\ell) - \mu(P_0)$$

$$\implies \mu_{P_0}^\downarrow$$
 is a weighted $(m-\mu(P_0))$ -ovoid of $\mathcal{Q}^-(2r-1,q)$

Key equation

$$\|\mu\|^2:=\sum \mu(P)^2$$

Key equation

$$\|\mu\|^2:=\sum \mu(P)^2$$

In particular, $\|\chi_{\mathcal{O}}\|^2 = |\mathcal{O}|$.

Key equation

$$\|\mu\|^2 := \sum \mu(P)^2$$

In particular, $\|\chi_{\mathcal{O}}\|^2 = |\mathcal{O}|$.

$$\|\mu\|^{2} = \mu(P_{0})^{2} + (\mu(P_{0}) + m(q-1))^{2} + (q+1) \sum_{P_{1} \in P_{0}^{\perp} \setminus \{P_{0}\}} \mu(P_{1})^{2} - \|\mu_{P_{0}}^{\downarrow}\|^{2}.$$

Key equation

$$\|\mu\|^2 := \sum \mu(P)^2$$

In particular, $\|\chi_{\mathcal{O}}\|^2 = |\mathcal{O}|$.

$$\|\mu\|^{2} = \mu(P_{0})^{2} + (\mu(P_{0}) + m(q-1))^{2} + (q+1) \sum_{P_{1} \in P_{0}^{\perp} \setminus \{P_{0}\}} \mu(P_{1})^{2} - \|\mu_{P_{0}}^{\downarrow}\|^{2}.$$

Fix a maximal flag $P_0 \subset \ell_0 \subset \pi_0 \subset \dots$ and let $\mu = \chi_{\mathcal{O}}$

Key equation

$$\|\mu\|^2 := \sum \mu(P)^2$$

In particular, $\|\chi_{\mathcal{O}}\|^2 = |\mathcal{O}|$.

$$\|\mu\|^{2} = \mu(P_{0})^{2} + (\mu(P_{0}) + m(q-1))^{2} + (q+1) \sum_{P_{1} \in P_{0}^{\perp} \setminus \{P_{0}\}} \mu(P_{1})^{2} - \|\mu_{P_{0}}^{\downarrow}\|^{2}.$$

Fix a maximal flag $P_0 \subset \ell_0 \subset \pi_0 \subset \dots$ and let $\mu = \chi_{\mathcal{O}}$

$$\|\mu_{P_0}^{\downarrow}\|^2 = \dots \text{ (in } m,q,r)$$

$$\|\mu\|^2 \iff \|\mu_{P_0}^{\downarrow}\|^2 \iff \|\left(\mu_{P_0}^{\downarrow}\right)_{\ell_0}^{\downarrow}\|^2 \iff \|\left(\left(\mu_{P_0}^{\downarrow}\right)_{\ell_0}^{\downarrow}\right)_{\pi_0}^{\downarrow}\|^2 \iff \dots$$
Compute $\|\mu_{P_0}^{\downarrow}\|^2$ by induction, modulo $q+1$

Equating modulo q+1

$$\|\mu_{P_0}^{\downarrow}\|^2 = \dots \text{ (in } m,q,r)$$

$$\|\mu\|^2 \iff \|\mu_{P_0}^{\downarrow}\|^2 \iff \|\left(\mu_{P_0}^{\downarrow}\right)_{\ell_0}^{\downarrow}\|^2 \iff \|\left(\left(\mu_{P_0}^{\downarrow}\right)_{\ell_0}^{\downarrow}\right)_{\pi_0}^{\downarrow}\|^2 \iff \dots$$
Compute $\|\mu_{P_0}^{\downarrow}\|^2$ by induction, modulo $q+1$

Assuming that $P_0 \notin \mathcal{O}$:

 $m^2(q-1)^2 + m(q^r+q) = \|\mu_{P_0}^{\downarrow}\|^2$

$$\equiv egin{array}{ll} -2qm^2+(q+1)(q^{r-1}+1)m & ext{if r is odd} \ (q^2+1)m^2 & ext{if r is even} \end{array}$$

Computing modulo q + 1 and simplifying gives the result.

