Quadratic sets on the Klein quadric

Bart De Bruyn

Finite Geometries 2022, Sixth Irsee Conference

Quadratic sets of quadrics

Let Q be a nonsingular quadric of Witt index at least 3 in a projective space.

A quadratic set of Q is a set of points meeting each subspace π of Q in a possibly singular quadric of π.
It suffices to demand this condition for maximal subspaces π.
Classical (standard) examples: Intersections of Q with quadrics of the ambient projective space of Q.

Question 1: Are all quadratic sets classical?
Question 2: If not, are there certain families of quadratic sets all whose members are classical?

The case of Witt index 3

Let Q be a finite nonsingular quadric of Witt index 3, i.e. $Q^{+}(5, q), Q(6, q)$ or $Q^{-}(7, q)$. A set $X \subset Q$ is a quadratic set if it meets each plane π of Q in a singleton (type S), a line (type L), an irreducible conic (type C), a pencil of two lines (type P) or the whole of π (type W).

Theorem (Mou Gao and BDB (DCC, 2022))

All quadratic sets of $Q^{+}(5,2), Q(6,2)$ and $Q^{-}(7,2)$ are classical.

Not true for $q \geq 3$!
$Q^{+}(5,2): 2^{20}$ examples, 131 nonisomorphic ones.
$Q(6,2): 2^{27}$ examples.
$Q^{-}(7,2): 2^{35}$ examples.

What are the interesting quadratic sets?

Criteria:

- Possibility to obtain classification results about them.
- Connection with other geometric objects.

Good quadratic sets: Among the five possible plane intersections, at most two occur.

Type (X): All plane intersections have type X.
Type (XY): All plane intersections have type X or type Y .

Good quadratic sets of the Klein quadric $Q^{+}(5, q)$

There are 15 possible types:

- (S), (L), (C), (P), (W)
- (SL), (SC), (SP), (SW), (LC), (LP), (LW), (CP), (CW), (PW)

Type (W): the whole Klein quadric $Q^{+}(5, q)$
Type (S): ovoids of $Q^{+}(5, q)$, images under the Klein correspondence of line spreads of $\operatorname{PG}(3, q)$. Such an ovoid is a classical quadratic set if and only if it is a $Q^{-}(3, q)$-quadric.

Classification and (non)-existence results (BDB, 2022)

- Nonexistence for types (SP), (SW) and (CW).
- Complete classification for types (L), (P), (SL), (LP), (LW) and (PW).
- Construction of at least one infinite family for each of the types (SC), (LC), (CP), both for q even and q odd.
- Six families of type (LC): examples of $(q+1)$-ovoids.

Type C: unique example for $q=2$
Open problem: What about $q \geq 3$? (no classical example for $q=3$)

Complete classification for type (L)

- $Q(4, q)$-quadric (intersection with non-tangent hyperplane)

Complete classification for type (LW)

- $p Q^{+}(3, q)$-quadric (intersection with tangent hyperplane)

Complete classification for type (SL)

- $Q^{+}(3, q)$-quadric
- $\bigcup_{L \in \mathcal{L}} L$, where \mathcal{L} is a set of lines through a point $x \in Q^{+}(5, q)$ forming an ovoid in the local polar space in x (which is a $(q+1) \times(q+1)$-grid)

Complete classification for type (P)

- union of two $Q(4, q)$-quadrics intersecting in a $Q^{-}(3, q)$-quadric
- extra example for $q=2$

Complete classification for type (LP)

- union of two $Q(4, q)$-quadrics intersecting in a $Q^{+}(3, q)$-quadric
- union of two $Q(4, q)$-quadrics intersecting in a $x Q(2, q)$-quadric

Complete classification for type (PW)

- union of an $x Q^{+}(3, q)$-quadric and an $x^{\prime} Q^{+}(3, q)$-quadric, with x and x^{\prime} noncollinear on $Q^{+}(5, q)$.
- union of an $x Q^{+}(3, q)$-quadric and a $Q(4, q)$-quadric with x belonging to the $Q(4, q)$-quadric.

