The André/Bruck-Bose representation of a linear set on a projective line

Jozefien D'haeseleer Joint work with Lins Denaux and Geertrui Van de Voorde

Irsee 2022

2 Outline

2 The ABB representation of a linear set on a line

3 Corollary for higgledy-piggledy sets

The ABB representation of a linear set on a line

Corollary for higgledy-piggledy sets

4 Linear sets

Definition

An \mathbb{F}_q -linear set of rank k is a set T of points of $PG(r - 1, q^t)$ s.t. there exists a (k - 1)-space π in PG(rt - 1, q) such that the points of T correspond to the elements of \mathcal{X} that have a non-empty intersection with π .

5 Linear sets of rank 3 on a line

Two types

- Scattered linear sets,
- Clubs with head point *H*.

5 Linear sets of rank 3 on a line

Two types

- Scattered linear sets,
- Clubs with head point *H*.

6 André/Bruck-Bose construction

2 The ABB representation of a linear set on a line

Corollary for higgledy-piggledy sets

8 **Tangent scattered linear set in** $PG(1, q^3)$

Theorem

Let S be the affine point set of a tangent scattered linear set of rank 3 in PG(1, q^3), then the ABB-representation of S is the affine part of a hyperbolic quadric Q intersecting the plane π_{∞} in a conic.

9 Tangent scattered linear set in $PG(1, q^3)$

We know even more

Special hyperbolic quadric

 Special hyperbolic quadric always comes from tangent scattered linear set.

9 Tangent scattered linear set in $PG(1, q^3)$

We know even more

- Special hyperbolic quadric
- Special hyperbolic quadric always comes from tangent scattered linear set.

Club with head point $H \in l_{\infty}$.

• Club with head point $H \notin l_{\infty}$.

Theorem

Let *S* be the affine point set of a tangent club of rank 3 in $PG(1, q^t)$ with $H = P_{\infty}$, then the ABB-representation of *S* is an affine plane in Π .

Theorem

Let *S* be the affine point set of a tangent club of rank 3 in $PG(1, q^t)$, t prime and $P_{\infty} \neq H$, then the ABB-representation of *S* is the affine part of a cone in Π with vertex *H'* and base a NRC of degree t - 1 contained in π_{∞} .

We know even more

Special cone always comes from tangent club of rank 3 with $H \neq P_{\infty}$.

• Generalisation for rank $k \ge 3$.

We know even more

- Special cone.
- Special cone always comes from tangent club of rank 3 with $H \neq P_{\infty}$.

Generalisation for rank $k \ge 3$.

We know even more

- Special cone.
- Special cone always comes from tangent club of rank 3 with $H \neq P_{\infty}$.

• Generalisation for rank $k \ge 3$.

14 The proof

Techniques

- Projection arguments
- Coordinates
- Combinatorial arguments

15 Proof for tangent club with $H \notin l_{\infty}$, *t* **prime**

Result [S. Rottey, J. Sheekey, G. Van de Voorde, 2015]

ABB representation of \mathbb{F}_q -sublines.

16 ABB representation of \mathbb{F}_q -sublines

Tangent \mathbb{F}_q -subline \rightarrow Line in Π . External \mathbb{F}_q -subline \rightarrow Normal rational curve in Π .

16 ABB representation of \mathbb{F}_q -sublines

Tangent \mathbb{F}_q -subline \rightarrow Line in Π . External \mathbb{F}_q -subline \rightarrow Normal rational curve in Π .

17 Proof for tangent club with $H \notin l_{\infty}$, *t* **prime**

Result [M. Lavrauw, G. Van de Voorde, 2010]

Intersection of sublines and linear sets on a line

18 The proof

Result

Through 2 non-head points of a club *S* of $PG(1, q^t)$, there is exactly one subline contained in *S*, which contains the head of the club.

The ABB representation of a linear set on a line

Corollary for higgledy-piggledy sets

Definition

A set of planes is a hig-pig set of planes in PG(5, q) if the set of intersection points of these planes with any solid μ in PG(5, q) spans μ itself.

Under field reduction

A set of points in $PG(1, q^3)$, not contained in a linear set of rank max 3.

Known lower bound by L. Denaux: 7 planes.

Definition

A set of planes is a hig-pig set of planes in PG(5, q) if the set of intersection points of these planes with any solid μ in PG(5, q) spans μ itself.

Under field reduction

A set of points in $PG(1, q^3)$, not contained in a linear set of rank max 3.

Known lower bound by L. Denaux: 7 planes.

Definition

A set of planes is a hig-pig set of planes in PG(5, q) if the set of intersection points of these planes with any solid μ in PG(5, q) spans μ itself.

Under field reduction

A set of points in $PG(1, q^3)$, not contained in a linear set of rank max 3.

Known lower bound by L. Denaux: 7 planes.

Thank you very much for your attention.