Main result

Theorem (A.G., K. Metsch, F. Pavese)

Let \mathcal{O} be an m-ovoid of $\mathcal{Q}^-(2r+1,q)$, $r \geq 2$. Then

$$m^2 - m \equiv 0 \pmod{q+1}$$

if r is odd, and

$$m^2 \equiv 0 \pmod{q+1}$$
 when q is even, or $m^2 + \frac{q+1}{2}m \equiv 0 \pmod{q+1}$ when q is odd,

if r is even.

Main result

Theorem (A.G., K. Metsch, F. Pavese)

Let \mathcal{O} be an m-ovoid of $\mathcal{Q}^-(2r+1,q)$, $r \geq 2$. Then

$$m^2 - m \equiv 0 \pmod{q+1}$$

if r is odd, and

$$m^2 \equiv 0 \pmod{q+1}$$
 when q is even, or $m^2 + \frac{q+1}{2}m \equiv 0 \pmod{q+1}$ when q is odd,

if r is even.

$$\|\mu_{P_0}^{\downarrow}\|^2 = \sum_{\substack{\ell \text{ line} \\ P_0 \in \ell}} \left| (\ell \setminus \{P_0\}) \cap \mathcal{O} \right|^2$$

A 5-ovoid of $Q^-(7,3)$?

$$|\mathcal{O}|=410$$
,

$$|\mathcal{O}| = 410,$$

$$P_0 \in \mathcal{O}, \ x_i = \{\ell \subset \mathcal{Q}^-(7,3) \mid P_0 \in \ell, |\ell \cap \mathcal{O}| = i\},$$

$$|\mathcal{O}| = 410,$$
 $P_0 \in \mathcal{O}, x_i = \{\ell \subset \mathcal{Q}^-(7,3) \mid P_0 \in \ell, |\ell \cap \mathcal{O}| = i\},$
 $x_1 = x_3 = 24, x_2 = 64.$

$$|\mathcal{O}| = 410,$$
 $P_0 \in \mathcal{O}, \ x_i = \{\ell \subset \mathcal{Q}^-(7,3) \mid P_0 \in \ell, |\ell \cap \mathcal{O}| = i\},$ $x_1 = x_3 = 24, \ x_2 = 64.$ Projecting the 64 bisecant lines to $P_0^{\perp}/P_0 \simeq \mathcal{Q}^-(5,3)$

$$\begin{split} |\mathcal{O}| &= 410, \\ P_0 \in \mathcal{O}, \, x_i = \{\ell \subset \mathcal{Q}^-(7,3) \mid P_0 \in \ell, |\ell \cap \mathcal{O}| = i\}, \\ x_1 &= x_3 = 24, \, x_2 = 64. \end{split}$$
 Projecting the 64 bisecant lines to $P_0^{\perp}/P_0 \simeq \mathcal{Q}^-(5,3)$ gives a pointset $\mathcal{X} \subset \mathcal{Q}^-(5,3), \, |\mathcal{X}| = 64,$

$$\begin{split} |\mathcal{O}| &= 410, \\ P_0 \in \mathcal{O}, \, x_i = \{\ell \subset \mathcal{Q}^-(7,3) \mid P_0 \in \ell, |\ell \cap \mathcal{O}| = i\}, \\ x_1 &= x_3 = 24, \, x_2 = 64. \end{split}$$
 Projecting the 64 bisecant lines to $P_0^\perp/P_0 \simeq \mathcal{Q}^-(5,3)$ gives a pointset $\mathcal{X} \subset \mathcal{Q}^-(5,3), \, |\mathcal{X}| = 64,$ s.t. $|\ell \cap \mathcal{X}| \in \{0,2,4\}, \, \forall \ell \text{ line of } \mathcal{Q}^-(5,3).$