Quadratic sets of type (SC), q odd

The intersection of the Klein quadric $X_{1} X_{2}+X_{3} X_{4}+X_{5} X_{6}=0$ with the quadric having and equation of the form

$$
X_{1}^{2}+a_{33} a_{44} X_{2}^{2}+a_{33} X_{3}^{2}+a_{44} X_{4}^{2}=0
$$

where a_{33}, a_{44} are non-squares in \mathbb{F}_{q}.

Quadratic sets of type (SC), q even

The intersection of the Klein quadric $X_{1} X_{2}+X_{3} X_{4}+X_{5} X_{6}=0$ with the quadric having and equation of the form
$X_{2}^{2}+X_{3}^{2}+X_{4}^{2}+X_{5}^{2}+X_{6}^{2}+\lambda X_{3} X_{5}+\lambda X_{3} X_{6}+\lambda X_{4} X_{5}+\lambda X_{4} X_{6}+\lambda^{2} X_{5} X_{6}=0$, where $\lambda \in \mathbb{F}_{q}$ such that the polynomial $X^{2}+\lambda X+1 \in \mathbb{F}_{q}[X]$ is irreducible.

Quadratic sets of type (LC), q odd

The intersection of the Klein quadric $X_{1} X_{2}+X_{3} X_{4}+X_{5} X_{6}=0$ with the quadric having and equation of the form

$$
x_{2} x_{5}+d_{1} x_{2} x_{6}+a_{33} x_{3}^{2}+2 a_{33} d_{2} x_{3} x_{4}+a_{33} d_{2}^{2} x_{4}^{2}=0
$$

where $a_{33}, d_{1}, d_{2} \in \mathbb{F}_{q}^{*}$ with $-d_{1} d_{2}$ a non-square in \mathbb{F}_{q}.

Quadratic sets of type (LC), q even

The intersection of the Klein quadric $X_{1} X_{2}+X_{3} X_{4}+X_{5} X_{6}=0$ with the quadric having and equation of the form

$$
X_{2} X_{5}+a_{26} X_{2} X_{6}+a_{33} X_{3}^{2}+a_{44} X_{4}^{2}+a_{66} X_{6}^{2}=0
$$

where $a_{26}, a_{33}, a_{44}, a_{66} \in \mathbb{F}_{q}^{*}$ with $\operatorname{Tr}\left(\frac{a_{33} a_{44} a_{26}^{2}}{a_{66}^{2}}\right)=1$.

$$
\operatorname{Tr}(x)=x+x^{2}+\cdots+x^{q / 2}
$$

Quadratic sets of type (CP), q odd

The intersection of the Klein quadric $X_{1} X_{2}+X_{3} X_{4}+X_{5} X_{6}=0$ with the quadric having and equation of the form
$x_{2}^{2}+a_{35} x_{3} x_{5}+a_{36} x_{3} x_{6}+a_{45} x_{4} x_{5}+a_{46} x_{4} x_{6}+a_{56} x_{5} x_{6}+a_{66} x_{6}^{2}=0$,
where $a_{35}, a_{36}, a_{45}, a_{46}, a_{56}, a_{66} \in \mathbb{F}_{q}^{*}$ such that
$a_{46}=\frac{a_{36} a_{45}}{a_{35}}, a_{66}=\frac{a_{36} a_{56}}{a_{35}}$ and $a_{56}^{2}-4 a_{36} a_{45}$ is a nonsquare in \mathbb{F}_{q}.