$$\begin{split} |\mathcal{O}| &= 410, \\ P_0 \in \mathcal{O}, \, x_i = \{\ell \subset \mathcal{Q}^-(7,3) \mid P_0 \in \ell, |\ell \cap \mathcal{O}| = i\}, \\ x_1 &= x_3 = 24, \, x_2 = 64. \end{split}$$
 Projecting the 64 bisecant lines to $P_0^{\perp}/P_0 \simeq \mathcal{Q}^-(5,3)$ gives a pointset $\mathcal{X} \subset \mathcal{Q}^-(5,3), \, |\mathcal{X}| = 64,$ s.t. $|\ell \cap \mathcal{X}| \in \{0,2,4\}, \, \forall \ell \text{ line of } \mathcal{Q}^-(5,3).$

 B. De Bruyn, The pseudo-hyperplanes and homogeneous pseudo-embeddings of the generalized quadrangles of order (3, t), DCC, 2013.

$$\begin{split} |\mathcal{O}| &= 410, \\ P_0 \in \mathcal{O}, \, x_i = \{\ell \subset \mathcal{Q}^-(7,3) \mid P_0 \in \ell, |\ell \cap \mathcal{O}| = i\}, \\ x_1 &= x_3 = 24, \, x_2 = 64. \end{split}$$
 Projecting the 64 bisecant lines to $P_0^{\perp}/P_0 \simeq \mathcal{Q}^-(5,3)$ gives a pointset $\mathcal{X} \subset \mathcal{Q}^-(5,3), \, |\mathcal{X}| = 64,$ s.t. $|\ell \cap \mathcal{X}| \in \{0,2,4\}, \, \forall \ell \text{ line of } \mathcal{Q}^-(5,3).$

 B. De Bruyn, The pseudo-hyperplanes and homogeneous pseudo-embeddings of the generalized quadrangles of order (3, t), DCC, 2013.

Three examples up to projectivities: Type 10, Type 16, Type 19.

$$\begin{split} |\mathcal{O}| &= 410, \\ P_0 \in \mathcal{O}, \, x_i = \{\ell \subset \mathcal{Q}^-(7,3) \mid P_0 \in \ell, |\ell \cap \mathcal{O}| = i\}, \\ x_1 &= x_3 = 24, \, x_2 = 64. \end{split}$$
 Projecting the 64 bisecant lines to $P_0^\perp/P_0 \simeq \mathcal{Q}^-(5,3)$ gives a pointset $\mathcal{X} \subset \mathcal{Q}^-(5,3), \, |\mathcal{X}| = 64,$ s.t. $|\ell \cap \mathcal{X}| \in \{0,2,4\}, \, \forall \ell \text{ line of } \mathcal{Q}^-(5,3).$

 B. De Bruyn, The pseudo-hyperplanes and homogeneous pseudo-embeddings of the generalized quadrangles of order (3, t), DCC, 2013.

Three examples up to projectivities: Type 10, Type 16, Type 19.

The only possible case occurring by projecting $\mathcal O$ is Type 10

$$\begin{split} |\mathcal{O}| &= 410, \\ P_0 \in \mathcal{O}, \, x_i = \{\ell \subset \mathcal{Q}^-(7,3) \mid P_0 \in \ell, |\ell \cap \mathcal{O}| = i\}, \\ x_1 &= x_3 = 24, \, x_2 = 64. \end{split}$$
 Projecting the 64 bisecant lines to $P_0^{\perp}/P_0 \simeq \mathcal{Q}^-(5,3)$ gives a pointset $\mathcal{X} \subset \mathcal{Q}^-(5,3), \, |\mathcal{X}| = 64,$ s.t. $|\ell \cap \mathcal{X}| \in \{0,2,4\}, \, \forall \ell \text{ line of } \mathcal{Q}^-(5,3).$

• B. De Bruyn, The pseudo-hyperplanes and homogeneous pseudo-embeddings of the generalized quadrangles of order (3, t), *DCC*, 2013.

Three examples up to projectivities: Type 10, Type 16, Type 19.

The only possible case occurring by projecting $\mathcal O$ is Type 10

THANK YOU