Quadratic sets of type (CP), q even

The intersection of the Klein quadric $X_{1} X_{2}+X_{3} X_{4}+X_{5} X_{6}=0$ with the quadric having and equation of the form

$$
X_{2}^{2}+a_{35} X_{3} X_{5}+a_{36} X_{3} X_{6}+a_{45} X_{4} X_{5}+a_{46} X_{4} X_{6}+a_{56} X_{5} X_{6}+a_{66} X_{6}^{2}=0
$$

where $a_{35}, a_{36}, a_{45}, a_{46}, a_{56}, a_{66} \in \mathbb{F}_{q}^{*}$ with

$$
a_{46}=\frac{a_{36} a_{45}}{a_{35}}, \quad a_{66}=\frac{a_{36} a_{56}}{a_{35}}, \quad \operatorname{Tr}\left(\frac{a_{36} a_{45}}{a_{56}^{2}}\right)=1
$$

Application 1: Line sets in $P G(3, q)$

Theorem (Sahu and Pradhan, 2020)

Let \mathcal{S} be a set of lines in $\operatorname{PG}(3, q), q \geq 7$ odd, for which the following hold:

- There are $\frac{1}{2} q(q+1)$ or q^{2} lines of \mathcal{S} through each point of $\mathrm{PG}(3, q)$ and both cases occur.
- Precisely one of the following holds for every plane π :
- every pencil of lines in π contains 0 or q lines of \mathcal{S} (with both cases occurring);
- every pencil of lines in π contains $\frac{1}{2}(q-1), \frac{1}{2}(q+1)$ or q lines of \mathcal{S}.
Then \mathcal{S} is one of the following:
(1) The set of secant lines with respect to a hyperbolic quadric;
(2) A hypothetical family consisting of $\frac{q^{4}+a^{3}+2 q^{2}}{2}$ lines.

Application 1: Line sets in $P G(3, q)$

Problem further investigated by Sahu, Pradhan, Sahoo and BDB.

- Result remains valid for $q \in\{3,5\}$.
- The line sets are related to quadratic sets.

Suppose q odd. Take a quadratic set X of type (LC) for which the following hold:

- The planes of type (L) are precisely the planes through a given point $x^{*} \in Q^{+}(5, q)$.
- If A is the set of all points that are exterior with respect to some conic intersection $\pi \cap X$ where π is a plane of type (C), then every plane π^{\prime} through an element $x \in A$ has type (C) and x is exterior with respect to the conic $\pi^{\prime} \cap X$.

Application 1: Line sets in $P G(3, q)$

Theorem (Pradhan, Sahoo, Sahu, BDB)

- The line set $\kappa^{-1}\left(\left(\left(x^{*}\right)^{\perp} \backslash X\right) \cup A\right)$ belongs to the hypothetical family, with κ denoting the Klein correspondence.
- If q is distinct from 5 and 9 , then every line set in the hypothetical family can be obtained in this way.
- The quadratic sets of type (LC) mentioned earlier satisfy the above conditions and so give rise to line sets in the hypothetical family.
- There exists up to isomorphism a unique example for $q=3$.

Application 2: Hyperovals of polar spaces

Suppose q even. Take a quadratic set X of type (SC).
A_{1} : Set of all points $x \in X$ that are contained in plane of type (S).
A_{2} : Set of the kernels of all conics of the form $\pi \cap X$ for planes π of type (C).

Suppose the following hold:

- Every plane π_{1} through a point $x_{1} \in A_{1}$ has type (S).
- Every plane π_{2} through a point $x_{2} \in A_{2}$ has type (C) and x_{2} is the kernel of the conic $\pi_{2} \cap X$.

Application 2: Hyperovals of polar spaces

Then $\left(X \backslash A_{1}\right) \cup A_{2}$ is a hyperoval of $Q^{+}(5, q)$, i.e. a nonempty set of points meeting each line in either 0 or 2 points, or equivalently, each plane in either the empty set or a hyperoval of that plane.

The family of type (SC) mentioned above satisfies this property and so gives rise to an infinite family of hyperovals.

Seems to be first family for $q \geq 3$ and Witt index at least 3.
D. V. Pasechnik. Extending polar spaces of rank at least 3. J. Combin. Theory Ser. A 72 (1995), 232-242.

- Computer classification (backtrack) of all hyperovals of $Q^{+}(5,4)$: two nonisomorphic examples.
- Open problem: Computer-free constructions of these hyperovals.

